Menu

Как правильно заглушить турбину на дизеле: Как заглушить турбину видео | Assa59.ru

Содержание

Как глушить турбодизель

Обладатели турбомоторов часто задаются вопросом касательно необходимости охлаждения турбины перед тем, как заглушить мотор. Подобное охлаждение предполагает несколько минут работы ДВС на холостом ходу. Для получения точного ответа необходимо выяснить, в каких условиях работает турбокомпрессор двигателя. Отработавшие газы несут в себе большое количество полезной энергии, которая получена в результате сгорания топлива в цилиндрах. Перенаправление потока выхлопа на турбинное колесо позволяет реализовать эффективный привод для компрессора. Так удается получить нагнетание воздуха под давлением без отбора мощности у ДВС, что принципиально отличает турбокомпрессор от механического нагнетателя.

Турбонагнетатель является осью, на концах которой присутствуют колеса с лопатками. Выделяют турбинное и компрессорное колесо. Указанные колеса находятся в специальных корпусах. Нагнетатель ставится в выпускном тракте, так как турбинное колесо вращается от контакта с отработавшими газами. Такое вращение позволяет компрессорному колесу вращаться параллельно, засасывать и сжимать воздух для подачи в цилиндры двигателя.

Содержание статьи

Условия работы турбины

Температура выхлопных газов дизельного двигателя на выходе перед турбиной составляет в среднем 750-850 градусов по Цельсию. Бензиновые агрегаты имеют еще более разогретый выхлоп. Такие раскаленные газы движутся с большой скоростью и встречаются с турбинным колесом.

Турбокомпрессор отличается высокой производительностью и потребляет достаточно много энергии отработавших газов (в среднем около 25-30 кВт и более). Турбодизель с рабочим объемом 2.0 литра в режиме холостого хода потребляет около 800 литров воздуха за 60 секунд. В режиме максимальной мощности данный показатель доходит до 4 м3. Если учесть, что турбокомпрессор также нагнетает избыток давления до 1 атмосферы, тогда общий объем нагнетаемого устройством воздуха намного больше.

Во время работы ДВС на пиковых нагрузках турбинное колесо раскручивается до 150 тыс. об/мин и более, нагрев колеса достигает 800-900 градусов по Цельсию. После взаимодействия с турбинным колесом температура выхлопа заметно падает до средней отметки 400-500 градусов.  

В режиме холостого хода отработавшие газы дизеля имеют температуру около 100 градусов по Цельсию и движутся с небольшой скоростью. Для эффективного вращения колеса турбины и параллельного вращения компрессорного колеса этой энергии достаточно только для того, чтобы турбокомпрессор не препятствовал проходу через него воздуха в объеме, который необходим для поддержания стабильной работы ДВС на холостых оборотах.

Охлаждение и смазка турбокомпрессора

Колесо турбины выполнено из специальной жаропрочной стали, компрессорное колесо изготавливают из сплавов алюминия. Разные материалы применяются для снижения инерционности турбины. Вал турбины (ось, стержень) закреплен и вращается в плавающих подшипниках скольжения. Также в некоторых турбокомпрессорах могут использоваться шариковые подшипники. 

Для смазки подшипников турбокомпрессора реализован подвод моторного масла из системы смазки двигателя. Кроме снижения потерь на трение и препятствования износу трущихся элементов смазка турбины также выполняет важную функцию по отводу тепла из области трения. 

В трущихся элементах турбины выделяется большое количество тепла. Сама ось нагнетателя нагревается от контакта с разогретым турбинным колесом, нагрев еще более усиливается в результате высокой частоты вращения и возникающего трения. Во время работы ДВС масло активно подается к подшипникам, охлаждая их. Если мотор сразу заглушить после серьезных нагрузок на двигатель, тогда нагретая ось остановится практически сразу после остановки двигателя. Подача масла к подшипникам сразу прекращается, а сам вал и подшипники усиленно нагреваются от раскаленного колеса турбины. Сильный нагрев приводит к тому, что масло в турбине начинает закоксовываться.

В момент последующего пуска турбомотора закоксовавшееся масло и отложения препятствуют нормальному доступу свежей смазки в первые секунды после запуска. Вполне очевидно, что присутствует сильный износ подшипников турбины. Для решения этой проблемы рекомендуется не сразу глушить мотор после езды, а дать силовому агрегату поработать на холостых оборотах от 2-х до 5-и минут. Температура выхлопа на холостом ходу упадет до 100 градусов Цельсия, интенсивность вращения турбины снизится. Этого времени будет достаточно для того, чтобы колесо турбины и ось успели охладиться до такой температуры, когда коксования масла не произойдет после остановки ДВС. Отсутствие кокса значительно продлевает ресурс турбины дизельного или бензинового двигателя.

Для эффективного охлаждения турбины после остановки двигателя и минимизации рисков перегрева используется автоматическое электронное устройство под названием турботаймер. Принцип работы данного решения упрощает процедуру охлаждения.

Водитель останавливает машину, вынимает ключ из замка зажигания и может сразу покинуть автомобиль. Двигатель продолжает работать еще несколько минут, после чего будет заглушен автоматически. Единственным неудобством можно считать то, что приходится постоянно пользоваться стояночным тормозом и следить за его исправностью, так как сразу поставить автомобиль на передачу при наличии МКПП нельзя.

Читайте также

Надо ли охлаждать турбину после поездки — Российская газета

Нужно ли дать остыть турбомотору на минимальных оборотах перед тем, как его заглушить? Есть рекомендации автопроизводителей, а есть мнения экспертов, и зачастую они диаметрально противоположны.

Почему может перегреться двигатель с наддувом? Источник энергии турбокомпрессора — выхлопные газы: чем выше их температура — тем быстрее крутится ротор. Соответственно максимальный его нагрев происходит при работе двигателя на пиковых нагрузках. Поэтому опасным для мотора может стать поворот с трассы на заправку: слишком быстрый перепад происходит от больших мощностей к полной остановке.

Еще одну вероятность перегрева турбомотора провоцирует езда по бездорожью. Здесь нет максимальных оборотов, но зато отсутствует встречный воздушный поток, работающий на охлаждение. Тот же самый риск возникает при езде в горах с множеством перепадов, а также при движении с прицепом.

Однако проблемы ждут двигатель не во время подобных нагрузок, а потом. После остановки мотора системы жидкостного охлаждения турбокомпрессора также перестают работать. Отсюда возникла рекомендация не глушить мотор сразу, а дать турбине немного остыть.

Рынок предложил новый девайс — турботаймеры. Они дают двигателю после поворота ключа зажигания поработать еще пару минут на низких оборотах, чтобы дать турбине остыть. Затем в электронику некоторых моделей добавили отдельные блоки, работающие по принципу турботаймера.

Есть и другие решения автопроизводителей. К примеру, на модели с турбомотором ставят циркуляционные насосы, которые при необходимости подают к компрессору охлаждающую жидкость даже после остановки двигателя. На современных авто есть также электровентиляторы системы охлаждения.

Впрочем, принципиально от этого ничего не изменилось: турбина лучше реагировать на перегрев не стала. Рекомендации экспертов «За рулем» однозначны: даже современным моделям с турбомоторами стоит дать поработать пару минут на минимальных оборотах перед тем, как заглушить совсем. Да, автопроизводители уверяют, что в обязательном охлаждении турбины многие модели вовсе не нуждаются. Однако принципиальных разработок, продлевающих режим работы турбокомпрессора, не появилось.

Этот агрегат недешевый, поэтому проверять, насколько эффективны охлаждающие «примочки», на своем автомобиле не стоит. Если у вас есть электрический насос, качающий жидкость для охлаждения после остановки двигателя, то тогда этой рекомендацией можно пренебречь. Однако лучше убедиться в его наличии заранее. И опять же никто не мешает перестраховаться даже в этом случае. Пара-тройка минут, как правило, в запасе есть.

Как заглушить двигатель с турбиной

Турбины часто применяются на практике автомобильными владельцами, которые хотят увеличить мощность и производительность своего автомобиля. Благодаря такой манипуляции можно значительно приблизить к положительным технические показатели своего транспортного средства, однако не все так безоблачно, как может показаться на первый взгляд, и часто автовладельцы сталкиваются с проблемами. Одним из самых задаваемых вопросов есть запросы о том, как глушить дизельный двигатель с турбиной?

Для того, чтобы не сталкиваться с такой проблемой, стоит уяснить для себя аксиому о том, что турбина — это достаточно сложный инструмент, который нельзя как резко включать в работу, так и резко его останавливать. Вот почему после того, как машина завелась — стоит несколько минут поработать на «холостых» оборотах.Как глушить двигатель с турбиной? Необходимо опять-таки дать возможность двигателю «успокоится», поработав несколько минут на холостых оборотах.

Турбина сложно включается в работу, но в «самом разгаре» способна работать на высокой мощности без вреда себе, но при условии, что агрегату будет достаточно смазки. Когда двигатель резко перестает работать на высоких оборотах, турбина не может точно также быстро выключаться из работы. И, если не знать, как глушить бензиновый двигатель с турбиной, то устройство может оказаться без смазывающих средств, в следствии чего станет работать на износ и вскоре может наступить поломка.

Как глушить дизельный и бензиновые двигатели

Кроме того, не грамотные действия водителя, который не знает, как глушить дизельный двигатель с турбиной, могут привести и к пригоранию масла и других элементов к деталям и/или поверхности турбины, что, в свою очередь, приведет к потере работоспособности агрегата, неполадкам и окончательной поломке в конце концов.

Еще один способ узнать когда и как глушить бензиновый двигатель с турбиной, — это установить на агрегат дополнительные устройства таймерного типа. Такой турбиновый таймер не только будет наглядно демонстрировать основную информацию о работе агрегата, но и даст сигнал как раз в тот момент, когда уже можно глушить двигатель без ущерба для установленной на нем турбины.

Нужно ли охлаждать турбомотор после поездки?

Вы только что прохватили по трассе с ветерком или в свободном потоке в городе, ловко играя оборотами турбомотора и наслаждаясь подхватом и сочным звучанием двигателя. Стоит ли постоять на парковке пару минут и дать турбине остыть? Или все это пенсионерские мифы? Разбираем четкие рекомендации производителей о том, нужно ли охлаждать турбомотор после поездки?

Спойлер: практически все производители рекомендуют охлаждать турбомотор после интенсивной динамичной езды, хотя далеко не все прописывают это в мануалах. Но есть важные нюансы, о них – читайте ниже.

Турбину необходимо охлаждать

Прежде всего, о главном правиле – турбированный двигатель действительно нуждается в том, чтобы поработать на холостых оборотах после динамичной поездки.

«Инструкция по эксплуатации запрещает глушить ДВС сразу после интенсивного движения, для того чтобы избежать эффекта закипания моторного масла в подшипниках турбины, которое смазывает и охлаждает эти подшипники. Закипевшее масло оставляет отложения на подшипниках, которые со временем выводят их из строя. Моторное масло закипает примерно при температуре 250 градусов, турбина же при работе разогревается гораздо сильнее, при работающем двигателе масло циркулирует и охлаждает ее. На холостых оборотах турбина не работает, поэтому ее температура быстро опускается ниже температуры кипения масла», — объясняет технический специалист Mitsubishi.

Что будет, если глушить турбомотор сразу?

Если сразу после динамичной поездки заглушить турбированный двигатель, это может привести к негативным последствиям.

«Если пренебречь данными рекомендациями, то турбонагнетатель какое-то время будет вращаться по инерции без смазки и охлаждения. Более того, оставшееся в турбине масло будет «закоксовываться» и забивать проходное сечение системы смазки турбины, что приведет к выходу ее из строя», — говорит технический специалист Audi.

Когда можно не охлаждать турбомотор?

Строгие рекомендации действуют только в том случае, если вы действительно дали мотору интенсивную нагрузку – с динамичными разгонами и торможениями или езду при постоянно высоких оборотах. И заехали на парковку прямо с трассы. В условиях ежедневных поездок на работу и домой смысла в дополнительном охлаждении нет, турбина успевает остыть за то время, пока вы маневрируете на автомобиле во дворе дома или у офиса и паркуете его.

«На многих двигателях современных автомобилей установлен дополнительный электрический насос системы охлаждения, который позволяет плавно снизить температуру турбонагнетателя после остановки двигателя. Таким образом масло в турбонагнетателе не подвергается термической нагрузке, сохраняя свои свойства. В результате ресурс данного узла увеличивается. Поэтому потребность в работе на холостом ходу зависит от конкретного автомобиля», — дополнили в Audi.

Если вы двигаетесь по трассе с высокой скоростью и заезжаете, например, на заправку, мы рекомендуем дать автомобилю некоторое время (около одной-двух минут) поработать на холостых оборотах, прежде чем его глушить. И тогда с турбиной точно все будет в порядке.

Подписывайтесь на наш Telegram-канал, чтобы ничего не пропустить.

Турбодвигатель: глушить сразу или дать поработать на холостых?

Всем привет. Сегодня по просьбе постоянных читателей www.autoposobie.ru решил высказать собственное мнение относительно турбовых движков (турбодвигателей), вернее относительно того, можно ли их глушить сразу после поездки или все-таки нужно дать им поработать.

Вопрос глушить или не глушить возник не на пустом месте, дело в том, что опытным путем, а также ценой собственных ошибок удалось выяснить, что если заглушить турбированный двигатель сразу после поездки, можно навредить турбине или как минимум сократить срок ее службы.

Почему? Попытаюсь коротко ввести в суть дела… В работе турбины принимает участие масло, которое во время работы двигателя порядком нагревается. Во время движения масло всячески охлаждается (система охлаждения, вентиляторы, радиаторы и т. д.). Однако, как только вы остановились и заглушили мотор, циркуляция и охлаждение масла прекращается. В этом собственно и заключается проблема. Дело в том, что во время интенсивной поездки турбина серьезно нагревается, и если во время движения она охлаждается, то после того как вы остановились и заглушили мотор, ни о каком охлаждении не может быть и речи.

Как выяснилось, когда горячий турбодвигатель сразу заглушить его турбина испытывает серьезный перегрев. Остатки масла, которые остались в ней попросту закипают, тем самым отлагаясь на ее стенках и закоксовывая ее каналы. Кроме того, страдают и другие детали горячей турбины лишенной охлаждения, подшипники, различные уплотнители и сами лопасти, которые нередко могут деформироваться.

Нельзя также не упомянуть о таком понятии как «масляное голодание». Как я уже говорил, на заглушенном моторе прекращается циркуляция масла, однако не прекращается вращение разогретой до красна турбины, которая вращается еще некоторое время по инерции, однако уже без масла, то есть «всухую». Это также имеет негативное влияние на «улитку» и приводит к ее преждевременному износу и выходу из строя.

С этим вроде все понятно!? Казалось бы, все определенно ясно, глушить турбомотор сразу нельзя, надо дать ему поработать некоторое время, чтобы понизить температуру турбины и минимизировать вероятность термоудара. Однако некоторые автомобилисты вопреки всему утверждают обратное и, по их мнению, нет необходимости ждать пока турбина остынет и вот их доводы.

Главным доводом против того, чтобы давать турбовому движку остыть, является отсутствие какой-либо информации автопроизводителей по этому поводу, а как известно, что не запрещено — то разрешено!

Действительно, как оказалось ни один производитель не дает четких указаний относительно того сколько нужно давать мотору поработать, эта ситуация похожа на ситуацию относительно прогрева мотора, где также нет единого мнения. И точно также производитель не дает никаких особых комментариев по поводу всех существующих между автомобилистами дискуссий. Хотя, в последнее время стали появляться рекомендации относительно прогрева и как оказалось производители советуют начинать движение, не дожидаясь, когда мотор прогреется до рабочей температуры. Почему? Это, как говорится, отдельная тема, если коротко, то причина, на мой взгляд, во «всемирном заговоре автопроизводителей», которым невыгодно, чтобы двигатели долго ходили, а также в состоянии экологии, которая интенсивно ухудшается во время ежедневных массовых прогревов…

С турбиной правда немного другая ситуация. Учитывая появление турботаймеров, устройств, которые созданы для продления жизни турбин, можно сделать вывод о том, что автопроизводители признали тот факт, что, если заглушить турбомотор сразу, срок эксплуатации турбонагнетателя сокращается. Турботаймер — это устройство, которое препятствует перегреву турбины и дает ей остыть даже после того, как вы вытащили ключ из замка зажигания. Не буду углублять в подробности, в общем есть такая фишка на многих современных автомобилях, скажу одно, обладателям таких моторов действительно можно не переживать и смело глушить мотор, турботаймер все сделает за вас. Ту же функцию выполняют и электронасосы систем охлаждения современных двигателей, которые продолжают циркуляцию ОЖ даже после того как мотор заглушили. Такое ноу-хау позволяет предотвратить термоудар, а также поломки вроде деформации ГБЦ со всеми вытекающими. Все это понятно, но как быть тем, у кого нет всех этих «фишек»?

Для таких лично я бы порекомендовал следующее. Если вы любитель полихачить или поездка была длительной, плюс за окном жара, я бы советовал после остановки не спешить глушить мотор, дайте ему поработать 1-3 минуты. Это позволит турбине снизить обороты и охладиться, в результате чего вы предотвратите термический удар и не допустите закоксовки и масляного голодания. Последнее даже если и возникнет, то на малых оборотах турбины оно вряд ли сможет причинить вред «улитке», к тому же внутри, как я уже говорил, есть остатки масла.

Если же поездка была не долгой, к тому же вы предпочитаете спокойный стиль езды, пожалуй, в таком случае вы смело можете глушить турбодвигатель сразу после остановки. В щадящем режиме мотор и турбина вряд ли успели «дойти до кондиции», поэтому ничего страшного, если вы сразу после остановки заглушите двигатель.

Что до современных авто, которым год-два от роду… Если вы обладатель нового авто оснащенного турбиной, то скорее всего, вам «париться» по поводу глушить турбомотор сразу или потом, вообще не стоит. Об этом, скорее всего, позаботился производитель. Современные турбины имеют более продвинутое охлаждение с дополнительным электронасосом. Когда вы заглушите мотор он либо продолжит работу, либо перейдет в режим «афтеркулинг» и позаботится о правильном охлаждении вашей турбины. Даже если вы захотите, чтобы мотор поработал после остановки, вам придется сидеть в салоне и ждать, когда это произойдет, так как современные охранные системы враз обнаружат ваше отсутствие или, что вы открыли дверь, тут же заглушат мотор принудительно, вместо вас. На таких авто все продумано и охлаждение турбины после остановки в том числе.

Что в итоге?

Как видите, на вопрос можно ли глушить турбированный двигатель сразу после остановки каждый получит свой ответ. Для владельцев старых иномарок, на которых нет ни турботаймера, ни продуманной производителем «умной» системы охлаждения турбины, пожалуй, стоит прислушаться и дать турбине остыть, особенно если перед этим она получали нехилую взбучку. Если же мотор оборудован специальной системой, которая не позволяет турбине перегреться, вам не стоит переживать о возможном термоударе и прочих неприятностях. Единственное, что хотелось бы посоветовать, это не злоупотреблять педалью «газа». Несмотря на кажущуюся безупречность и совершенность нынешних турбомоторов, они все еще уязвимы и все еще страдают от высоких скоростей и некачественного масла.

У меня все, берегите себя и свой турбодвигатель, и поверьте он отблагодарит вас в ответ безотказной ровной работой на протяжении многих лет. Спасибо за внимание, до новых встреч на Автопособие водителя! Пока.

Почему нельзя глушить турбомотор после остановки автомобиля

«У меня Mazda CX-7 с турбиной. Нужно ли после остановки какое-то время не глушить мотор?»

Не имеет значения, Mazda CX-7 это или модель какой-то другой марки, — после остановки автомобиля, оснащенного двигателем с турбонаддувом, какое-то время лучше мотор не глушить. Чтобы понять, почему турбомотору по окончании поездки желательно дать поработать на холостом ходу, следует знать, как устроен и функционирует турбокомпрессор (ТКР).

Он состоит из трех узловых секций — турбины, компрессора и находящегося между ними корпуса подшипников, называемого также картриджем. Приводится в действие турбокомпрессор выхлопными газами, которые, устремляясь с высокой скоростью из цилиндров двигателя, попадают в турбину, раскручивают ее колесо, а вместе с ним вал ротора, находящийся внутри картриджа, и закрепленное на противоположной стороне этого вала колесо компрессорной секции.

Ротор ТКР в зависимости от режима работы мотора может вращаться со скоростью 50-250 тыс. об/мин — никакая другая деталь в двигателе не вращается столь же быстро. Долговечная работа ротора обеспечивается подачей масла под высоким давлением из системы смазки в зазоры между ротором и подшипниковыми втулками, находящимися внутри картриджа.

После остановки двигателя ротор турбокомпрессора не останавливается, а под действием инерции продолжает какое-то время вращаться с уменьшающейся скоростью. В этот период масло в подшипники ротора под давлением не подается, так как в заглушенном двигателе не работает масляный насос. Возникает так называемое масляное голодание, когда в подшипниках наблюдается полусухое трение, вызывающее износ ротора и втулок. Если двигателю перед остановкой дать некоторое время поработать на холостом ходу, скорость вращения ротора уменьшится, а стало быть, сократится период до полной его остановки, когда возможно полусухое трение. 

Кроме того, надо понимать, что масло служит не только смазкой, но и охлаждающей жидкостью. Как только мотор остановлен, подача масла прекращается, но и в картридже масло не задерживается, а через предусмотренное отверстие самотеком сливается в поддон двигателя. В тех моделях ТКР, где дополнительно предусмотрено водяное охлаждение, прекращается циркуляция охлаждающей жидкости по причине остановки водяного насоса.

Между тем некоторые детали турбокомпрессора, контактирующие с выхлопными газами, нагреваются до высокой температуры.

При резком прерывании проточного охлаждения теплопередача от перегретых деталей не прерывается, из-за чего термические перегрузки испытывает масло, оставшееся в зазорах подшипников и на уплотнениях внутри турбокомпрессора, что способствует его термическому разложению и коксованию. Эти же перегрузки сказываются на долговечности уплотнений.

Если после остановки автомобиля дать двигателю поработать на холостых оборотах, то сильно нагретые детали ТКР охлаждаются не только за счет продолжающегося протока масла через картридж, но и благодаря тому, что температура выхлопных газов и их количество, проходящее через турбину, при работе на холостом ходу существенно меньше, чем под нагрузкой. Сколько двигателю желательно поработать перед тем, как его заглушить, зависит от интенсивности предшествующей нагрузки и температурных условий эксплуатации. По мнению опрошенных нами специалистов, если автомобиль перед остановкой не участвовал в стритрейсинге, то даже летом достаточно одной-двух минут работы на холостом ходу, чтобы ТКР охладился, а скорость вращения его ротора замедлилась до величины, ничем серьезным не грозящей.

Сергей БОЯРСКИХ
Фото Ольги-Анны КАНАШИЦ
ABW.BY

У вас есть вопросы? У нас еcть ответы. Интересующие вас темы квалифицированно прокомментируют либо специалисты, либо наши авторы — результат вы увидите на сайте abw.by. Присылайте вопросы на адрес [email protected] и следите за сайтом

Шум при работе турбины (свист, вой турбины)

Шум при работе турбины (свист, вой) турбины

Одним из наиболее распространенных проявлений, свидетельствующих о проблемах с турбиной, является шум, свист или вой при работе двигателя.

Как правило, водитель прекрасно знает звук работы двигателя своего автомобиля и при появлении постороннего, несвойственного нормальной работе звука двигателя, сразу обращает на него внимание.

Рассмотрим варианты, когда источником шума является турбокомпрессор.

  • 1. Иногда бывает, что появившийся шум не является признаком неисправности турбины. При возникновении негерметичности выхлопной системы (прогорел или проржавел глушитель, слетел хомут и т.п.) звук от нормально работающей турбины доносится более явный, более резкий, чем в обычном состоянии. В этом случае нужно сначала убедиться в отсутствии повреждений элементов выхлопной системы и только тогда переходить к турбине.

Подобная же ситуация возникает, когда поврежден один из патрубков впускного тракта. Звук доносится более сильный, отчетливый, что немало беспокоит владельца.

  • 2. Также есть еще случаи, когда вой или свист при работе турбины не свидетельствует о неисправности именно турбокомпрессора.

Если воздушный фильтр двигателя не менять своевременно, то в числе прочих последствий это может привести к шуму при работе турбины, т.к. на впуске будет повышенное сопротивление, а следовательно возникнет разряжение, что в свою очередь приведет к повышенной нагрузке на турбину и шуму при ее работе.

Схожий эффект может возникнуть, если недостаточна пропускная способность выпускной системы. Наиболее часто забивается катализатор или сажевый фильтр. В этом случае даже полностью исправная турбина будет издавать шум в условиях повышенной нагрузки.

  • 3. Ну и наконец, тот случай, когда источником шума и причиной является неисправный турбокомпрессор. Чаще всего это происходит при износе втулок турбины, на которых вращается вал (подшипников скольжения).

В этом случае увеличивается радиальный люфт вала и, в зависимости от того, с какой стороны износ подшипника больше, компрессорное или турбинное колесо начинают, при определенных условиях, касаться соответствующих улиток. Обычно это происходит в момент увеличения или, наоборот, снижения оборотов турбокомпрессора.

В этом случае нужно срочно прекращать эксплуатацию автомобиля (либо другого т/с) и ремонтировать либо менять турбину, одновременно выясняя, что послужило причиной выхода ее из строя, чтобы исключить повторения ситуации с отремонтированной (замененной) турбиной.

Срочные меры в данном случае необходимы, т.к. продолжение эксплуатации турбокомпрессора с такой неисправностью приведет к значительному повышению стоимости ремонта либо вообще к невозможности восстановления.

При возникновении подобных ситуаций Вы можете позвонить нам, в компанию «ПроТурбо«. Наши специалисты проконсультируют Вас относительно того, как лучше поступить в данной ситуации и избежать лишних расходов.

Если ремонт турбины все же потребуется, мы приведем турбокомпрессор Вашего авто в порядок быстро, качественно и с минимальными затратами.

Противодавление выхлопных газов двигателя

Противодавление выхлопных газов двигателя

Hannu Jääskeläinen

Это предварительный просмотр статьи, ограниченный некоторым исходным содержанием. Для полного доступа требуется подписка DieselNet.
Пожалуйста, войдите в систему , чтобы просмотреть полную версию этого документа.

Реферат : Компоненты выхлопной системы, такие как глушители и устройства дополнительной обработки выхлопных газов, являются источником противодавления выхлопных газов двигателя. Повышенный уровень противодавления может привести к увеличению выбросов, увеличению расхода топлива и может отрицательно сказаться на характеристиках двигателя.

Введение

Определение

Противодавление выхлопных газов двигателя определяется как давление выхлопных газов, которое создается двигателем для преодоления гидравлического сопротивления выхлопной системы с целью выброса газов в атмосферу. Для этого обсуждения противодавление выхлопных газов — это избыточное давление в выхлопной системе на выходе из выхлопной турбины в двигателях с турбонаддувом или давление на выходе из выхлопного коллектора в двигателях без наддува.Термин «противодавление» можно также записать одним словом (противодавление) или с помощью дефиса (противодавление).

Следует отметить, что термин «противодавление» противоречит интуиции и может мешать правильному пониманию механики потока выхлопных газов. Слово back , кажется, предполагает давление, которое оказывает на жидкость против направления потока — на самом деле, определения обратного давления такого рода распространены в источниках мягких научных стандартов. Есть две причины возразить.Во-первых, давление — это скалярная величина, а не векторная величина, и она не имеет направления. Во-вторых, поток газа управляется градиентом давления, причем единственное возможное направление потока — от более высокого давления к более низкому. Газ не может течь против повышающегося давления — именно дизельный двигатель нагнетает газ, сжимая его до достаточно высокого давления, чтобы преодолеть препятствия потоку в выхлопной системе.

Учитывая, насколько широко он используется среди разработчиков двигателей, мы будем использовать термин противодавление , как определено выше, для обозначения давления выхлопных газов на выходе турбонагнетателя (или выпускного коллектора), которое численно равно падению давления выхлопных газов на выходе из турбины. вся выхлопная система.Однако мы считаем, что использование этого термина не следует расширять для обозначения падения давления выхлопных газов на отдельные компоненты выхлопной системы, что иногда используется некоторыми авторами. Например, мы избегаем использования термина «противодавление глушителя» в пользу «падения давления в глушителе» (или «потери давления») в соответствии с терминологией, используемой в гидродинамике.

Обычные метрические единицы противодавления выхлопных газов включают килопаскаль (кПа), которые мы используем в этой статье, и миллибар (мбар), последний равен гектопаскалям (гПа).Обычные единицы измерения включают дюйм водяного столба (в H 2 0) и дюйм ртутного столба (в Hg). Между этими единицами существует следующая взаимосвязь:

1 кПа = 10 гПа = 10 мбар = 4,0147 дюйма Hg 2 0 = 0,2953 дюйма Hg (1)

Эффекты противодавления

В то время как конструкторы выхлопных систем всегда сталкивались с проблемами противодавления, повышенный интерес к давлению выхлопных газов был вызван оснащением дизельных двигателей сажевыми фильтрами (DPF) и внедрением сложных систем последующей обработки в целом.Установка сажевых фильтров часто вызывает опасения по поводу повышенного противодавления выхлопных газов. В обычных условиях уровни падения давления, вызванные выхлопным глушителем и правильно спроектированным сажевым фильтром, могут быть практически одинаковыми. На рисунке 1 показан эффект замены глушителя OEM на DPF на дизельном двигателе большой мощности в двух различных режимах цикла ISO 8178. Изменение противодавления составляет менее 1 кПа при чистом фильтре.

Рисунок 1 . Давление на выходе турбины с глушителем и чистым сажевым фильтром

1997 Cummins B3.Двигатель 9-C EPA Tier 1 для внедорожников с глушителем и дооснащен 6-литровым DPF

Однако большая часть падения давления выхлопных газов на DPF, как правило, вызвана накопленной сажей, а не подложкой фильтра. Проблемы возникают, если регенерация DPF не происходит на регулярной основе, что приводит к увеличению падения давления до неприемлемого уровня.

Повышенное давление выхлопных газов может иметь следующие последствия для дизельного двигателя:

  • Повышенная прокачка
  • Пониженное давление наддува впускного коллектора
  • Эффекты продувки и сгорания цилиндра
  • Проблемы с турбокомпрессором

При повышенных уровнях противодавления двигатель должен сжимать выхлопные газы до более высокого давления, что требует дополнительной механической работы и / или меньшего количества энергии, извлекаемой выхлопной турбиной, что может повлиять на давление наддува во впускном коллекторе.Это может привести к увеличению расхода топлива, выбросов ТЧ и CO и температуры выхлопных газов. Повышенная температура выхлопных газов может привести к перегреву выхлопных клапанов и турбины. Увеличение выбросов NOx также возможно из-за увеличения нагрузки двигателя.

Возможны и другие воздействия на сгорание дизельного топлива, но они зависят от типа двигателя. Повышенное противодавление может повлиять на производительность турбонагнетателя, вызывая изменения в соотношении воздух-топливо — обычно обогащение — что может быть источником выбросов и проблем с производительностью двигателя.Величина эффекта зависит от типа системы наддувочного воздуха. Повышенное давление выхлопных газов может также препятствовать выходу некоторых выхлопных газов из цилиндра (особенно в двигателях без наддува), создавая внутреннюю рециркуляцию выхлопных газов (EGR), отвечающую за некоторое снижение NOx. Этим эффектом, возможно, объясняется небольшое снижение NOx, о котором сообщается с некоторыми системами DPF, обычно ограниченное 2-3% процентов.

Турбокомпрессоры обычно используют моторное смазочное масло в качестве смазочной и охлаждающей среды.Чрезмерное давление выхлопных газов может увеличить вероятность выхода из строя уплотнений турбонагнетателя, что приведет к утечке масла в выхлопную систему. В системах с каталитическими сажевыми фильтрами или другими катализаторами такая утечка масла может также привести к дезактивации катализатора фосфором и / или другими каталитическими ядами, присутствующими в масле.

Пределы обратного давления

Все двигатели имеют максимально допустимое противодавление, указанное производителем двигателя. Эксплуатация двигателя при чрезмерном противодавлении может привести к аннулированию гарантии на двигатель.Чтобы облегчить дооснащение существующих двигателей сажевыми фильтрами, особенно с использованием систем пассивных фильтров, производители систем контроля выбросов и пользователи двигателей просят производителей двигателей увеличить максимально допустимые пределы противодавления в своих двигателях.

Глушители обычно обеспечивают максимальное противодавление в диапазоне 6 кПа. В выхлопных системах с сажевым фильтром противодавление может возрасти до значительно более высоких уровней, особенно если фильтр сильно загружен сажей. Швейцарская программа VERT определила максимальные пределы противодавления, чтобы позволить устанавливать сажевые фильтры на большое количество оборудования [1319] .В таблице 1 приведены рекомендуемые компанией VERT пределы противодавления для двигателей различных размеров. Давление выхлопных газов для больших двигателей было ограничено низкими значениями из-за перекрытия клапанов и высокого давления наддува.

Таблица 1
Максимальное рекомендуемое противодавление выхлопных газов VERT
Объем двигателя Предел противодавления
Менее 50 кВт 40 кПа
50-500 кВт 20 кПа
500 кВт и более 10 кПа

Производители двигателей обычно более консервативны в отношении пределов противодавления.Например, двигатели дизель-генераторных установок от Caterpillar, Cummins, John Deere и DDC / MTU мощностью от 15 до 1000 кВт имеют пределы противодавления от 6,7 до 10,2 кПа.

При установке пределов противодавления необходимо учитывать множество факторов. К ним относятся влияние на производительность турбокомпрессора, выбросы выхлопных газов, расход топлива и температуру выхлопных газов. Предел, который может выдержать конкретный двигатель, будет зависеть от конкретных конструктивных факторов, и дать общие рекомендации сложно.

###

Глушитель и глушители для генератора

(что действительно снижает уровень шума)

Последнее обновление 8 апреля 2021 г., Скотт

Переносные генераторы — отличный инструмент для мобильной электросети, отключения электроэнергии и жилых домов на колесах.

Однако они могут создавать сильный шум, который может причинять неудобства в сельской местности или на близлежащих территориях.

Если вы похожи на меня, вы хотите иметь возможность максимально снизить уровень шума от генератора .

Вот тут-то и пригодится переносной глушитель генератора или глушитель!

Глушитель или глушитель прикрепляется к выхлопной трубе генератора и помогает подавить шум, производимый генератором.

Есть много способов снизить уровень шума вашего генератора, и в этом посте, , я покажу вам, что работает .

Насколько громко работают генераторы?

Вы не хуже меня знаете, что портативные генераторы громкие, но насколько они громкие?

Большинство портативных генераторов имеют уровень шума 70–100 децибел на расстоянии 23 футов (стандартное измерение).

Уровни шума будут различаться в зависимости от того, какую марку, модель и размер вы выберете — см. Этот пост о самых тихих брендах и моделях.

По моему опыту, если вы решите заранее потратить немного больше денег, вы можете получить более тихую модель, которая потребует меньшего приглушения звука, чем более дешевые модели.

Однако я понимаю, что дорогой генератор не у всех в кармане, поэтому знание , как заглушить более громкий генератор , может быть полезным.

Почему я должен отключить свой генератор?

Отключение звука или приглушение вашего генератора не только помогает вам не беспокоиться о постоянно громком двигателе , но также является щедрым актом для других людей вокруг вас .Использование генератора по соседству может раздражать ваших соседей, но демонстрация того, что вы хотя бы пытаетесь сдержать звук, будет иметь большое значение для взаимопонимания.

Тем, кто использует генератор в зимние месяцы, когда много снега, может потребоваться держать генератор рядом с домом или в гараже.

Это может значительно усилить звук; приглушенный звук действительно может помочь.

По какой бы то ни было причине вам может понадобиться заглушить генератор, я дам вам свои лучшие советы, как это сделать.

Могу ли я использовать автомобильный глушитель для отключения звука моего генератора?

Да, вы правильно прочитали: вы можете использовать автомобильный глушитель, чтобы заглушить звук вашего портативного генератора.

Хотя это не самый простой метод, если все сделано правильно, он может снизить уровень шума на 10-15 децибел. Все, что вам понадобится, — это автомобильный глушитель, немного творчества и несколько инструментов.

Продажа Thrush Thrush Turbo 17711 Глушитель выхлопа
  • КЛАССИЧЕСКИЙ ЗВУК — Трехпоточная конструкция обеспечивает классический звук Thrush
  • РАЗРАБОТАНА НА ПОСЛЕДНЕЕ — корпус со 100% алюминиевым покрытием и вращающиеся головки для длительного срока службы
  • ГИБКОЕ РЕШЕНИЕ — Предлагаемый дизайн различных стилей и размеров для универсальной установки (может потребоваться специализированное изготовление и / или сварка)

Проверить цену на Amazon

Теперь, когда я говорю, что все сделано правильно, я имею в виду тех, кто сгибал, сваривал и монтировал правильный трубопровод и переходники для выпуска без утечек .

Этот процесс требует большого мастерства.

Вы по-прежнему можете снизить уровень шума , просто прикрутив глушитель с помощью некоторых хомутов и гибких трубок выхлопных газов ; однако это не так эффективно, как сварка правильных трубопроводов.

Я скажу, что тип глушителя, который вы выберете, повлияет на ваш успех в глушении вашего генератора.

Вам нужно будет провести небольшое исследование конкретных характеристик и размеров глушителя, чтобы убедиться, что вы получите тот, который будет адекватно глушить и поместиться на вашем генераторе, но не будет навязчивым.

Использование глушителя глушителя генератора

Самый популярный способ правильно заглушить выхлоп генератора — использовать глушитель глушителя генератора.

Эти глушители устанавливаются на выхлопе портативного генератора, а действуют как глушитель, снижая уровень шума на 10-15 децибел .

Проверить цену на Amazon

Их можно купить или сделать дома; однако убедитесь, что у вас есть достаточные знания о том, как работают глушители и глушители, чтобы обеспечить адекватный поток выхлопных газов.

Приглушение звука фанерными досками

Один из самых быстрых и недорогих способов снизить уровень децибел вашего генератора — это приглушить звуки фанерой.

Поместив прочную фанеру вокруг генератора , вы можете снизить уровень шума как минимум на 10 децибел, что сделает его более терпимым в условиях соседства.

Для этого вам понадобятся обрезки фанеры, достаточно большие, чтобы простираться за пределы вашего генератора.

Затем вы положите их на свой генератор в форме коробки , чтобы отвести шум генератора на землю.

Это позволяет сдерживать и поглощать звук землей, а не окружающим миром.

Сборка глушителя

Если вам нужно более комплексное решение, вы можете построить корпус глушителя, который устанавливается над генератором, чтобы заглушить шум, аналогично тому, как это делается при использовании фанеры.

Изготовление глушителя потребует немного обработки дерева, но это простой способ быстро и даже в дороге приглушить звук генератора.

Для этого вам нужно будет построить деревянную раму, которая надевается на ваш портативный генератор, и прикрепить фанеру, пенопласт или любой другой прочный материал, подходящий для строительства, который заглушит звук.

Установка внутренней и внешней коробки на раме и заполнение ее изоляцией снизит шум, сохраняя при этом легкий вес и эффективность коробки.

Следует помнить несколько вещей:

  • Добавьте ручку для облегчения работы
  • Обеспечьте достаточный воздушный поток , чтобы снизить вероятность перегрева
  • Добавьте вырез для удлинителя выхлопной трубы, чтобы обеспечить выхлоп вашего генератора для правильного потока

Эти шаги значительно снизят вероятность перегрева вашего генератора из-за недостаточного воздушного потока.

Я видел несколько коробок со встроенными вентиляторами , которые помогали охлаждать генератор во время его работы, так что возможности безграничны.

5 советов по снижению уровня шума

Хотя все вышеперечисленные методы помогут значительно повысить уровень шума вашего генератора, есть несколько простых советов, которым вы можете следовать, чтобы уменьшить шумовое загрязнение.

1. Установите генератор вдали от дома

Хотя это кажется очевидным, это фактор, который часто упускают из виду при использовании портативного генератора.

Большинство генераторов производят 70-80 децибел на высоте 23 фута, что может быть больше, чем вы хотите слышать в своем доме.

При перемещении генератора подальше от дома и использовании более длинных удлинительных шнуров может легко снизить уровень шума, который вы слышите от портативного генератора.

2. Держите выхлопную трубу подальше от вашего дома

Если вы не можете переместить генератор подальше от вашего дома, все же есть способы снизить уровень шума.

Один простой трюк — направить выхлоп, основной источник шума , в сторону от вашего дома .

Звуковые волны распространяются, и их движение в направлении от вашего дома может иметь огромное значение по сравнению с направлением выхлопной трубы на ваш дом.

Добавьте один из советов сверху и получите удвоение звукоизоляции!

См. Мой пост о том, как удлинить выхлоп генератора

3. Максимально отклонить звук

Подобно фанерному методу отклонения звука, с использованием вашего окружения , чтобы помочь отклонить звук, может быть огромным помощь.

Перемещение предметов рядом с генератором перед генератором или вокруг него может помочь отклонить звук.

Один из наших любимых способов — установить за навесом или другими твердыми предметами, которые помогут поглощать звук.

4. Установите генератор на прочный звукопоглощающий пол

Последнее, что вам нужно сделать при установке портативного генератора, — это сделать его громче, установив его на звукоусиливающем полу.

Запуск генератора на бетонном или деревянном полу может сделать звук генератора громче, чем обычно.

Я предлагаю добавить звукопоглощающий коврик туда, где будет установлен ваш генератор, в виде сверхмощного ремонтного коврика , чтобы уменьшить ненужный шум.

5. Инвестируйте в высококачественный генератор с низким уровнем шума

Если ваш бюджет позволяет, самый простой способ снизить уровень шума с помощью вашего генератора — это приобрести высококачественный генератор с низким уровнем шума выход .

Хотя это вариант не для всех, я лучше всего предлагаю иметь тихий генератор, который не требует дополнительных усилий для приглушения звука.Honda EU2200i — это золотой стандарт тихих генераторов, для которых не требуется глушитель.

Заключение

Принимая во внимание все эти предложения, вы можете легко сделать свой портативный генератор бесшумным с любым бюджетом.

Главное, что нужно учесть, — это сколько времени и энергии вы хотите вложить в решение проблемы глушителя.

На данный момент не существует надежного решения, чтобы полностью заглушить ваш генератор, но снижение его на 10-15 децибел может иметь удивительно большое значение, которое ваши соседи наверняка оценят.

При использовании всех этих решений будьте предельно осторожны при обеспечении надлежащей вентиляции и достаточного воздушного потока для защиты как вас, так и вашего генератора.

Мы хотим услышать от вас! Каким образом вы эффективно приглушили или заглушили свой генератор?

Какие продукты работали и не работали для вашего генератора?

Последнее обновление 2021-04-08. Партнерские ссылки и изображения из Amazon Product Advertising API

Причины, эффекты и решения мокрой укладки от CK Power

Большинство резервных генераторных систем мощностью до пяти мегаватт используют поршневой двигатель внутреннего сгорания в качестве источника энергии для привода генератора, вырабатывающего электроэнергию.Выбираются двигатели, работающие на дизельном, природном или сжиженном нефтяном газе. Большой процент резервных энергосистем использует дизельные двигатели. Дизель — удобный независимый источник топлива, а системы воспламенения от сжатия дизельных двигателей Tier 4 имеют гораздо более высокий термический КПД, чем система искрового зажигания, используемая в газовых двигателях. Однако один фактор, который следует учитывать при выборе дизельного источника энергии, — это возможность «мокрой штабелирования».

Национальная ассоциация противопожарной защиты (NFPA) в издании своего Кодекса NFPA 110 для аварийных и резервных систем питания от 1996 года называет влажную штабелировку полевым термином, указывающим на присутствие несгоревшего топлива или углерода, или и того, и другого в выхлопной системе. .В более позднем издании 1999 г. предлагается более количественный метод определения наличия мокрой штабелирования путем измерения температуры выхлопных газов (что объясняется далее в этом информационном листе). В этом сообщении обсуждаются причины мокрого штабелирования, его влияние на двигатель, почему его следует избегать, а также методы решения проблемы мокрого штабелирования.

Разработчик системы генератора Уровня 4 должен учитывать возможность мокрой штабелирования при выборе оборудования для системы, расчетах нагрузки и программах технического обслуживания и ремонта.

Изучите ключи к эффективной работе вашего генератора

Что вызывает влажную укладку?

Как и все двигатели внутреннего сгорания, для работы с максимальной эффективностью дизельный двигатель должен иметь точно правильное соотношение воздух-топливо и быть в состоянии поддерживать расчетную рабочую температуру для полного сгорания топлива. Когда дизельный двигатель работает с малой нагрузкой, он не достигает своей правильной рабочей температуры.

Когда дизельный двигатель работает при температуре ниже проектной в течение продолжительных периодов времени, несгоревшее топливо истощается, и это проявляется в виде сырости в выхлопной системе, отсюда и фраза «мокрый штабель».”

Эффекты мокрого штабелирования

Когда несгоревшее топливо выходит из камеры сгорания, оно начинает накапливаться в выхлопной части двигателя, что приводит к загрязнению форсунок и накоплению углерода на выпускных клапанах, турбонагнетателе и выхлопе.

Чрезмерные отложения могут привести к снижению производительности двигателя, поскольку газы перепускают седла клапанов, скопление выхлопных газов создает противодавление, а отложения на лопатках турбонагнетателя снижают эффективность турбонаддува.

Необратимые повреждения не будут происходить в течение коротких периодов времени, но в течение более длительных периодов отложения будут оставлять царапины и разъедать ключевые поверхности двигателя.

Кроме того, когда двигатели работают ниже расчетной рабочей температуры, поршневые кольца не расширяются в достаточной степени, чтобы должным образом герметизировать пространство между поршнями и стенками цилиндра. Это приводит к утечке несгоревшего топлива и газов в масляный поддон и ухудшению смазывающих свойств масла, что приводит к преждевременному износу двигателя.

Почему важно избегать влажного штабелирования

Помимо неблагоприятного воздействия двигателя, разработчик и пользователь системы должны учитывать:

  • Расходы — Чрезмерная влажная укладка сократит срок службы двигателя на много лет и до плановой замены.
  • Загрязнение — Многие городские районы ограничивают уровень выбросов дыма, производимого мокрыми штабелями.
  • Мощность — Даже до того, как двигатель будет поврежден, отложения снизят максимальную мощность. Преждевременно изношенный двигатель будет иметь меньшую максимальную мощность, чем он был разработан.
  • Техническое обслуживание — Двигатель, подвергающийся мокрому штабелированию, потребует значительно большего технического обслуживания, чем двигатель с достаточной нагрузкой.

Руководство NFPA

Мокрая укладка — это признанное состояние организациями, которые пишут коды для систем резервных генераторных установок, например, NFPA, которое выпустило несколько руководящих принципов для контроля эффектов.

Руководства NFPA в приложениях Уровня 1 и 2 требуют, чтобы устройство проверялось не реже одного раза в месяц в течение 30 минут одним из двух методов: (NFPA 110 8.4.2)

  1. Нагрузка, поддерживающая минимальную температуру выхлопных газов, рекомендованную производителем
  2. При рабочих температурах и при не менее 30% номинальной мощности резервной паспортной таблички EPS

Дополнительные условия:

Совместная комиссия по аккредитации медицинских организаций (JCAHO), организация, которая аккредитует медицинские учреждения, подняла этот тест на уровень, превышающий NFPA.Они требуют тестирования 12 раз в год с интервалом тестирования 20-40 дней. Испытание генераторов в течение не менее 30 минут при динамической нагрузке 30 или более процентов от номинальной, указанной на паспортной табличке.

У систем, которые не соответствуют 30-процентной нагрузочной способности, есть три варианта:

  1. Увеличьте нагрузку, чтобы она соответствовала или превышала 30 процентов номинальной мощности на паспортной табличке
  2. Поддерживать минимальную температуру выхлопных газов, рекомендованную производителем двигателя
  3. Проведите тестирование банка нагрузки в течение 2 часов непрерывной нагрузки следующим образом:
    • Нагрузка при 25% паспортной табличке в течение 30 минут
    • 50 процентов за 30 минут
    • 75 процентов за 60 минут.

JCAHO также рекомендует проверять все автоматические переключатели резерва (АВР) 12 раз в год с 20- и 40-дневными интервалами. Провайдер энергосистемы через программы планового обслуживания может провести нагрузочное тестирование при тестировании АВР.

Решение проблемы мокрого штабелирования

Наиболее простое решение — всегда запускать генераторную установку с электрической нагрузкой, которая достигает расчетной рабочей температуры дизельного топлива, или примерно 75 процентов от полной нагрузки.Накопившиеся топливные отложения и нагар можно удалить, запустив дизельный двигатель при требуемой рабочей температуре в течение нескольких часов, если мокрый штабель еще не достиг уровня, при котором скопление нагара может быть удалено только путем капитального ремонта двигателя.

Следующие решения банка грузов должны предотвратить повторение мокрого штабелирования:

  • Автоматическая вспомогательная нагрузка — это решение обычно используется только тогда, когда дизель-генераторная установка является основным источником энергии. «Вспомогательный блок нагрузки» будет включен в систему, когда будут присутствовать только более легкие нагрузки, и отключится при подключении большей нагрузки.
  • Блок ручной загрузки объекта — Работает, как описано для автоматического блока нагрузки, но это система с ручным управлением для использования с небольшими нагрузками и когда большая нагрузка также запускается вручную. Банк нагрузки также можно использовать для нагрузочного тестирования системы, которая в основном используется для резервного питания.
  • Портативный блок нагрузки — Распределитель дизель-генераторной установки часто является наиболее квалифицированным специалистом для обслуживания системы. Сегодня очень распространено, что владелец системы резервного генератора передает на аутсорсинг полное обслуживание системы и имеет контракт на плановое техническое обслуживание (PM) с поставщиком генераторной установки с полным спектром услуг.Во время планового планового технического обслуживания дистрибьютор принесет переносной блок нагрузки, чтобы запустить генератор при нагрузке, которая поддерживает расчетную рабочую температуру. Переносные блоки нагрузки варьируются от нескольких кВт до 3 МВт, установленных на больших прицепах.

Избегание «мокрой» штабелирования — это лишь один из аспектов технического обслуживания дизельного генератора. Для получения дополнительных советов по обслуживанию генератора вы можете загрузить наше руководство «Ключи к эффективной работе генератора» ниже. Чтобы получить немедленную консультацию по обслуживанию генератора, обратитесь напрямую в наш отдел запчастей и обслуживания или оставьте сообщение в окне чата в правом нижнем углу.

Пошаговая базовая информация о генераторе

Вам необходимо знать несколько терминов и иметь общее представление о различных типах генераторных установок и их принципах работы. Объясним простыми словами.

Ваше оборудование должен установить специалист. Знающий человек, знающий электрические коды, может выполнить электромонтаж, а простая сантехника может выполнить установку, но вам нужно будет знать, что вы делаете. Для установки может потребоваться помощь специалиста и соблюдение местных норм и правил, а не только для соблюдения закона, но и для гарантии того, что вы не аннулируете свою страховку, установив оборудование незаконно или без разрешений.Мы рекомендуем вам обратиться к подрядчику для установки или, по крайней мере, попросить его дать профессиональный совет. Вы должны убедиться, что установка выполнена правильно.

Чтобы просмотреть список ресурсов на этом веб-сайте и перейти к конкретным областям, представляющим интерес, см .: Информация о генераторе.

ПОРТАТИВНЫЙ ИЛИ СТАЦИОНАРНЫЙ?
Большинство домовладельцев в первую очередь думают о портативных генераторах, а не о стационарных. Если вы хотите вынести генератор на улицу или поставить его на улицу в сарае и подключить шнуры при отключении электроэнергии, это можно сделать.Вы не обязательно сэкономите деньги, делая это, но если у вас есть использование портативного генератора в неаварийное время, то это может быть альтернативой. По нашему опыту, более экономично и с меньшими хлопотами приобретать стационарную систему и обеспечивать электроэнергией весь дом или бизнес. Вы не только получаете больше энергии за доллар, но и вашей семье и / или сотрудникам не нужно ничего делать, чтобы иметь аварийное питание. Вы хотите, чтобы ваша жена, дети или сотрудники вывозили оборудование, подключали его к электросети и запускали систему, переключая передаточный переключатель и выполняя дозаправку? В какой-то момент все это становится смешным и стоит вам больше времени сотрудников и потенциальных обязательств, чем того стоит.

Прежде чем принять решение, прочтите: Размеры и типы генераторов для вашего дома или бизнеса

В РЕЖИМЕ ОЖИДАНИЯ ИЛИ ПРЕМИУМ?
Первое, что вам нужно сделать, это определить, потребуется ли вам резервное или основное питание. Проще говоря, основная мощность требуется, когда у вас нет другого источника энергии или вы используете систему в качестве основного средства питания. Любой генератор, который используется каждый день или по фиксированному графику для обеспечения энергией, считается основным генератором энергии.Другое слово для простого числа — «непрерывный». Если вам нужен первичный генератор мощности, используйте в качестве ориентира первичный или непрерывный номинал генераторов.

Резервный комплект является резервным источником обычного сетевого питания. Резервные блоки используются только тогда, когда электроснабжение от электросети недоступно и не будет использоваться часто. Многие резервные генераторы работают со скоростью 3600 об / мин и не предназначены для постоянного ежедневного использования. Еще одно слово для обозначения режима ожидания — «аварийный». Если вам нужен резервный генератор энергии, используйте в качестве ориентира номинальные характеристики резервных или аварийных генераторов.

ФАЗЫ ГЕНЕРАТОРА
Генераторные установки вырабатывают однофазной или трехфазной энергии . Вы должны использовать тот тип питания, который обеспечивает ваша панель. В жилых домах и малом бизнесе обычно используется однофазный. Трехфазное питание используется на средних и крупных предприятиях, особенно там, где энергия используется для запуска и работы двигателей. Трехфазные генераторы настроены на выработку 120/208 или 277/480 вольт. Однофазные комплекты 120 или 120/240. Используйте низкое напряжение для работы бытовой техники, а высокое — для двигателей, обогревателей, печей и сушилок.Ваша сервисная панель однофазная или трехфазная, вам не нужен трехфазный генератор, если ваша панель только однофазная. Перед тем, как начать поиск, посоветуйтесь со своим электриком.
СРОК ГЕНЕРАТОРА
Ваша сервисная панель — хорошее место для начала. Пойдите и посмотрите на свою сервисную панель и посмотрите, какая сила тока. Если на панели 100 ампер, это говорит о том, что вам не понадобится более 100 ампер мощности. По мере того, как панель становится больше, ваш генератор будет нуждаться в этом.Можно установить генератор для питания только небольшой части вашей сервисной панели, если вы установите соответствующие субпанели, чтобы разобраться, что будет, а что нет.
ТОПЛИВО: ГАЗ ИЛИ ДИЗЕЛЬ? См. Также Какое топливо для генераторов лучше всего?

Мы рекомендуем дизели из-за их долговечности и низких эксплуатационных расходов. Современные дизельные двигатели бесшумны и обычно требуют гораздо меньшего обслуживания, чем газовые агрегаты сопоставимого размера (природный газ или пропан).Затраты на топливо на кВт, произведенный с дизельными двигателями, обычно на 30–50 процентов меньше, чем на газовые агрегаты.

Дизельные агрегаты с водяным охлаждением, 1800 об / мин, работают в среднем от 12 000 до 30 000 часов, прежде чем потребуется капитальное обслуживание.

Газовые агрегаты с водяным охлаждением, 1800 об / мин, обычно работают от 6000 до 10 000 часов, потому что они построены на более легком блоке бензинового двигателя. Газовые агрегаты горят сильнее (более высокие БТЕ топлива), поэтому вы увидите, как правило, более короткий срок службы, чем дизельные агрегаты

Газовые агрегаты с воздушным охлаждением, 3600 об / мин, обычно заменяются — без капитального ремонта через 500-1500 часов .Это «резервные» генераторы, не предназначенные для работы в течение длительного времени или очень часто.

СКОРОСТЬ РАБОТЫ

Электрооборудование предназначено для использования мощности с фиксированной частотой: 60 Гц (Гц) в США и Канаде, 50 Гц в Европе и Австралии. Частотный выход генератора зависит от фиксированной частоты вращения двигателя. Для выработки электричества 60 Гц большинство двигателей работают со скоростью 1800 или 3600 об / мин. У каждого есть свои достоинства и недостатки.1800 об / мин, четырехполюсные комплекты являются наиболее распространенными и наименее дорогими в больших генераторах. Они предлагают лучший баланс шума, эффективности, стоимости и срока службы двигателя. 3600 об / мин, двухполюсные комплекты меньше по размеру и легкие, лучше всего подходят для портативных и легких условий эксплуатации. Установки со скоростью вращения 3600 об / мин считаются «резервными генераторами» и никогда не могут рассматриваться для использования в качестве основного источника энергии.

Проще говоря, это все равно, что управлять автомобилем со скоростью 90 миль в час, а не 45 миль в час — при 45 миль в час ваш автомобиль прослужит дольше, тише, требует меньшего обслуживания и более долгий срок службы.Большинство агрегатов со скоростью вращения 3600 об / мин представляют собой двухцилиндровые двигатели для газонокосилок с воздушным охлаждением, а агрегаты с водяным охлаждением на 1800 об / мин сопоставимы с двигателями вилочных погрузчиков и тракторов. Суть в том, что агрегаты с водяным охлаждением на 1800 об / мин прослужат дольше, будут иметь меньше проблем с обслуживанием и будут более экономичными. Кроме того, генераторы на 1800 об / мин предназначены для восстановления, блоки на 3600 об / мин предназначены для замены и намного дешевле (в большинстве случаев). Некоторые стационарные агрегаты со скоростью вращения 3600 об / мин и большинство жилых домов на колесах и коммерческих силовых агрегатов могут быть восстановлены, по крайней мере, один или несколько раз, но этот процесс стоит недешево.

ОСОБЕННОСТИ И ПРЕИМУЩЕСТВА ИСКАТЬ
Блок двигателя. Для длительного срока службы и бесшумной работы мы рекомендуем четырехтактные промышленные дизельные двигатели с жидкостным охлаждением.
Воздушное или жидкостное охлаждение. Двигатели с воздушным охлаждением требуют огромного количества воздуха, могут потребоваться воздуховоды, и они несколько более шумные. Жидкостное охлаждение обеспечивает более тихую работу, более равномерный контроль температуры и, следовательно, более длительный срок службы двигателя.Современные двигатели с воздушным охлаждением подходят для многих областей применения, особенно для краткосрочных, переносных или резервных.
Впускной воздух. Все качественные генераторы имеют фильтры всасываемого воздуха со сменными фильтрующими элементами. Сегодня даже в небольших портативных устройствах есть сменные воздухоочистители.
Глушители. Большинство генераторов оснащено глушителем промышленного класса. Одно из хороших вложений — это глушитель для жилого или критического назначения, который намного тише и служит дольше.Все закрытые генераторы должны быть оборудованы как минимум жилым и, желательно, критическим глушителем.
Смазка. Система смазки должна иметь полнопоточный навинчиваемый масляный фильтр. Генераторы большего размера должны иметь обходной фильтр. Большинство современных генераторов имеют аварийную сигнализацию и отключение при низком уровне масла. Убедитесь, что выбранный вами генератор обладает этой ценной функцией, это просто обязательная защита.
Основная марка двигателя . Мы не знаем, почему люди даже рассматривают низкокачественный агрегат «из металлолома» или двигатель «не марки», вы не сможете получить необходимые запчасти, обслуживание и поддержку.Многие двигатели поставляются с коробкой запасных частей, включая поршни, кольца и подшипники, потому что все они вам понадобятся. Избавьте себя от горя и купите двигатель крупной марки. Если вы купите утилизированный двигатель, мы не будем его обслуживать, как и большинство других уважаемых дилеров.
Электрические системы и автоматические выключатели. Стандартная 12-вольтовая система должна включать как минимум следующее: 1) Качественный стартер и аккумулятор. Генераторы большего размера должны включать зарядный генератор с твердотельным регулятором напряжения.2) Большие дизельные агрегаты должны поставляться с выключателем предварительного нагрева, а все генераторы должны иметь выключатель запуска / остановки. 3) Al-генераторы должны иметь систему аварийного отключения для защиты двигателя в случае потери давления масла, превышения скорости или чрезмерного проворачивания коленчатого вала генератора и высокой температуры воды (или рабочей). 4) Автоматический выключатель системы для защиты генератора. В небольших системах и портативных устройствах на каждой цепи должен быть автоматический выключатель.
КОНЕЦ ГЕНЕРАТОРА
(Часть, которая заставляет генератор «вырабатывать» электричество.)
Генератор переменного тока должен иметь 4-полюсное вращающееся поле. Автоматический регулятор напряжения обеспечит «чистую» мощность. Нормальная мощность электросети составляет +/- 6% регулирования напряжения; большинство генераторов даже лучше в диапазоне от +/- 5% до 0,25% и даже лучше. Большинство современных генераторов предлагают AVR — автоматическое регулирование напряжения или какой-либо другой запатентованный бренд регулирования напряжения и могут безопасно использоваться с современной электроникой и компьютерами.
Подшипник со смазкой на весь срок службы. Дешевые генераторы — это , а не , поставляемые с этими подшипниками. Часто для замены подшипника требуется полная разборка каждые два-три года. Большинство современных генераторов переменного тока, или концов генераторов, снабжены подшипниками промышленного качества со смазкой на весь срок службы.
ПРИНАДЛЕЖНОСТИ И УПРАВЛЕНИЕ ДВИГАТЕЛЯ
После определения размера генератора, который вам понадобится, составьте список дополнительного и необходимого оборудования для установки.Для снижения шума мы рекомендуем глушитель бытового (не промышленного) класса. Хороший топливный фильтр предварительной очистки / водоотделитель необходим для защиты топливной системы вашего двигателя. Для резервных комплектов может потребоваться блочный нагреватель, чтобы поддерживать температуру смеси охлаждающая жидкость и вода, необходимую для облегчения запуска и уменьшения количества дыма при запуске.
КАКОЙ НАБОР РАЗМЕРОВ МНЕ НУЖЕН?

Калибровка — самый важный этап ; Нет ничего более важного в выборе генератора.Слишком маленький набор не прослужит долго, будет дымить и может повредить ваше электрическое оборудование. Если он слишком большой, двигатель нагревается, мокрый стек или «слюнявит», а это означает чрезмерный расход топлива и преждевременный отказ. Мы рекомендуем, чтобы генераторная установка никогда не работала непрерывно с нагрузкой менее 40% — оптимально от 50% до 75%.

Дополнительными факторами, которые могут повлиять на эффективную работу вашего генератора, являются большая высота над уровнем моря и высокая температура воздуха. Эти условия снизят мощность генератора.Вы должны учитывать вашу высоту, нормальные и экстремальные температуры и другие факторы. Спросите у своего инженера по продажам информацию о снижении рейтинга. Допускается снижение эффективности на три (3) процента на каждые 1000 футов над уровнем моря минимум. Проверьте спецификации производителя и используйте указанный ими коэффициент снижения номинальных характеристик. Нет ничего хуже, чем купить слишком маленький генератор.

Для получения дополнительной информации: Понимание нагрузок и размеров, расчеты, точное выполнение, процедуры определения размеров генератора, руководство по мощности

ПУСКОВЫЕ НАГРУЗКИ ДВИГАТЕЛЯ
Помимо требований к нагрузке, важно учитывать пусковую нагрузку двигателя.Мы используем эмпирическое правило, согласно которому при запуске двигателю требуется в три (3) раза больше мощности, чем при нагрузках. Выбор генератора, который не соответствует вашим потребностям в запуске двигателя, может затруднить запуск двигателей в кондиционерах, компрессорах или морозильных камерах. Кроме того, пусковая нагрузка вызывает провалы напряжения, из-за чего свет тускнеет при запуске большого двигателя. Эти провалы напряжения могут быть более чем раздражающими — провалы напряжения могут вывести из строя хрупкое электронное оборудование, такое как компьютеры.Вы должны убедиться, что учитываете стартовые нагрузки, если вы не можете запустить нагрузку, вы не сможете ее запустить. Для получения дополнительной информации см .: Примеры пусковой нагрузки, Руководство по мощности электродвигателя, Формулы двигателя.
ДОПОЛНИТЕЛЬНАЯ ИНФОРМАЦИЯ О ГЕНЕРАТОРАХ
Прочтите эти разделы о генераторах, вы можете найти полезную информацию. Соединения треугольником и звездой, преобразование электрических блоков (формулы), правильная работа генератора и безопасность генератора.

УСТАНОВКА ГЕНЕРАТОРА

Подробное руководство по установке обычно прилагается к генератору. Вот несколько важных моментов, которые следует учитывать при установке генератора.
Мы настоятельно рекомендуем, чтобы установка выполнялась лицензированным подрядчиком по электрике или механике. У них есть инструменты, ноу-хау и понимание правил и местных норм. Их опыт сэкономит вам деньги в долгосрочной перспективе.Если вы решили выполнить установку самостоятельно, ПОЖАЛУЙСТА, сделайте домашнюю работу, прежде чем приступить к работе, и получите соответствующие разрешения, требуемые вашей местной юрисдикцией. Несмотря на то, что ко всем GenSet предъявляются некоторые основные требования, каждая марка и модель предъявляют уникальные требования к установке. Кроме того, чрезвычайно важно иметь все соответствующие кодовые книги для справки и строго придерживаться законов, которые были разработаны для вашей безопасности. Прежде всего, ваша система должна быть проверена перед запуском, чтобы предотвратить возгорание и взрывы из-за неправильной установки.
РАСПОЛОЖЕНИЕ

Убедитесь, что учтены следующие пункты, прочтите руководство для генератора.

  • Воздухозаборник для внутреннего сгорания и охлаждения двигателя.
  • Отводы для отработанного и горячего охлаждающего воздуха.
  • Топливо, аккумулятор и электрические соединения переменного тока.
  • Не забывайте следить за оксидом углерода!
  • Жесткие ровные монтажные платформы (многие комплекты уже смонтированы на стальной раме).
  • Открытый доступ для облегчения обслуживания.
  • Изоляция от жилого помещения. Не допускайте шума и выхлопных газов в людных местах.
  • Помещения и оборудование для тушения пожара. Свести к минимуму возможность возникновения пожара.
  • Помните, GenSets перемещаются на своих виброопорах. Оставьте зазор для компенсации и используйте гибкие соединения на всех линиях и соединениях.
ВЫХЛОПНЫЕ СИСТЕМЫ
Для предотвращения возгорания от контакта с горючими материалами может потребоваться покрытие вытяжной системы изолирующим материалом.Мы рекомендуем накрыть вытяжные отверстия тепловым одеялом, чтобы уменьшить тепло, излучаемое выхлопом, и обеспечить личную безопасность. Некоторые изоляционные материалы лучше оставить профессионалам с соответствующим оборудованием. Держите все трубопроводы вдали от горючих материалов, включая стены. Для предотвращения усталости металла необходимо использовать бесшовное гибкое соединение из нержавеющей стали между генераторной установкой и выхлопной системой. Не используйте выпускной коллектор для поддержки выпускной системы, потому что вес приведет к отказу коллектора.Подвески для выхлопных труб легко доступны и недороги.
ТОПЛИВНАЯ СИСТЕМА
При проектировании и установке топливной системы следует проявлять особую осторожность во избежание опасности возгорания. Топливопроводы должны иметь как можно меньше соединений и проложены так, чтобы предотвратить повреждение. Держите трубопроводы подальше от горячего двигателя или компонентов выхлопной системы. Трубопроводы должны быть не меньше впускного и выпускного отверстий двигателя. При необходимости поддержите топливопроводы зажимами, чтобы предотвратить усталость металла от вибрации.Топливный бак должен быть на уровне комплекта или ниже него, чтобы предотвратить сифонирование в случае отказа линии. Не забудьте проверить грузоподъемность топливного насоса двигателя и не выходить за ее пределы. Если набор выше, чем бак, может потребоваться дополнительный топливный насос.

Чтобы предотвратить попадание воды, топливо следует откачивать из верхней части бака, при этом подборщик должен выходить на не более чем на двух дюймов от дна. Резервуары для хранения топлива должны иметь защиту от протечек, и во многих юрисдикциях требуются бассейны для разливов.Наземные резервуары рекомендуются и дешевле, но вы должны проверить свои местные нормы перед установкой резервуара. Самые безопасные резервуары — это двойные стенки с сигнализацией. Эти сигналы просты и оправдывают вложения, позволяющие избежать возможного разлива топлива и значительных затрат на очистку. Если бак установлен над генераторной установкой, используйте отсечной топливный клапан, чтобы вы могли работать с топливной системой без откачки топлива. Это также позволяет перекрыть подачу топлива в случае обрыва магистрали.

Высококачественный водоотделительный фильтр следует устанавливать как можно ближе к генераторной установке.Из-за своей взрывоопасной природы к бензиновым топливным системам предъявляются особые требования; обратитесь к поставщику резервуаров для получения полной информации.

ВОЗДУХ ДЛЯ СГОРАНИЯ И ОХЛАЖДЕНИЯ

Генераторная установка требует воздуха для горения и охлаждения. Радиатор и «толкающий» вентилятор двигателя охлаждают температуру двигателя генератора. Ваш автомобиль или грузовик обычно работает с вентилятором «съемник». Внутренний вентилятор охлаждает генератор.

НАРУЖНЫЙ МОНТАЖ
GenSets, помещенные в погодозащитные кожухи, предназначены для установки на открытом воздухе. Обычно цементная площадка размещается в подходящем месте, вне поля зрения, но с легким доступом для обслуживания и заправки. Генератор закреплен на подушке. Выберите место рядом с линиями электроснабжения и подачи топлива (природный газ, пропан или дизельное топливо). На изображении ниже показана типичная газовая установка. Главный распределительный щит, передаточный переключатель и субпанели в этом примере находятся внутри здания, но чаще распределительный щит, субпанели и передаточный переключатель находятся снаружи. Убедитесь, что на генераторе имеется напряжение 110 В для зарядки аккумулятора.

GenSet должен находиться на расстоянии не менее 3 футов от горючего материала (NFPA 37). Оставьте не менее 3 футов (или больше, если корпус и инструкции для вашего конкретного устройства) вокруг корпуса GenSet для доступа внутрь (NEC, статья 110-26a, статья 110-26b). GenSet должен находиться на расстоянии не менее 5 футов от любого проема (окна, двери, вентиляционного отверстия и т. Д.) В стене, и выхлоп не должен накапливаться в любой населенной зоне.См. Рисунок ниже.

ВНУТРЕННИЙ МОНТАЖ
Мы не рекомендуем размещать генераторные установки в жилых помещениях и небольших коммерческих и промышленных объектах. Основная причина избегать установки в помещении — это безопасность. Окись углерода не имеет запаха, цвета и может накапливаться в закрытых помещениях. Вы можете войти в комнату, полную угарного газа, и вас одолят.Утечка газа в пространстве, прилегающем к вашему дому, может убить вас и вашу семью.

В дополнение к безопасности установка GenSet в помещении обходится дороже, чем установка GenSet в заводском корпусе с защитой от атмосферных воздействий. Когда GenSet устанавливается в помещении, здание должно быть тщательно спроектировано с учетом вентиляции для удаления тепла и любых паров из-за топлива, выхлопных газов, смазки и пусковых батарей. Радиатор должен быть снабжен переходником воздуховода, который должным образом взаимодействует с жалюзи на внешней стене здания.Достаточный приток воздуха должен быть обеспечен не только для вентилятора радиатора, но и для охлаждения генератора. Выхлопная труба двигателя и глушитель должны быть герметичными, чтобы предотвратить любые утечки, которые могут привести к накоплению опасного угарного газа внутри здания.

Как правило, температура в комнате или пространстве, в котором работает генератор, не должна превышать 100 F. Мы рекомендуем по возможности поддерживать температуру ниже 85 F. Для генераторных установок требуется приток холодного чистого воздуха и выпускное отверстие для горячего воздуха.По возможности, холодный воздух следует направлять через генератор (или конец генератора), чтобы генератор оставался холодным. Размер помещения влияет на комнатную температуру (чем меньше пространство, в котором работает генератор, тем выше, вероятно, будет комнатная температура), для меньших помещений может потребоваться воздуховод. Необходимо учитывать размер генератора и температуру или климат снаружи. При установке в помещении увеличение размеров вентиляционных отверстий может охладить комнату до приемлемого уровня и обеспечить «положительный» воздушный поток.Положительный воздушный поток — это прохладный чистый воздух на входе и горячий воздух на выходе, в отличие от циркуляции горячего воздуха внутри комнаты. Вентиляторы охлаждения генератора перемещают влагу, а также воздух. Влажный воздух вызывает коррозию медных обмоток GenSets, поэтому убедитесь, что воздухозаборники расположены так, чтобы минимизировать попадание влаги.

Могут также потребоваться автоматические системы пожаротушения. Обратитесь к местным правилам пожарной безопасности. Вам также следует связаться со своим поставщиком страхования от пожара, чтобы узнать, разрешена ли вообще установка GenSet в помещении.

Установка спроектирована с учетом всех вышеперечисленных требований, и все правила техники безопасности могут впоследствии стать опасными.Чтобы установка оставалась безопасной, ее необходимо регулярно проверять и обслуживать, чтобы гарантировать, что утечки или другие опасные условия не развиваются с возрастом или использованием. На объектах, на которых нет квалифицированного обслуживающего персонала, обученного обслуживанию внутренней генераторной установки, не следует устанавливать блок внутри здания.

Еще одним фактором является начальная стоимость. Невозможно построить здание для размещения GenSet по цене такой же низкой, как заводское жилье, которое можно заказать с GenSet.И даже если здание уже существует, затраты на проектирование и адаптацию его для установки генераторной установки обычно превышают стоимость корпуса, доступную у производителя GenSet. Для небольшого GenSet стоимость открытого блока с переходником для воздуховода и комплектом выхлопной трубы всего на 600 долларов меньше, чем у такого же GenSet с заводским погодным кожухом. Дополнительные расходы только на выхлопной патрубок и жалюзи превышают эту экономию.

Пожалуйста, прочтите Политику, гарантии и отказ от ответственности.Вы, как покупатель и пользователь генераторов, проданных GeneratorJoe, принимаете на себя все риски и ответственность в отношении всего приобретенного оборудования.


ПОДКЛЮЧЕНИЕ ПЕРЕМЕННОГО ТОКА
Подключение генератора к вашей системе распределения электроэнергии — это работа для квалифицированного, лицензированного электрика, знакомого с местными строительными нормами. Электричество опасно, уважайте его.

ПЕРЕКЛЮЧАТЕЛИ И РАСПРЕДЕЛИТЕЛЬНОЕ УСТРОЙСТВО
Для всех генераторных систем требуется автоматический выключатель и распределительный щит.Автоматический выключатель защищает генераторную установку от короткого замыкания и несимметричных электрических нагрузок. Распределительная панель разделяет и направляет подключенные нагрузки и включает автоматические выключатели для защиты этих нагрузок. Для резервных систем также требуется главный автоматический выключатель между источником питания и распределительной панелью. Панель переключения переключает питание от сети на GenSet и обратно, поэтому оба они не включаются одновременно. Бытовые, коммерческие и промышленные генераторы оснащены автозапуском для подключения к автоматическим переключателям.

Если у вас нет другой службы электроснабжения (электросети), вы должны установить безобрывный переключатель. Обычно переключатель передачи должен быть того же размера, что и служебная панель или вспомогательная панель за служебной панелью. Панель переключения переключает питание от сети на GenSet и обратно, поэтому оба они не включаются одновременно. Системы автозапуска и автоматического переключения доступны и относительно недороги. Мы поможем вам определить, что вам нужно. Для получения дополнительной информации о безобрывных переключателях и их работе см. Раздел «Информация о малом безобрывном переключателе», а о больших переключателях см. «Безводные переключатели».. GeneratorJoe поможет вам определить, что вам понадобится, позвоните нам.

Надеемся, эта информация была полезной. Если у вас есть дополнительные вопросы, обратитесь к торговому представителю GeneratorJoe.

5 основных элементов тюнинга двигателя | ТЮНИНГ

ТЮНИНГ

5 основных элементов тюнинга двигателя

Детали впускные

Для повышения эффективности всасывания самое важное — удалить все, что может стать препятствием, и беспрепятственно направить воздух в двигатель.Однако стандартный воздухоочиститель разработан для снижения шума всасывания и предотвращения засорения фильтра в течение длительного периода использования в различных условиях. Это делает штатную систему забора воздуха очень неэффективной с точки зрения производительности. Это похоже на марафон в противогазе!
HKS разработала и создала Super Hybrid Filter и Super Power Flow как часть своей линейки воздухозаборников. Супергибридный фильтр — это стандартный фильтр заменяемого типа, в котором используется стандартная коробка воздухоочистителя и заменяется фильтр на фильтр, обеспечивающий больший поток воздуха, тем самым повышая общую эффективность всасывания.Комплект Super Power Flow удаляет корпус воздухоочистителя и заменяет его узлом открытого типа с фильтром, который способен справиться с требованиями более высоких уровней настройки. Хотя эти системы впуска сменного типа воздушной камеры способны обеспечить повышенную эффективность забора воздуха, цикл обслуживания короче, чем у стандартного воздушного фильтра, и поэтому для поддержания оптимальной производительности требуется регулярное обслуживание.

Детали выхлопной системы

Основы настройки выхлопа заключаются в повышении эффективности выхлопа, но неверно предполагать, что наименьшее сопротивление приводит к наивысшей эффективности.При снятии глушителя сопротивление выхлопа радикально снижается, но также уменьшается крутящий момент двигателя, что отрицательно сказывается на запуске и ускорении транспортного средства, поэтому необходимо иметь правильную величину противодавления (сопротивления) выхлопных газов. Выпускные коллекторы являются хорошим примером этого, когда можно изменять характеристики двигателя с помощью формы, стыков и длины коллектора. Выхлопная система играет жизненно важную роль в выбросах выхлопных газов и уровне шума автомобиля. Стандартные глушители, как правило, имеют крутые изгибы и раздробленные участки, чтобы снизить производственные затраты и снизить затраты на компоновку.Особое внимание в конструкции уделяется снижению уровня шума и увеличению крутящего момента на самых низких оборотах двигателя. Спортивные глушители имеют более плавные изгибы для повышения эффективности выхлопной системы, и каждая система настроена на конкретный автомобиль, чтобы спортивные автомобили могли иметь эффективную мощность во всем диапазоне оборотов, в то время как седаны и универсалы будут уделять больше внимания созданию крутящего момента. Звук также настраивается в соответствии с приложением, в то же время давая достаточно, чтобы констатировать его присутствие. Турбины (подробности позже) используют энергию выхлопных газов для выработки мощности и, таким образом, становятся сопротивлением в выхлопной системе, поэтому глушители для автомобилей с турбонаддувом имеют меньшее сопротивление по сравнению с автомобилями Северной Америки.В зависимости от типа транспортного средства и глушителя можно повысить уровень наддува и добиться значительного увеличения мощности.

Сток глушитель

Обычно угол изгиба патрубков штатных выхлопных систем довольно острый, потому что при проектировании системы основное внимание уделяется затратам, снижению шума и низкому крутящему моменту. Глушитель представляет собой конструкцию перегородки, которая рассеивает выхлопные газы с перегородкой внутри глушителя.

Спортивный глушитель

Выхлопные системы спортивного типа обычно ориентированы на повышение эффективности выхлопа; следовательно, угол изгиба трубы ровный, а глушитель представляет собой прямую конструкцию, через которую труба проходит прямо внутри глушителя.Уровень шума выхлопных газов имеет тенденцию к увеличению, но в последнее время все чаще используются бесшумные выхлопные системы спортивного типа.

Металлический катализатор улучшил как эффективность выхлопа, так и очищающие свойства

Катализатор очищает выхлопные газы, делая их менее вредными для окружающей среды. Катализатор имеет мелкоячеистую структуру с множеством крошечных отверстий, препятствующих потоку выхлопных газов. Если рассматривать только эффективность выхлопных газов, наилучшие результаты будут достигнуты при удалении катализатора, но это приведет к выбросу большого количества вредных газов в атмосферу и сделает звук выхлопа очень громким.По этим причинам снятие катализатора с автомобиля запрещено законом во многих странах. Чтобы решить эту проблему, был разработан металлический катализатор HKS 150, который имеет гораздо более крупную сетку (ячейку), что позволяет более эффективно пропускать выхлопные газы, сохраняя при этом очищающие свойства за счет инновационного дизайна, сочетающего производительность с социальной ответственностью.

Перейти к HKS EXHAUST Products

Принудительная индукция

Что такое турбокомпрессор?

Используя энергию выхлопных газов двигателя, лопасти, подобные тем, что используются в ветряной мельнице, вращаются с помощью компрессора, установленного на той же оси.Это сжимает воздух и нагнетает его в двигатель, позволяя получить от двигателя более высокую мощность. Количество воздуха (давления), нагнетаемого в двигатель, называется давлением наддува, и его можно регулировать, контролируя количество выхлопных газов, проходящих через турбонагнетатель. Эта регулировка выполняется с помощью перепускного клапана, который находится между двигателем и турбонаддувом и может выпускать выхлопные газы, не проходя через турбонаддув. Это активируется давлением компрессора.
Повышая давление наддува, двигатель может всасывать больше воздуха, но из-за ограничений в мощности двигателя и экстремального сгорания (известного как детонация или детонация) давление наддува ограничено.Стандартное давление наддува обычно ограничено большим запасом прочности, чтобы справиться с широким спектром применений, а также по экологическим причинам.

2 типа перепускного клапана

Байпасные клапаны делятся на 2 основных типа. Типы приводов и типы перепускных клапанов. Оба работают, открывая перепускной клапан при достижении заданного уровня наддува и позволяя выхлопным газам выходить без прохождения через турбонагнетатель, что предотвращает дальнейшее повышение наддува.Оба они выполняют одну и ту же работу, но привод является компактным и может быть выполнен как единое целое с турбоагрегатом, в то время как перепускная заслонка требует трубопроводов и фитингов перед турбонаддувом, пропускная способность байпаса может быть увеличена на перепускной заслонке, что дает более стабильные настройки наддува. Исходя из этих характеристик, обычно приводы используются на стандартных и небольших турбинах, в то время как перепускные клапаны используются на более крупных турбинах для приложений с большей мощностью.

Что такое «Boost Up»?

Увеличивая количество нагнетаемого воздуха в двигатель, увеличивается сила взрыва, что увеличивает мощность двигателя.«Boost up» увеличивает консервативные уровни роста акций, чтобы полностью раскрыть потенциал сетапа акций. Наиболее распространенный способ повышения наддува — установка контроллера наддува EVC (электронный контроллер клапана). Также можно заменить привод на более прочную пружину. Хотя форсирование — это относительно простой способ увеличения мощности, существует множество возможных осложнений, таких как детонация управления подачей топлива или прекращение форсирования, которые могут привести к возможному повреждению двигателя, поэтому важно знать возможности автомобиля.

Что такое «Турбо-своппинг»?

Турбо-замена — это следующий шаг по сравнению с ускорением. Ограничения стандартного турбонаддува могут быть легко достигнуты, и те, кому нужно больше, могут заменить свой турбо на тот, который может обрабатывать больший воздушный поток.
Обычно можно подумать, что с одним и тем же двигателем и давлением наддува малый турбонаддув и большой турбонаддув будут производить одинаковую мощность. Однако это не так, и больший турбонаддув будет производить больше мощности.Это вызвано разницей в эффективности турбонаддува, поскольку турбонагнетатель каждого размера имеет давление наддува (расход воздуха), при котором он может работать наиболее эффективно, а использование неэффективного давления наддува вызовет повышение температуры воздуха, снижая плотность воздуха, тем самым уменьшая количество воздуха. в двигатель даже при том же давлении наддува.

Что такое интеркулер?

Интеркулер — это теплообменник (охлаждающее устройство), предназначенный для охлаждения воздуха, нагретого турбиной во время сжатия.
Популярная настройка в этой области включает добавление или замену промежуточного охладителя на более производительный и эффективный. Хороший интеркулер должен уменьшать сопротивление воздушному потоку (потерю давления), а также максимально снижать температуру воздуха. Это два противоположных свойства, поэтому добиться того и другого вместе сложно. HKS продолжила разработку промежуточных охладителей, стремясь достичь обоих критериев.

Что такое нагнетатель?

В отличие от турбонагнетателя, который использует мощность выхлопных газов, нагнетатель заимствует небольшую мощность непосредственно от двигателя для работы компрессора.В частности, для вращения компрессора чаще всего используют ремень и шкив от коленчатого вала двигателя. В результате компрессор будет работать на низких оборотах, обеспечивая хороший отклик с момента нажатия педали акселератора. В турбонагнетателе, в котором используется поток выхлопных газов, возникает задержка перед генерацией потока выхлопных газов, необходимых для работы компрессора. Однако при более высоких оборотах двигателя (об / мин) нагнетатели, использующие мощность двигателя, становятся менее эффективными, чем турбокомпрессор.

Обычные типы нагнетателей

Тип корней: 2 ротора сцепляются вместе и выталкивают воздух из корпуса.Большинство обычных нагнетателей относятся к этому типу. Поскольку нагнетатель типа Рутс не сжимает воздух внутри устройства, для получения большой выходной мощности может потребоваться корпус большего размера.

Центробежный тип: по форме напоминает турбонагнетатель, но приводится в движение непосредственно двигателем, а не выхлопными газами. Внутренняя структура делится на несколько дополнительных подгрупп. HKS использует так называемый «тип привода с реакцией на крутящий момент» и с внутренним механизмом сжатия и тяги, способным обеспечить подходящее сжатие на всех оборотах двигателя.

Перейти к продукту HKS

Управление топливом

Для полного сгорания топлива необходимо примерно 15 г воздуха на каждый 1 г топлива (15: 1), и это называется стехиометрическим соотношением воздух-топливо. Однако на практике воздушно-топливное соотношение двигателя имеет тенденцию быть богаче топливом, чем стехиометрическое соотношение из-за таких условий, как распыление топлива (насколько хорошо топливо смешивается с воздухом) и охлаждающего эффекта, который топливо оказывает на двигатель.Датчик A / F (воздух-топливо) используется для измерения соотношения, и многие системы контроля запасов будут использовать датчик O2 для грубой регулировки. В нормальных условиях бортовой компьютер автомобиля измеряет количество воздуха, втянутого двигателем, с помощью расходомера воздуха и рассчитывает необходимое количество необходимого топлива. Это зависит от того, что транспортное средство находится в стандартных условиях, и после того, как количество воздуха изменится с помощью «наддува» или чего-то подобного, то заправку обычно следует отрегулировать в соответствии с требованиями. При настройке заправки можно использовать опыт, но использование измерителя A / F и регистратора данных, которые могут регистрировать различные различные параметры, является обычной практикой.
Компания HKS разработала F-CON как продукт, позволяющий контролировать заправку. В сигнал форсунки вносятся изменения для регулирования объема топлива при различных обстоятельствах. Также можно изменить сигнал расходомера воздуха, чтобы компьютер запаса обнаруживал расход воздуха, отличный от того, который фактически присутствует, чтобы повлиять на заправку топливом. HKS AFR и FCD являются продуктами этого типа.

F-CON V Pro совместим с системами D-Jetronic

Во многих традиционных установках количество впрыскиваемого топлива рассчитывается с помощью расходомера воздуха с использованием того, что часто называют системой L-Jetronic.В системах L-Jetronic обычно используется датчик с горячей пружиной, который размещается во впускном трубопроводе, который может ограничивать поток воздуха, а также имеет ограничения на объем воздуха, который они могут измерять. Системы D-Jetronic используют датчик давления во впускном коллекторе для измерения количества присутствующего воздуха, что делает его более эффективным для воздушного потока. Системы D-Jetronic также называют «безвоздушными», а использование F-CON V Pro может превратить систему L-Jetronic в систему D-Jetronic.

Инструмент регулировки топлива для обеспечения полного сгорания

Зажигание

Самый популярный вариант при настройке системы зажигания — это замена свечей зажигания.Свечи зажигания имеют значение теплового диапазона, и, как правило, более низкие значения (тип с низким тепловым диапазоном) подходят для использования в более низких тепловых условиях, однако в более горячих условиях свечи зажигания могут вызывать детонацию (детонацию). Свечи зажигания с большим диапазоном нагрева хорошо работают при более высоких температурах, но могут вызывать более слабое зажигание при более низких температурах и, возможно, пропуски зажигания. Во время разгона или другой настройки взрывная сила в камере сгорания увеличивается, повышая температуру, что облегчает возникновение детонации, которое может привести к повреждению двигателя, и поэтому необходимо перейти на свечи зажигания с более высоким диапазоном нагрева.
Также важно контролировать момент зажигания, что обычно достигается с помощью компьютерного управления, например, заправки топливом. Время зажигания означает, когда сгорает топливно-воздушная смесь, и правильное время зажигания может варьироваться в зависимости от условий. Как правило, более раннее (расширенное) зажигание увеличивает мощность, но становится более восприимчивым к детонации, тогда как отложенное (замедленное) зажигание снижает вероятность детонации, но также имеет тенденцию к снижению мощности и реакции. Продукция HKS F-CON может точно настраивать угол опережения зажигания в зависимости от потребностей пользователя.

Детали системы зажигания, обеспечивающие получение сильных искр и надежное зажигание

Diesel Evolution | Банки Пауэр

Что такое «современный» дизель, и действительно ли он так сильно отличается?

В наши дни много говорят о «современных» дизелях и о том, как современные дизели изменились. Современный дизель описывается как мощный, чистый, тихий, отзывчивый, экономичный и бездымный, но что на самом деле представляет собой современный дизель? Вообще говоря, дизельное топливо должно включать пять основных характеристик, чтобы считаться современным.Эти пять характеристик: (1) четыре клапана на цилиндр; (2), непосредственный впрыск топлива; (3) компьютерное управление топливом; (4), впрыск топлива с общей топливораспределительной рампой; и (5) цикл подавления шума «пилотного впрыска». Вы можете заметить, что турбонагнетатель не был включен. Это потому, что практически все автомобильные дизели, произведенные в Америке с 1994 года, имеют турбонаддув, поэтому турбокомпрессор считается частью базовой конструкции дизеля. Давайте рассмотрим каждую из этих определяющих характеристик по очереди.

Во-первых, при использовании конструкции головки блока цилиндров с четырьмя клапанами на цилиндр (два впускных клапана и два выпускных клапана) максимальный воздушный поток может быть получен для данного диаметра отверстия с меньшей защитой (ограничением потока) стенкой цилиндра. Порты головки блока цилиндров также могут быть выровнены для обеспечения максимального завихрения внутри цилиндра и повышения эффективности сгорания. Наиболее важно то, что конфигурация с четырьмя клапанами позволяет расположить форсунку для впрыска топлива в центре камеры сгорания для симметричной схемы впрыска топлива непосредственно по средней линии цилиндра.Такое расположение обеспечивает наиболее равномерное распределение топлива для эффективности сгорания с минимумом загрязняющих веществ в выхлопных газах. Более ранние конструкции только с двумя клапанами на цилиндр не допускали такого выгодного размещения форсунок.

Во-вторых, в недавнем прошлом многие автомобильные дизельные двигатели были разработаны с непрямым впрыском (IDI). IDI использовала камеру предварительного сгорания. Топливо впрыскивалось в форкамеру, где происходило воспламенение от сжатия. Затем горящая смесь расширилась через канал или горло в цилиндр.Такое расположение могло быть спроектировано для создания сильного завихрения в цилиндре, но главной целью было снижение шума двигателя. Грохот до современных дизелей с прямым впрыском (DI) является результатом быстрого скачка давления при генерации импульса основного впрыска. В результате сгорания возникает скачок давления, который вызывает шум. При инициировании горения в камере предварительного сгорания гораздо меньшего размера, грохот стал не таким громким. К сожалению, дизели IDI не так эффективны и чисты, как дизели DI, поэтому все современные дизели имеют непосредственный впрыск.Проблема шума была решена с помощью «пилотного впрыска», о котором мы поговорим позже.

Дизели

с прямым впрыском на 15 процентов эффективнее дизелей IDI с точки зрения теплового КПД. Выходная мощность и крутящий момент на 40 процентов выше с DI. Кроме того, расход топлива на 30 процентов меньше, а это означает, что выбросы углекислого газа и углеводородов сокращаются на аналогичную величину. Переход горючих газов из предкамеры в цилиндр в дизелях IDI приводит к значительным потерям тепла в головку цилиндров и стенки цилиндров, что снижает эффективность.

Третья особенность современного дизеля — это компьютерное управление подачей топлива. На самом деле это означает компьютеризированное электронное управление импульсами впрыска топлива в ответ на положение дроссельной заслонки, скорость и нагрузку двигателя, а также обратную связь от многочисленных датчиков двигателя. Компьютер может управлять топливными форсунками, давлением насоса и длительностью импульса впрыска топлива (называемого шириной импульса) со скоростью, необходимой для управления сгоранием в реальном времени. Он также допускает несколько событий впрыска для каждого срабатывания цилиндра.Компьютерное управление обеспечивает точность, чтобы правильно рассчитать время этих событий, чтобы удовлетворить как сегодняшние, так и завтрашние требования по выбросам и экономии топлива. Например, некоторые производители впрыска дизельного топлива говорят о необходимости иметь до четырех или пяти отдельных событий впрыска на цикл сгорания. Если вы посчитаете такую ​​систему на V8, работающем на 4000 об / мин, это будет 80000 впрысков в минуту! Только компьютер способен управлять такой системой с точным отсчетом времени.Конечно, система впрыска тоже должна соответствовать поставленной задаче.

Четвертое требование современного дизеля — это система впрыска топлива с общей топливораспределительной рампой. Чтобы компьютер мог управлять синхронизацией, шириной импульса и давлением топлива в системе впрыска, система впрыска должна поддерживать давление независимо от частоты вращения двигателя и достигать давления впрыска, достаточного для эффективного прямого впрыска. В настоящее время такую ​​необходимую гибкость обеспечивают системы впрыска Common-Rail. Работая независимо от частоты вращения двигателя, система Common Rail может подавать давление топлива от 2000 до 24 000+ фунтов на квадратный дюйм в общую топливную рампу, которая питает каждую группу форсунок.Высокое давление позволяет использовать форсунки с множеством небольших отверстий для эффективного распределения и распыления импульса топлива в цилиндр. Сверхвысокое давление создает капли топлива небольшого размера и высокую скорость впрыска, способствуя полному сгоранию топлива. Это обеспечивает максимальную мощность и минимальное загрязнение. Высокое давление топлива также позволяет подавать запрограммированное количество топлива за очень короткое время. Это особенно важно для учета нескольких событий впрыска во время каждого цикла сгорания.

Пятое требование современного дизеля — пилотный впрыск. Предварительный впрыск используется на дизелях с прямым впрыском для значительного снижения шума, особенно на низких оборотах двигателя и на холостом ходу. Пилотный впрыск представлен на дизелях Chevy / GM 6,6 л DuraMax ’01–03, на дизелях Cummins 5,9 л для автомобилей ’03 и на дизелях Ford 6.0L Power Stroke ’03. Предварительный впрыск — это введение небольшого количества топлива, которое начинает сгорать непосредственно перед основным топливным импульсом, производящим энергию.Это сглаживает начало сгорания, устраняя скачки давления, которые вызывают грохот, характерный для предыдущих дизелей, особенно на холостом ходу. При правильном исполнении дизель с предварительным впрыском будет работать на холостом ходу так же тихо, как и бензиновый двигатель. Пилотный впрыск также улучшает способность дизелей к холодному запуску по сравнению с бензиновыми двигателями при температурах до -40 ° F. Кроме того, пилотный впрыск может помочь уменьшить количество оксидов азота в дизеле за счет снижения пиковых температур сгорания.

Время импульса пилотного впрыска и количество впрыскиваемого топлива имеют решающее значение для снижения шума.Время между пилотным импульсом и основным импульсом впрыска должно быть очень коротким. Некоторые системы впрыска теперь способны сокращать этот интервал между импульсами до 0,0007 секунды. В результате горение начинается в небольшом масштабе, не вызывая заметного грохота, а затем нарастает мягко, но быстро. Это снижает шум, снижает вибрацию и обеспечивает более тихий прогрев при холодном запуске.

Современные дизели прошли долгий путь всего за последние несколько лет. Они больше не шумные и дымные, выбросы значительно сократились, мощность и экономичность выросли, а производительность поразительна.Однако эволюция дизеля еще далека от завершения. Испытываются и тестируются многие другие технологии, такие как рециркуляция охлаждаемых выхлопных газов, дополнительный впрыск холодного горения, определение ионов с обратной связью для управления горением в реальном времени и пьезоэлектрический впрыск. Большинство этих разработок нацелено на дальнейшее сокращение выбросов дизельных двигателей, и большинство из них положительно сказываются на мощности и экономичности. К 2006 году было введено обязательное использование топлива с низким содержанием серы, что устранит любой оставшийся запах дизельного топлива и позволит использовать каталитические нейтрализаторы для снижения содержания оксидов азота.Самоочищающиеся уловители твердых частиц также прибывают для удаления последних остатков дыма из выхлопных газов дизельных двигателей. Мы также, вероятно, увидим снижение веса дизельного двигателя и увеличение его максимальной скорости. Современный дизель уже невероятен. Остается только гадать, что принесет дальнейшее развитие. Одно можно сказать наверняка: в будущем вы увидите гораздо больше захватывающих автомобилей с дизельным двигателем. Один из них может быть даже вашим.

Выбросы загрязняющих веществ от автомобилей с дизельными двигателями и систем нейтрализации выхлопных газов

В современном мире защита окружающей среды стала предметом особого внимания.Многие агентства и организации пытаются предотвратить ущерб окружающей среде и здоровью людей, причиняемый выбросами парниковых газов и загрязняющих веществ. Из-за неблагоприятного воздействия выбросов дизельного топлива на здоровье и окружающую среду правительства выдвигают требования в отношении допустимых норм выбросов выхлопных газов. В Европе были разработаны стандарты евро, которые с 1993 года постоянно снижались с евро I до евро VI соответственно.

В таблице 1 приведены европейские стандарты для транспортных средств M1 и M2, N1 и N2, определенные в Директиве 70/156 / EC, с контрольной массой ≤2 610 кг.Пределы определены в этой таблице в виде массы на энергию (г / кВтч). В последующие годы нормы евростандартов становятся все более строгими. По сравнению со стандартом Euro I, стандарт Euro VI для выбросов CO, HC, NO x и PM был снижен, соответственно, на 66, 76, 95 и 98%. Дата введения стандарта Euro VI для большегрузных автомобилей — 1 сентября 2014 г. (Delphi et al. 2012).

Таблица 1 Евростандарты Европейского Союза для большегрузных автомобилей (Delphi et al.2012)

Значения выбросов, которые день ото дня становились все более строгими, вынуждали производителей транспортных средств работать над сокращением выбросов загрязняющих веществ от транспортных средств. В исследованиях, которые проводились десятилетиями, основное внимание уделялось модификациям двигателей, системам электронного управления впрыском топлива и улучшению свойств топлива. Однако этими мерами не удалось добиться снижения выбросов, определенного стандартами. Желаемые уровни выбросов могут быть достигнуты только с помощью систем контроля выбросов доочистки.Транспортные средства оснащены системами контроля выбросов в соответствии с действующими стандартами и требованиями по выбросам. С помощью систем контроля выбросов загрязняющие вещества из выхлопных газов могут быть удалены после того, как они покидают двигатель, непосредственно перед их выбросом в воздух (Prasad and Bella 2010; Bosch 2005).

Среди систем контроля выбросов дизельных двигателей большинство исследований и исследований было проведено по снижению выбросов NO x , поскольку содержание NO x в выхлопе дизельного двигателя имеет самый высокий процент среди выбросов загрязняющих веществ.Из исследований, проведенных на данный момент, рециркуляция выхлопных газов (EGR), ловушка для обедненных NO x (LNT) и SCR являются наиболее целенаправленными технологиями для существенного устранения выбросов NO x .

В системах рециркуляции ОГ, чтобы уменьшить выбросы NO x , выхлопные газы рециркулируют обратно в камеру сгорания и смешиваются со свежим воздухом на такте впуска. Следовательно, эффективность горения ухудшается, что приводит к снижению температуры горения, что означает уменьшение образования NO x .Система EGR широко используется в дизельных транспортных средствах. Тем не мение; он не может достичь единственно высокой эффективности преобразования и сокращения выбросов NO x , которые соответствуют действующим стандартам выбросов для особо тяжелых транспортных средств. Кроме того, из-за снижения температуры в цилиндре эта технология приводит к увеличению выбросов HC и CO. (Баунер и др., 2009).

Технология LNT, также называемая NO x — сокращение накопления (NSR) или адсорбирующий катализатор NO x (NAC), была разработана для снижения выбросов NO x , особенно в обедненных условиях.В условиях обедненного двигателя LNT накапливает NO x на слое катализатора. Затем, в условиях богатого топливом двигателя, он выделяет и реагирует на NO x обычными реакциями трехстороннего типа. Катализатор LNT в основном состоит из трех основных компонентов. Эти компоненты представляют собой катализатор окисления (Pt), среду хранения NO x (барий (Ba) и / или другие оксиды) и катализатор восстановления (Rh). В технологии LNT катализаторы на основе платины являются наиболее часто используемыми из-за их восстановления NO x при низкой температуре и стабильности в воде и сере.

Подобно технологии рециркуляции отработавших газов, технологии LNT недостаточны для обеспечения желаемого сокращения выбросов NO x . Помимо технологий EGR и LNT, с помощью технологии SCR можно обеспечить соответствие действующим стандартам выбросов. Таким образом, технология SCR является респектабельной новейшей технологией, которая интересует многих исследователей.

В этом разделе подробно рассматриваются системы контроля выбросов для дизельных двигателей. Из-за их широкого использования; Системы DOC, DPF и SCR, особенно для дизельных двигателей большой мощности, рассматриваются отдельно.

Дизельный катализатор окисления (DOC)

Основная функция DOC — окислять выбросы HC и CO. Кроме того, DOC играют роль в снижении массы выбросов твердых частиц дизельного топлива за счет окисления некоторых углеводородов, адсорбированных на углеродных частицах (Chen and Schirmer 2003; Wang et al. 2008). DOC также можно использовать в сочетании с катализаторами SCR для окисления NO до NO 2 и увеличения отношения NO 2 : NO x . В DOC происходят три основных реакции (Zheng and Banerjee 2009).

$$ {\ текст {CO}} + \, \ raise.5ex \ hbox {$ \ scriptstyle 1 $} \ kern-.1em / \ kern-.15em \ lower.25ex \ hbox {$ \ scriptstyle 2 $ } {\ text {O}} _ {2} \ to {\ text {CO}} _ {2} $$

(1)

$$ {\ text {C}} _ ​​{3} {\ text {H}} _ {6} + {9} / 2 {\ text {O}} _ {2} \ to {\ text {3 CO }} _ {2} + {\ text {3H}} _ {2} {\ text {O}} $$

(2)

$$ {\ text {NO}} + \, \ raise.5ex \ hbox {$ \ scriptstyle 1 $} \ kern-.1em / \ kern-.15em \ lower.25ex \ hbox {$ \ scriptstyle 2 $} {\ text {O}} _ {2} \ to {\ text {NO}} _ {2} $$

(3)

CO и HC окисляются с образованием CO 2 и H 2 O [Ур. (1), (2)] в ДОК (рис. 2). Дизельные выхлопные газы обычно содержат от 2 до 17% по объему O 2 , который не вступает в реакцию с топливом в камере сгорания. Этот O 2 постоянно потребляется в DOC (Yu and Kim 2013).

Рис.2

Катализатор окисления дизельного топлива

Другая химическая реакция, которая происходит в DOC, — это окисление NO с образованием NO 2 , как показано в уравнении. (3). Концентрация NO 2 в NO x жизненно важна для последующих компонентов, таких как DPF и SCR. Высокая концентрация NO 2 в NO x способствует повышению эффективности DPF и SCR. В необработанном выхлопном газе двигателя компонент NO 2 в NO x составляет только около 10% в большинстве рабочих точек.Благодаря функции DOC, NO 2 : NO увеличивается за счет установления термодинамического равновесия (Lee et al. 2008; Sampara et al. 2007).

Температура является эффективной функцией эффективности DOC. Эффективность DOC в окислении CO и HC может наблюдаться при температурах выше «световой» каталитической активности. Температура выключения определяется как температура, при которой начинается реакция в катализаторе, и изменяется в зависимости от состава выхлопных газов, скорости потока и состава катализатора.

DOC также может использоваться в качестве каталитического нагревателя. При окислении CO и выбросах HC выделяется тепло. Это тепло используется для повышения температуры выхлопных газов после DOC. Повышение температуры выхлопных газов способствует регенерации DPF. В DOC температура выхлопных газов поднимается примерно выше 90 ° C на каждый 1% объема окисления CO. Поскольку повышение температуры происходит очень быстро, в DOC устанавливается крутой температурный градиент. Результирующее напряжение в керамическом носителе и каталитическом нейтрализаторе ограничивается допустимым скачком температуры примерно 200–250 ° C (Bosch 2005).

DOC обычно представляет собой монолитную сотовую структуру из керамики или металла. Помимо этой несущей структуры, он состоит из оксидной смеси (Washcoat), состоящей из оксида алюминия (Al 2 O 3 ), оксида церия (CeO 2 ), оксида циркония (ZrO 2 ) и активного каталитического благородные металлы, такие как платина (Pt), палладий (Pd) и родий (Rh). Основная функция покрытия — обеспечить большую площадь поверхности для благородного металла и замедлить спекание катализатора, которое происходит при высоких температурах, что приводит к необратимому падению активности катализатора.Количество благородных металлов, используемых для покрытия, которое часто называют загрузкой, указано в г / фут 3 . Нагрузка составляет примерно 50–90 г / фут 3 . В настоящее время DOC, содержащий Pt и Pd, чаще всего используется для окисления, и многие исследования, проведенные исследователями, были сосредоточены на этих катализаторах на основе драгоценных металлов (Kolli et al., 2010; Kim et al. 2003; Wiebenga et al. 2012; Wang et al. 2008; Ханеда и др. 2011).

Основными характеристиками при выборе DOC являются температура зажигания, эффективность преобразования, температурная стабильность, устойчивость к отравлению и производственные затраты.Однако такие параметры, как плотность каналов (указываемая в cpsi (количество каналов на квадратный дюйм)), толщина стенок отдельных каналов и внешние размеры преобразователя (площадь поперечного сечения и длина) имеют существенное значение для свойств DOC. Плотность каналов и толщина стенок определяют реакцию на нагрев, противодавление выхлопных газов и механическую стабильность каталитического нейтрализатора (Zervas 2008).

Объем DOC (V c ) определяется как коэффициент объемного расхода выхлопных газов, который сам пропорционален рабочему объему (Vs) двигателя.Типичные расчетные значения для DOC: Vc / Vs = 0,6–0,8. Отношение объемного расхода выхлопных газов [V f 3 / ч)] к объему катализатора [V c (m 3 )] называется объемной скоростью [SV (h -1 ). ]. Типичные значения SV для катализатора окисления составляют 150 000–250 000 ч 9 1079–1 9 1080 (Bosch 2005).

С момента первого внедрения в 1970-х годах DOC остаются ключевой технологией для дизельных двигателей до сих пор (Wang et al. 2008). Все новые дизельные двигатели, устанавливаемые на легковые, малотоннажные и тяжелые дизельные автомобили, теперь оснащены DOC.Сокращение выбросов в результате использования DOC оценивается примерно на 60–90% для углеводородов и CO.

DOC являются широко предпочтительными системами контроля выбросов не только для автомобилей большой грузоподъемности, но и для автомобилей малой грузоподъемности во многих странах, таких как Европа, США и Япония. Катализаторы окисления, содержащие Pt и Pd, являются наиболее популярными катализаторами на мировом рынке. Одна из основных проблем этих ценных катализаторов состоит в том, что они проводят реакцию SO 2 на SO 3 , которая, следовательно, реагирует с водой и образует формы сульфатов и серной кислоты.Эти формы имеют весьма вредные эффекты, такие как повреждение систем контроля выбросов после обработки, а также вызывают ряд проблем для окружающей среды и здоровья. Нет технологий для предотвращения и устранения этих форм. Хотя ULSD используется во многих странах мира, полностью решить проблему не удалось. Использование альтернативных видов топлива, таких как биодизель, метиловый спирт и т. Д., Может полностью уменьшить или устранить этот загрязнитель. Кроме того, можно повысить эффективность преобразования DOC, используя альтернативные виды топлива (Zhu et al.2013).

Дизельный сажевый фильтр (DPF)

DPF применяются в производстве автомобилей с 2000 года. Они используются для удаления выбросов твердых частиц из выхлопных газов путем физической фильтрации и обычно изготавливаются из кордиерита (2MgO – 2Al 2 O 3 –5SiO 2 ) или монолит сотовой структуры из карбида кремния (SiC) с каналами, заблокированными на чередующихся концах. Забитые каналы на каждом конце заставляют частицы дизельного топлива проходить через пористые стенки подложки, которые действуют как механический фильтр (рис.3). Когда частицы сажи проходят через стенки, они переносятся в стенки пор путем диффузии, где и прилипают. Этот фильтр имеет большое количество параллельных, в основном квадратных каналов. Толщина стенок канала обычно составляет 300–400 мкм. Размер канала определяется плотностью их клеток (типичное значение: 100–300 cpsi) (Kuki et al. 2004; Ohno et al. 2002; Tsuneyoshi and Yamamoto 2012).

Фиг.3

Стенки фильтра спроектированы так, чтобы иметь оптимальную пористость, позволяющую выхлопным газам проходить через их стенки без особых препятствий, при этом они достаточно непроницаемы для сбора твердых частиц.По мере того, как фильтр становится все более насыщенным сажей, на поверхности стенок канала образуется слой сажи. Это обеспечивает высокоэффективную поверхностную фильтрацию на следующем этапе эксплуатации. Однако следует избегать чрезмерного насыщения. По мере того как фильтры накапливают ТЧ, они создают противодавление, которое имеет множество негативных последствий, таких как повышенный расход топлива, отказ двигателя и напряжение в фильтре. Чтобы предотвратить эти негативные эффекты, DPF необходимо регенерировать путем сжигания захваченных PM.

Далее существует два типа процессов регенерации DPF, обычно называемых активной регенерацией и пассивной регенерацией. Активная регенерация может периодически применяться к сажевым фильтрам, в которых захваченная сажа удаляется путем контролируемого окисления с помощью O 2 при 550 ° C или более высоких температурах (Jeguirim et al. 2005). При активной регенерации DPF PM периодически окисляется теплом, подаваемым из внешних источников, таких как электрический нагреватель или пламенная горелка. Сгорание твердых частиц, захваченных фильтром, происходит, как только содержание сажи в фильтре достигает установленного предела (около 45%), на который указывает падение давления на DPF.

Более высокая температура регенерации и большое количество энергии для теплоснабжения представляют собой серьезные проблемы для активной регенерации. В то время как такие высокие температуры, как точка плавления фильтра, приводят к выходу из строя сажевого фильтра, необходимость в энергии для нагрева увеличивает стоимость производства системы из-за сложных добавок. Эти негативные эффекты рассматривают активную регенерацию как нежелательную.

В отличие от активной регенерации, при пассивной регенерации сажевого фильтра окисление твердых частиц происходит при температуре выхлопных газов за счет каталитического горения, которому способствует осаждение подходящих катализаторов внутри самой ловушки.ТЧ окисляются в процессе каталитической реакции, в которой не используется дополнительное топливо. В диапазоне температур от 200 до 450 ° C небольшие количества NO 2 будут способствовать непрерывному окислению осажденных углеродных частиц. Это основа непрерывно регенерирующей ловушки (CRT), которая непрерывно использует NO 2 для окисления сажи при относительно низких температурах по сравнению с DPF (York et al. 2007, Allansson et al. 2002).

При пассивной регенерации весь процесс очень простой, тихий, эффективный и экономичный, то есть ни оператор транспортного средства, ни система управления двигателем транспортного средства не должны делать что-либо, чтобы вызвать регенерацию DPF.В этом процессе обычно используется фильтр из карбида кремния со стенкой потока с DOC, сложной системой управления двигателем и датчиками. DOC перед сажевым фильтром увеличивает соотношение NO 2 к NO в выхлопе и снижает температуру горения твердых частиц. NO 2 обеспечивает более эффективный окислитель, чем кислород, и, таким образом, обеспечивает оптимальную эффективность пассивной регенерации (Johansen et al. 2007).

Каркасный SiC-фильтр — один из наиболее широко используемых фильтров DPF во всем мире. Поскольку регенерация происходит при высоких температурах выхлопных газов, перед этим фильтром необходимо использовать DOC.Катализированные сажевые фильтры (CDPF), содержащие состав DOC на самом сажевом фильтре, могут устранить это обязательство. В этой системе нет никаких DOC или каких-либо систем доочистки перед DPF, и все реакции происходят в CDPF. CDPF, в котором Pt используется в качестве катализатора, имеет такую ​​же эффективность преобразования по сравнению с фильтром SiC с пристенным потоком. С помощью CDPF можно снизить температуру окисления сажи. В дополнение к окислению, происходящему в DPF, может быть реализовано при более низких температурах, степень конверсии может быть дополнительно увеличена с использованием биодизельного топлива или присадок к топливу (Lamharess et al.2011). Хотя регенерация является одной из основных проблем для сажевых фильтров, в настоящее время было проведено множество исследований и исследований для решения этой проблемы и снижения температуры окисления сажи.

Селективное каталитическое восстановление (SCR)

SCR — это еще одна технология для снижения выбросов NO x , специально улучшенная для автомобилей большой грузоподъемности. Из-за низкой температуры выхлопных газов он не получил широкого распространения в легковых автомобилях. Но в настоящее время она разрабатывается для легковых автомобилей, и некоторые производители легковых автомобилей, такие как Audi, используют эту технологию в своих автомобилях.SCR используется для минимизации выбросов NO x в выхлопных газах с целью использования аммиака (NH 3 ) в качестве восстановителя (Biswas et al. 2009). Вода и N 2 выделяются в результате каталитической конверсии NO x в выхлопных газах. Из-за токсического воздействия NH 3 и предотвращения горения NH 3 в теплой атмосфере перед реакцией NH 3 получают из водного раствора мочевины (Moreno-Tost et al. 2008; Hamada and Ханэда 2012).Этот раствор получают смешиванием 33% мочевины (NH 2 ) 2 CO и 67% чистой воды по массе.

Для достижения высокой эффективности количество NH 3 , хранящегося на катализаторе SCR, должно контролироваться как можно большим. Однако высокое хранение NH 3 может привести к образованию нежелательного аммиака. Проскока аммиака обычно предотвращают или сводят к минимуму путем точного впрыска мочевины на основе необходимого аммиака (Majewski and Khair 2006). Распыляя раствор на выхлопные газы, в результате испарения чистой воды твердые частицы мочевины начинают плавиться, и происходит термолиз, как показано в уравнении.(4) (Koebel et al., 2000; Yim et al., 2004).

$$ \ left ({{\ text {NH}} _ {2}} \ right) _ {2} {\ text {CO}} \ to {\ text {NH}} _ {3} + {\ текст {HNCO}} \ left ({\ text {thermolysis}} \ right) $$

(4)

NH 3 и изоциановая кислота образуются в реакции термолиза. NH 3 принимает участие в реакциях катализатора СКВ, в то время как изоциановая кислота превращается с водой в реакции гидролиза (Koebel et al. 2000).Кроме того, этим гидролизом получают NH 3 [Ур. (5)].

$$ {\ text {HNCO}} + {\ text {H}} _ {2} {\ text {O}} \ to {\ text {NH}} _ {3} + {\ text {CO} } _ {2} \, \ left ({\ text {гидролиз}} \ right) $$

(5)

Реакции термолиза и гидролиза протекают быстрее, чем реакции СКВ. Две молекулы аммиака образуются в молекулярной мочевине в результате реакций термолиза и гидролиза (Chi and DaCosta 2005). Эффективность реакций получения NH 3 из мочевины в значительной степени зависит от температуры выхлопных газов.Хотя температура плавления мочевины составляет 133 ° C, в различных исследованиях указано, что термолиз начинается при 143, 152, 160 ° C (Linde 2007; Oh et al. 2004; Sun et al. 2001; Schaber et al. 2004; Калабрезе и др., 2000). Хотя преобразование водного раствора мочевины в NH 3 начинается во время распыления инжектора, полное преобразование не завершается введением катализатора. Половина общего количества разложения мочевины до NH 3 получается до входа в катализатор.Таким образом, эффективность преобразования теоретически составляет 50% до входа в катализатор. Однако реализация реакции гидролиза в газовой фазе перед входом в катализатор увеличивает эффективность преобразования из-за температуры выхлопных газов (Koebel et al. 2000; Chi and DaCosta 2005). После термолиза и гидролиза химические реакции, происходящие в катализаторе СКВ, показаны ниже.

$$ 4 {\ text {NO}} + 4 {\ text {NH}} _ {3} + {\ text {O}} _ {2} \ to {\ text {4 N}} _ {2} + {\ text {6 H}} _ {2} {\ text {O}} $$

(6)

$$ 2 {\ text {NO}} + {\ text {2 NO}} _ {2} + {\ text {4 NH}} _ {3} \ to {\ text {4 N}} _ {2} + {\ text {6 H}} _ {2} {\ text {O}} $$

(7)

$$ 6 {\ text {NO}} _ {2} + {\ text {8 NH}} _ {3} \ to {\ text {7 N}} _ {2} + {\ text {12 H}} _ {2} {\ text {O}} $$

(8)

Скорость реакций SCR может быть указана как «7> 6> 8».Скорость реакции в уравнении. (7) выше, чем у других реакций. Реакция уравнения. (6) реализуется в отсутствие какого-либо катализатора окисления перед катализатором SCR, а именно выбросов NO x в форме NO. В случае использования DOC с большим размером и емкостью перед катализатором SCR, выбросы NO x превращаются в NO, и реакция по формуле (8) имеет место. Следовательно, скорость реакции снижается и реализуется снижение эффективности преобразования выбросов NO x .Реакция уравнения. (7) будет иметь место, если размер и количество загрузки катализатора окисления оптимизированы. Благодаря высокой скорости реакции конверсия выбросов NO x осуществляется эффективно. Соотношение NO: NO2 1: 1 показывает максимальную производительность SCR. По этой причине необходимо установить соотношение NO: NO2 примерно 1: 1 (Sluder et al. 2005; Devarakonda et al. 2008; Shost et al. 2008).

На рисунке 4 показана типичная система SCR с DOC. Катализаторы на основе цеолита и ванадия используются в системах СКВ.Температура имеет характерную роль при выборе катализатора. В то время как медь-цеолиты обладают лучшими низкотемпературными характеристиками, железо-цеолиты обладают лучшими высокотемпературными характеристиками (Hamada and Haneda 2012).

Рис.4

Типичная система SCR с DOC

Система

SCR может работать при температуре от 200 до 600 ° C. Реакции обычно начинаются при 200 ° C, а максимальная эффективность преобразования достигается при 350 ° C (Way et al. 2009). Температуры ниже 200 ° C вызывают появление цианистой кислоты, биочевины, меламина, амелида и амелина из-за реакций разложения раствора мочевины.Эти компоненты могут накапливаться в стенке выхлопной трубы и приводить к нежелательным результатам (Schaber et al. 2004). Чтобы предотвратить образование этих образований, распыление раствора мочевины начинается при температуре выхлопных газов выше 200 ° C. Кроме того, температуры выше 600 ° C вызывают возгорание NH 3 до реакции с выбросами NO x .

Исследования систем SCR были усилены для проектирования системы, системы доставки мочевины, катализатора, раствора для впрыска, давления впрыска и времени.

V 2 O 5 -WO 3 / TiO 2 , Fe-ZSM5, Cu-ZSM5 и Ag / Al 2 O 3 являются наиболее часто используемыми катализаторами, и многие исследования сосредоточены на этих типах катализаторов. Cu-PPH, CeO 2 -TiO 2 , Cu / Al 2 O 3 , NbCe и Fe-MFI — это другие типы катализаторов, которые становятся актуальными. Во многих исследованиях, проведенных на этих катализаторах, эффективность преобразования выбросов NO x была достигнута более чем на 90% (Shan et al.2012; Casapu et al. 2011; Oliveira et al. 2011). Катализаторы на основе TiO 2 , легированные вольфрамом с использованием ванадия в качестве активного компонента, являются наиболее применяемыми катализаторами для СКВ из-за их высокой активности даже при низкой температуре и высокой селективности по NO 2 в качестве продукта. Цеолит представляет собой другую основу, которая может использоваться вместо TiO 2 , и имеет некоторые отличия в эффективности преобразования NO x . В отличие от этих оснований, катализаторы Ag-Al 2 O 3 обладают относительно низкой активностью при низкой температуре выхлопных газов.

Качество впрыска мочевины и ее смешивание являются сложными и критически важными. Было проведено множество исследований для определения влияния качества капель мочевины на эффективность преобразования. Это показывает, что закачка мочевины является важным параметром эффективности преобразования. Это может повлиять на эффективность преобразования до 10%.

Хотя многие амины (метиламин, этиламин, пропиламин и бутиламин) были протестированы в качестве раствора для инъекций, никто не смог добиться эффективности раствора мочевины под названием AdBlue на мировых рынках (Stanciulescu et al.2010). Другие восстановители также были проверены на предмет замещения аммиака.

В системах СКВ вместо аммиака или мочевины в качестве восстановителя могут использоваться углеводороды (НС). Этот метод известен как углеводородный СКВ (УВ-СКВ), и по нему было проведено множество исследований. Из-за наличия углеводорода в выхлопных газах (пассивный режим) или в самом впрыскиваемом топливе (активный режим) его относительно просто применить к легковым автомобилям. В дизельных двигателях первичным углеводородом является дизельное топливо, но другие углеводороды, такие как этанол, ацетон и пропанол, могут вводиться в поток выхлопных газов, чтобы способствовать снижению NO x .Катализатор Ag-Al 2 O 3 является наиболее перспективным катализатором для HC-SCR.

По сравнению с решениями по контролю выбросов (EGR, LNT и SCR) для снижения выбросов NO x , в целом было показано, что SCR имеет высокую эффективность в преобразовании NO x . В отличие от технологии LNT, SCR непрерывно удаляет NO x через активный восстановитель на поверхности катализатора. В противном случае LNT имеет широкий диапазон рабочих температур и более низкую температуру обессеривания.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *