Menu

Акпп гидротрансформаторная – Гидротрансформатор — Википедия

Содержание

Гидротрансформатор АКПП, он же «Бублик», он же «Дыня»)) — DRIVE2

Недавно на работе привезли из ремонта «бублик» разрезанный, не подлежащий ремонту.
И я решил поделиться с вами фотографиями внутренностей, ну и собственно разобраться как он работает. На эту тему есть много информации в сети, но я как обычно постараюсь собрать её всю здесь в максимально понятном и доступном виде.
Сразу оговорюсь, все материалы взяты из различных источников в интернете и на их авторство я не претендую.

Итак начнем.
Что же вообще такое гидротрансформатор (далее ГДТ) и для чего он нужен?

Гидродинамический трансформатор («Гидротрансформатор» или «ГДТ») это герметично заваренный узел, передающий вращательный момент от Двигателя — к Автоматической трансмиссии при помощи двух вращающихся в масле турбин.
Еще одно свойство ГДТ (которое как раз таки и отличает гидротрансформатор от гидромуфты) это автоматическое изменение крутящего момента в зависимости от нагрузки и частоты вращения колес автомобиля.

Для полноты понимания данного процесса представьте себе два домашних вентилятора направленных друг на друга, если включить один из них, то он создаваемым потоком воздуха, приведет в движение и тот вентилятор, который выключен. Примерно тот же процесс происходит внутри ГДТ, только роль воздуха там выполняет масло.

Вот так обычно ГДТ выглядит снаружи:

А вот те самые турбинные колеса с лопастями

Реакторное колесо.

То есть по сути, этот узел заменяет собой сцепление, но тогда почему же не установить для связи двигателя и АКПП обычное сцепление? Если поставить обычное сцепление, то тогда нам неизбежно придется выключать его при остановке автомобиля (нажимать на педаль сцепления), дабы двигатель не заглох, тогда сводиться на нет все удобство от использования АКПП.

ГДТ же в свою очередь, на холостом ходу при включеной передачи и нажатой педали тормоза, ввиду отсутствия прямой механической связи, не дает двигателю заглохнуть.
То есть ведущее (насосное) колесо будет вращаться, а ведомое (турбинное, то которое соединено с выходным валом коробки) будет оставаться на месте.

С общим принципом работы разобрались, теперь давайте разберемся из каких частей состоит ГДТ, для чего они служат и как все это взаимодействует

Циркуляция масла в ГДТ

Гидротрансформатор состоит из двух лопастных машин — центробежного насоса, центростремительной турбины и расположенного между ними направляющего аппарата-реактора. Насос и турбина предельно сближены, а их колесам придана форма, обеспечивающая непрерывный круг циркуляции рабочей жидкости. В результате гидротрансформатор получил минимальные габаритные размеры и одновременно снижены потери энергии на перетекание жидкости от насоса к турбине. Насосное колесо связано с коленчатым валом двигателя, а турбина — с валом коробки передач. Тем самым в гидротрансформаторе отсутствует жесткая связь между ведущими и ведомыми элементами, а передача энергии от двигателя к трансмиссии осуществляется потоками рабочей жидкости, которая отбрасывается с лопаток насоса на лопасти турбины. Собственно, по такой схеме работает гидромуфта, которая просто передает крутящий момент, не трансформируя его величину. Чтобы изменять момент, в конструкцию гидротрансформатора введен реактор. Это также колесо с лопатками, однако оно жестко прикреплено к корпусу и не вращается (заметим: до определенного времени). Реактор расположен на пути, по которому масло возвращается из турбины в насос. Лопатки реактора имеют особый профиль, а межлопаточные каналы постепенно сужаются. По этой причине скорость, с которой рабочая жидкость течет по каналам направляющего аппарата, постепенно увеличивается, а сама жидкость выбрасывается из реактора в сторону вращения насосного колеса, как бы подталкивая и подгоняя его.

Отсюда сразу два следствия. Первое — благодаря увеличению скорости циркуляции масла внутри гидротрансформатора при неизменном режиме работы насоса (читай: двигателя, поскольку насосное колесо, как говорилось выше, жестко связано с коленвалом) крутящий момент на выходном валу гидротрансформатора увеличивается. Второе — при неизменном режиме работы насоса режим работы турбины изменяется автоматически и бесступенчато в зависимости от приложенного к валу турбины (читай: колесам автомобиля) сопротивления.
Поясним эти аксиомы на конкретных примерах. Допустим, автомобилю, который двигался по равнинному участку дороги, предстоит подъем в гору. Забудем на время про педаль акселератора и посмотрим, как отреагирует на изменение условий движения гидротрансформатор. Нагрузка на ведущие колеса увеличивается, а автомобиль начинает терять скорость. Это приводит к уменьшению частоты вращения турбины. В свою очередь уменьшается противодействие движению рабочей жидкости по кругу циркуляции внутри гидротрансформатора. В результате скорость циркуляции возрастает, что автоматически приводит к увеличению крутящего момента на валу турбинного колеса (аналогично переходу на низшую передачу в механических КПП) до тех пор, пока не наступит равновесие между ним и моментом сопротивления движению.

По аналогичной схеме работает автоматическая трансмиссия и при старте с места. Только теперь самое время вспомнить про педаль газа, нажатие на которую увеличивает обороты коленчатого вала, а значит, и насосного колеса, и про то, что сначала автомобиль, а следовательно, и турбина находились в неподвижном состоянии, но внутреннее проскальзывание в гидротрансформаторе не мешало двигателю работать на холостом ходу (эффект выжатой педали сцепления). В этом случае крутящий момент трансформируется в максимально возможное число раз.

Когда скорость автомобиля достигает определенной отметки, то в дело вступает блокировка ГТД, при помощи фрикционных пластин, она прижимает турбинное колесо к корпусу ГДТ и тогда двигатель с АКПП становиться соединен жесткой механической связью и передает 100% крутящего момента АКПП.

Прочитав все вышесказаное закономерно возникает вопрос: зачем же к гидротрансформатору присоединяют КПП, если он сам способен изменять величину крутящего момента в зависимости от нагрузки на ведущие колеса?
Увы, гидротрансформатор может изменять крутящий момент с коэффициентом, не превышающим 2-3,5. Как ни крути, а такого диапазона изменения передаточного числа недостаточно для эффективной работы трансмиссии. К тому же нет-нет да и возникает надобность во включении заднего хода или полном разъединении двигателя от ведущих колес.

Ну и в заключение видео, которое даст полное понимание работы ГДТ

Спасибо за внимание.

www.drive2.ru

Гидротрансформатор АКПП «Бублик»- Устройство. Принцип работы. Основные проблемы

Гидротрансформатор выполняет важную роль в автоматической коробке передач, он занимает пространство между корпусом силового агрегата и трансмиссией авто. Гидротрансформатор в АКПП работает, как муфта сцепления – передает вращение от работающего мотора непосредственно на автомат. Внешнее сходство гидротрансформатора АКПП с характерной формой тора позволяет называть данное устройство бубликом. Гидротрансформатор автоматической коробки передач – составная часть гидросистемы трансмиссии. Управление его работой осуществляется при помощи специального гидроблока.

Устройство гидротрансформатора коробки-автомат

Основное предназначение гидротрансформатора АКПП – это обеспечение плавного и своевременного перехода автоматической трансмиссии с одной передачи на другую. Первые образцы гидротрансформаторов для КПП были созданы в ХХ веке. С целью модернизации устройства ГТР, применялись новые технологии. Гидротрансформаторы АКПП становились более сложными по конструкции.

Помимо обеспечения плавности перехода на различные передачи, новые гидротрансформаторынаделены дополнительной функцией сцепления. При этом в момент переключения скоростей (понижающей либо повышающей) гидротрансформатор размыкает непосредственную связь двигателя внутреннего сгорания с коробкой передач. Гидротрансформатор АКПП частично принимает на себя силу крутящего момента. Именно это обеспечивает уникальную плавность при переключении скоростей.

В отличие от механической КПП, в автомате передача крутящего момента осуществляется не под воздействием механического трения между фрикционными дисками гидротрансформатора АКПП. Соединение двигателя и автоматической коробки передач происходит, благодаря давлению трансмиссионной жидкости. Срабатывает эффект вращения мельницы от ветра.Устройство гидротрансформатора обеспечивает сохранение целостности автоматической коробки и защиту от механических повреждений за счет важной функции – амортизации.

Фрикционные диски гидротрансформатора АКПП образуют сборный пакет, состоящий из деталей мобильного и неподвижного типов. При включении передачи в магистралях создается необходимое давление. При помощи специального устройства – гидравлического толкателяфрикционы гидротрансформатора АКПП взаимно сжимаются, включается заданная скорость.

Как действует гидротрансформатор АКПП

Современный гидротрансформатор блокируется при сравнивании скоростей оборотов валов – входного и выходного. На практике это случается после развития скорости транспортного средства, равной более 70 км/час. Тормозная накладка поршня гидротрансформатора замедляет вращение масляной жидкости. Валы двигателя внутреннего сгорания и коробки передач взаимно фиксируются. Силовой агрегат и трансмиссия образуют единое целое, происходит синхронное вращение валов.

Когда гидротрансформатор полностью передает вращение на АКПП от силового агрегата, потери мощности равны нулю. Данная функция гидротрансформатора напоминает действие педали механизма сцепления на коробке перемены передач механического типа.

Во время работы гидротрансформатора кинетическая энергия двигателя расходуется на движение масла, которое разогревается от трения. При взаимном касании фрикциона со стальным диском происходит интенсивное истирание накладки, фрагменты износа в виде пыли попадают в масляный состав гидротрансформатора. Стабильность работы автоматической трансмиссии и ходовой части находится в прямой зависимости от степени износа фрикционных накладок и смазочного материала.

Описание конструкции гидротрансформатора АКПП

Гидротрансформатор АКПП передает мощность от двигателя внутреннего сгорания непосредственно на узлы и детали автоматической трансмиссии. Принцип работы АКПП –гидротрансформатор не только передает вращение на коробку передач, он эффективно погашает амплитуду вибраций и сводит к минимуму силы механических ударов со стороны маховика.

Составные части гидротрансформатора:

  • Насосное и турбинное колеса.
  • Блокировочная муфта.
  • Насос.
  • Реакторное колесо.
  • Муфта свободного хода.

Все рабочие механизмы размещены в корпусе устройства гидротрансформатора:

  • насос напрямую работает от коленвала движка;
  • турбина сопряжена с шестеренками АКПП;
  • реакторное турбинное колесо – с турбиной и насосом;
  • в гидротрансформатор вставлены уникальные лопасти оригинальной конфигурации;
  • масло движется по внутреннему пространству коробки, благодаря гидротрансформатору;
  • назначение блокировочной муфты – блокировать гидротрансформатор в заданных режимах;
  • муфта свободного хода вращает реакторное колесо в противоположном направлении.

Принцип работы гидротрансформатора

Работа «бублика» осуществляется по замкнутому циклу. Смазочное вещество является главным рабочим материалом гидротрансформатора. Его вязкостные характеристики существенно отличаются от свойств масла, используемого в МКПП. При работе гидротрансформатора АКПП смазочное вещество под воздействием насосного колеса принудительно подается на лопатки реактора и турбины. Лопатки создают дополнительные завихрения и ускоряют движение масла,скорость вращения рабочих колес гидротрансформатора существенно падает, момент соответственно возрастает.

Ускорение вращения коленвала способствует выравниванию скоростей колеса насоса и турбины гидротрансформатора. При большой скорости автомобиля гидротрансформатор только передает крутящий момент по аналогии с работой гидромуфты. При блокировке ГТР вращение передается напрямую от силового агрегата на АКПП.

При переходе на другую передачу элементы гидротрансформатора разъединяются. Процесс сглаживания угловых скоростей возобновляется до окончательного выравнивания вращенияработающих турбин.

Функционирование гидротрансформатора происходит под постоянным контролем электронного блока управления ЭБУ. Датчики, установленные на гидротрансформаторе, подают сигналы на ЭБУ. Исходя из поступающих данных, формируются выходные управляющие команды. Если электронные приборы сообщают об ошибке, это означает, что возникли какие-то проблемы с ГТР.

Важно: Признаки неисправностей гидротрансформатора АКПП могут проявляться как в механической, так и электронной частях механизма. При экстренной остановке коробки-автомата необходимо провести тщательную диагностику с последующим ремонтом элементов гидротрансформатора.

На представленной схеме показано в разрезе, из чего состоит гидротрансформатор автоматической коробки перемены передач.

Спираль справа – схематическое изображение траектории движения масла внутри корпуса гидротрансформатора.

Здесь изображен принцип работы гидротрансформатора в различных режимах.

Признаки неисправности гидротрансформаторов АКПП

Гидротрансформатор занимает лидирующие позиции по надежности среди различных узлов и деталей АКПП. Он полностью вырабатывает заявленный эксплуатационный срок. Однако, это не означает, что ГТР вечен. С помощью характерных симптомов опытные водители могут определить место возможных поломок в гидротрансформаторе и автоматической коробке передач.

Признаки неисправности гидротрансформатора:

  1. Возникновение характерного звука (шуршащего, механического) при переключении скоростей. Этот малозаметный звук уходит, когда увеличиваются обороты, и машина ускоряется. Данный симптом указывает на деформации опорных игольчатых подшипников гидротрансформатора.
  2. При громком стуке металла нужно проверить состояние лопастей и колеса гидротрансформатора в сборе.
  3. Вибрации коробки передач на скорости 60 – 90 км/час (причина – неравномерное истирание фрикционов системы блокировки).
  4. Загрязнение масла (запах гари, темный оттенок, густая консистенция).
  5. Перегрев гидротрансформатора.
  6. Засорение клапана гидроблока.
  7. Снижение уровня трансмиссионного масла.
  8. Проблемы с динамикой машины (обгонная муфта нуждается в замене).
  9. Неожиданная остановка транспортного средства означает, что повреждены шлицы на турбинном колесе гидротрансформатора. При этом требуется установить новые шлицы или полностью менять деформированное колесо на новый механизм.
  10. Глохнет двигатель при переходе на другую передачу. Здесь виновата управляющая автоматика.

Появившиеся признаки и неполадки в гидротрансформаторе АКПП игнорировать не рекомендуется. Если вовремя не заменить изношенный фрикцион блокировки, гидротрансформатор начнет чрезмерно перегреваться, выходной вал коробки передач – вибрировать, масляный насос преждевременно выйдет из строя. Соответственно, прекратится подача масла в гидроблок и к пакетам сцепления АКПП.

Совет: При смене масляного фильтра рекомендуется производить полную замену масла в автоматической коробке передач и двигателе внутреннего сгорания одновременно. В случае, когда на контрольном щупе замечены следы пыли алюминия, следует проверить муфту свободного хода, которая изготовлена из данного материала, а также степень выработки торцовой шайбы.

Если на остановке при работающем моторе остро ощущается запах оплавленного пластика, это свидетельствует о чрезмерном перегреве гидротрансформатора. Основная причина повышения температуры ГТР – снижение объема смазочного материала (эффект масляного голодания гидротрансформатора и автоматической коробки передач). Охлаждающая система автоматической коробки передач тоже часто отказывает в работе. Причина дефекта СО кроется в чрезмерной засоренности теплообменника гидротрансформатора. После замены масла и тщательного обследования системы охлаждения неприятный запах гидротрансформатора улетучится.

Ремонт ГТР

Для многих автовладельцев ремонт гидротрансформатора АКПП является сложной процедурой.Не все люди обладают необходимыми знаниями, свободным временем, желанием, чтобы качественно восстановить функции гидротрансформатора своими руками. Самая большая сложность в ремонте гидротрансформатора состоит в его демонтаже с автомобиля. Профессиональные механики обладают набором специальных инструментов и приспособлений, чтобы благополучно снять гидротрансформатор с коробки передач.

Непосредственный ремонт гидротрансформатора АКПП начинается с механического разрезания корпуса на токарном станке и внимательной диагностики состояния каждого механизма. В процессе ремонта гидротрансформатора необходимо заменить следующие элементы:

  • корпус бублика;
  • сальники;
  • уплотнительные кольца.

Перед разрезанием и диагностикой демонтированного гидротрансформатора рекомендуется слить масло в подготовленный тазик, а также тщательно промыть фрикционы и другие составляющие устройства.

Важно: Кольца и уплотнительные сальники гидротрансформатора необходимо менять на новые детали, даже при кажущемся удовлетворительном их состоянии. Во избежание протечек смазочного материала, устанавливать старые уплотнения категорически не рекомендуется.

Замена гидротрансформатора – лучшее решение. Однако, подавляющее большинство владельцев авто склоняются к тому, чтобы не покупать новый корпус или гидротрансформатор АКПП в сборе. В этом случае производится сваривание частей корпусной детали. При этом соблюдается главное условие: обеспечение абсолютной герметичности сварного шва корпуса гидротрансформатора. После установки отремонтированного устройства на автоматическую коробку передач производится балансировка этого бублика в сборе.

Мероприятие по замене гидротрансформатора АКПП сопровождается частичной или полнойзаменой трансмиссионного масла во всей системе.

Случаются поломки гидротрансформатора АКПП, которые не подлежат восстановлению. Автомеханики рекомендуют установить новый гидротрансформатор взамен поврежденного механизма.

Совет: Опытные мастера утверждают, ремонт гидротрансформатора автоматической коробки передач не отличается большой сложностью. Однако, перед самостоятельным проведением восстановительных работ в условиях гаража автовладельцам нужно внимательно ознакомиться с особенностями конструкции гидротрансформатора, методами диагностики, ремонта и пр. Для успешного проведения ремонта гидротрансформатора своими руками не помешает обзавестись специальными инструментами и необходимым оборудованием.

Чтобы увидеть, как производится ремонт гидротрансформатора АКПП на одном из специализированных предприятий, предлагается ознакомиться с материалами видео ролика, посвященного данной теме https://www.youtube.com/watch?v=hNXUsosCFh5.

Что в гидротрансформаторах ломается чаще и быстрее всего

Износ тормозной прокладки фрикциона – наиболее часто является причиной, приводящей к ремонту гидротрансформатора:

  1. Изношенная прокладка удаляется.
  2. Место ее расположения тщательно очищается от засохшего клеевого состава.
  3. Наносится новый клеевой состав.
  4. Устанавливается новая фрикционная прокладка.

Замена прокладки гидротрансформатора необходима для обеспечения герметичности системы и предотвращения утечек трансмиссионного масла. Если ее не заменить вовремя, возникают неприятные последствия:

  • элементы износа в виде мелких кусочков заполняют масляные каналы в гидроплите;
  • масляное голодание гидротрансформатора;
  • рост температуры;
  • повышенный износ сальников, втулок;
  • проскальзывание стертой муфты блокирования;
  • выход из строя электромагнитных соленоидов и электронных приборов;
  • деформации фрикционных накладок гидротрансформатора;
  • преждевременное разрушение сопряженных металлических узлов и деталей вследствие
  • вибрационных колебаний изношенных муфт (старение железа).

Прочие поломки гидротрансформаторов АКПП

Автомеханики сервисных компаний в процессе диагностики ГТР часто выявляют дополнительные дефекты в гидротрансформаторах автоматических коробок передач:

  1. Деформации и поломка лопастей гидротрансформатора.
  2. Износ ступицы вследствие работы при повышенных температурах.
  3. Нарушение блокировки, заклинивание муфты обгона.
  4. Разрушение подшипников.
  5. Прогорание корпуса гидротрансформатора АКПП.

Почти все перечисленные дефекты выявляются только при вскрытии корпусной детали гидротрансформатора. После определения поломок производится их замена на новые рабочие элементы.

Если ремонт гидротрансформатора производится в условиях специализированных мастерских, оснащенных современным оборудованием, технологическими приспособлениями, оригинальными запчастями, восстановленный гидротрансформатор будет служить в течение длительного срока. Время эксплуатации отремонтированного механизма составляет около 80% от первоначального ресурса. Частичная либо полная замена трансмиссионного масла также входит в перечень ремонтных услуг. Длительность ремонта гидротрансформатора автоматической коробки передач в среднем занимает три рабочих дня.

Рекомендации по обслуживанию и эксплуатации ГТР автоматических коробок передач

По мнению квалифицированных специалистов, поломанный гидротрансформатор невозможно полноценно восстановить без разрезания корпуса.

При самостоятельном обслуживании бублика в гаражных условиях нужно избегать применения концентрированных растворителей и прочих чистящих, моющих средств. Это вызвано тем, что структура резиновых уплотнителей гидротрансформатора быстро разрушается под воздействием агрессивных веществ.

motoran.ru

Проверяем трансформатор АКПП самостоятельно

Гидротрансформатор (гидродинамический трансформатор) устанавливается на автомобилях с автоматической коробкой передач и служит для передачи крутящего момента с коленчатого вала двигателя на ведущий вал коробки передач и трансформации крутящего момента (примерно в 2-3 раза). Он освобождает водителя от постоянного использования педали сцепления при переключении передач и при резком торможении автомобиля, также отсутствует постоянная механическая связь между двигателем и коробкой передач. Связь поддерживается гидродинамическая, осуществляемая жидкостью, подаваемой масляным насосом, турбинным и насосным колёсами. Гидротрансформатор обеспечивает плавное переключение передач (снимает ударные нагрузки), плавный разгон скорости (не допускает пробуксовки колёс).

Неисправности гидротрансформатора.

Гидродинамический трансформатор включает: турбинное колесо, насосное колесо, реактор, механизм блокировки, обгонную муфту, подшипники, масляные уплотнители, детали корпуса. Этот трансформатор закрытого типа, сварной конструкции, все детали находятся внутри герметичного корпуса. Масло закачивается масляным насосом в полость корпуса, обеспечивает постоянную его циркуляцию, за счёт чего достигается отвод тепла (охлаждение) деталей гидродинамического трансформатора, вынос механических и абразивных частиц, образующихся в результате износа трущихся деталей, а также смазка деталей.

Насосное колесо имеет жёсткую связь с коленчатым валом двигателя. Турбинное колесо через вал связано с АКПП. Между ними устанавливается колесо (реактор) с обгонной муфтой, обеспечивающее вращение только в одном направлении.

При запуске двигатель начинает раскручиваться. Одновременно с коленчатым валом раскручивается насосное колесо. Оно захватывает своими лопатками масло, которое под действием центробежных сил выталкивается на периферию. Там масло закручивается и попадает на лопатки турбинного колеса. Обладая избыточной скоростью, жидкость действует на лопатки турбинного колеса, начиная постепенно его раскручивать.

С увеличением оборотов двигателя, увеличиваются обороты насосного колеса. Жидкость получает большее ускорение – соответственно, увеличиваются обороты турбинного колеса – проходя его лопатки, получает дополнительное ускорение и попадает на лопатки реактора. Реактор, в связи с тем, что его лопатки установлены под определённым углом, корректирует направление жидкости строго на лопатки насосного колеса. Насосное колесо получает дополнительное ускорение, и процесс повторяется.

При работе двигателя в режиме малого газа и при небольшом перемещении педали акселератора, турбинное колесо обладает достаточным крутящим моментом для того, чтобы машина начала движение. Во время движения автомобиля рабочий процесс в гидротрансформаторе проходит аналогично, но до тех пор, пока обороты турбинного колеса не превысят обороты насосного колеса. Благодаря наличию обгонной муфты начинает раскручиваться реактор, прекращая направлять жидкость на лопатки насосного колеса, снимая дополнительное увеличение оборотов. Вступает в работу механизм блокировки.

При помощи поршня блокировочное кольцо фрикционным слоем прижимается к кольцевой поверхности, обеспечивая жёсткую связь насосного и турбинного колёс. Благодаря такой работе, двигатель не расходует лишнего топлива на преодоление внутренних потерь. Работа гидродинамического трансформатора постоянно находится под контролем бортового компьютера и автоматически управляется электронным блоком управления.

Конструкторские бюро и инженеры постоянно работают над усовершенствованием гидротрансформатора, повышая его надёжность. Однако в процессе эксплуатации возникают неисправности, требующие текущего ремонта или замены целого агрегата. К таким неисправностям приводят нарушения технологии изготовления, применение материалов, не соответствующих техническим условиям, наличие остаточных напряжений в местах сварки (из-за местного перегрева приводит к обрыву лопаток), некачественное приклеивание фрикционного слоя (приводит к преждевременному разрушению).

Эксплуатационные неисправности: применение масла, не соответствующего ТУ, несвоевременная замена масла и масляного фильтра, недоброкачественный контроль чистоты масла и масляного фильтра, несвоевременная замена деталей, пришедших в негодность. К нарушениям в работе гидродинамического трансформатора могут приводить различного рода механические повреждения, нарушения герметизации, а также сбой в работе электронного блока управления.

Проверка гидротрансформатора АКПП.

Для проверки работоспособности гидротрансформатора выполняется первичная диагностика, углублённая диагностика и анализ косвенных признаков неисправности специалистами СТО, демонтаж, разборка и подетальная диагностика с последующим ремонтом и инструментальной проверкой. При подозрении на нарушения работы гидродинамического трансформатора, водитель выполняет первичную диагностику, сбор информации, первичный анализ и заключение.

Проверить перед запуском двигателя количество и чистоту масла в КПП (на щупе или каплей масла на белой бумаге), прогреть двигатель и выполнить проверку повторно. При работающем двигателе обратить внимание на отсутствие посторонних шумов (внимательно прослушать в районе АКПП), а также запахов, связанных с перегревом трансформатора. Проверить, как ведёт себя машина во время включения/выключения передачи, разгона, убедиться, что двигатель не глохнет во время переключения передач, отсутствует вибрация, стуки в работе АКПП.

Проверить время разгона машины до 100 км/ч, убедиться, что время разгона находится в пределах допустимого условиями по технической эксплуатации данного автомобиля. При возникновении проблем с маслом необходимо проверить отсутствие его подтекания в районе КПП, при необходимости дозаправить или произвести замену масла и фильтра. Если причина устранилась, можно продолжать эксплуатацию машины, держа под постоянным контролем работу ГДТ.

Если же при выполнении контрольных проверок причина не устранилась, а замена масла и фильтра результата не дала, необходимо обратиться на СТО. Специалисты после подтверждения косвенных неисправностей снимают ГДТ, проводят его разборку, подетальную диагностику и ремонт.

Что нужно для проверки гидротрансформатора АКПП.

Для оценки работоспособности и определения поломки ГДТ необходим большой опыт в проведении этих работ. Специалисты снимают коды, проверяют давление масла, проводят тесты, снимают поддон, проверяют на отсутствие крупных металлических частиц, грязи, абразива, примесей от разрушения фрикционной накладки. Для выполнения перечисленных работ специальное оборудование не требуется. Необходим штатный инструмент для выполнения демонтажно-монтажных работ.

Для разборки гидротрансформатора необходим высокоточный токарный станок для снятия сварного шва и разборки. Далее выполняется тщательный визуальный осмотр, промывка деталей, очистка их от грязи, абразивных веществ, нагара, кусков разрушенного фрикциона. Осматриваются детали на отсутствие цветов побежалости (следов перегрева). Для обнаружения трещин в местах крепления лопаток ступицы могут применяться увеличительные линзы, 10-20 кратного увеличения, а также специальные проникающие окрашенные жидкости.

Необходима печь для выполнения приклейки фрикционной накладки, станок для выполнения выравнивания поверхности пластин. Все подшипники, обгонная муфта проверяются на отсутствие радиального люфта, механических повреждений, при необходимости проводится их замена. Для выполнения сварочных работ применяется специальный сварочный аппарат-автомат.

После сборки и сварки выполняется проверка герметичности установкой, имеющей ванну с жидкостью и специальное приспособление для подвода воздуха. Для проверки соосности требуется соответствующее приспособление, а также установка для проверки биения и основных размеров. Для проверки и регулировки балансировки необходим балансировочный станок. Набор этих станков, установок и приспособлений сводит до минимума возможность выполнения ремонта своими руками. Они имеются на СТО или в специальном механическом цеху, в котором выполняется диагностика и ремонт гидродинамических трансформаторов.

Подписывайтесь на наши ленты в Facebook, Вконтакте и Instagram: все самые интересные автомобильные события в одном месте.

Была ли эта статья полезна?
Да Нет

auto.today

Проблемы гидротрансформатора АКПП: основные неисправности

Гидротрансформатор (ГДТ) – агрегат, выполняющий функцию связующего звена между АКПП и двигателем автомобиля. Гидротрансформатор предназначен для плавного бесступенчатого изменения крутящего момента и передачи его на ведущие колеса автомобиля. 

Гидромеханическая АКПП с гидротрансформатором является надежным и проверенным временем решением, однако со временем могут возникать различные неполадки. При этом важно понимать, за что отвечает гидротрансформатор в АКПП, а также какие проблемы возникают с данным узлом во время эксплуатации.

Читайте в этой статье

За что отвечает гидротрансформатор в автомат коробке

Гидротрансформатор характерен для двух типов коробок передач: АКПП и вариатор CVT. Фактически, гидротрансформатор АКПП является сцеплением, соединяя трансмиссию и двигатель. При этом ГДТ преобразует крутящий момент, обеспечивая плавность переключения передач.

Современные гидротрансформаторы под управлением ЭБУ «следят» за давлением рабочей жидкости, частотой и правильностью вращения лопастей, а также другими параметрами.

Что касается устройства гидротрансформатора, корпус ГДТ смонтирован в картере гидромеханической передачи и получает привод на шестерни согласующего редуктора. Гидротрансформатор включает в себя четыре основных элемента.

  • Насосное колесо, соединенное с шестерней и получающее привод от согласующего редуктора и корпуса гидротрансформатора.
  • Турбинное колесо, жестко закрепленное на фланце турбинного вала, являющиеся одновременно ведущим элементом планетарной коробки передач.
  • Статор, он же реактор, соединенный с осью, неподвижно закрепленной на картере через обгонную муфту свободного хода. Муфта имеет наружную обойму с фигурными заклинивающими пазами, к которым пружинками поджимаются ролики. Наружная обойма муфты жестко связана с реактором и вращается с ним как одно целое. Внутренняя обойма муфты установлена  на шлицах оси и подвижно закреплена в картере гидромеханической передачи.
  • Механизм блокировки (фрикционные блокировки ГДТ). Этот узел состоит из корпуса, поршня с уплотнительными кольцами, крышки образующим вместе с поршнем полость заполняемую  маслом, ступицы жестко соединенной  с колесом и валом, двух ведущих стальных и трех ведомых металлокерамических дисков и корпуса, жестко скрепленного болтами с одной стороны с насосным колесом, а с другой с крышкой. Корпус имеет внутренние зубья для установки  ведущих дисков. Во фрикционе ведущие и ведомые диски  укладываются через один, причем первым к опорной поверхности укладывается  диск с металлокерамическим покрытием, имеющим внутренние зубья.    

При работе гидротрансформатора лопаточная система реактора насосного и турбинного колес образует внутренний круг циркуляции, который заполнен маслом (жидкость ATF).

 ГДТ работает в трех режимах:

  • режим трансформации крутящего момента;
  • режим гидромуфты;
  • режим блокировки;

Режим трансформации используется при старте машины с места, при разгоне или подъеме, а также при движении по бездорожью. При этом режиме работы ГДТ реактор неподвижен. Насосное колесо своими лопатками направляет потоки масла на лопатки турбинного колеса и приводит его в движение, но с относительно меньшей скоростью.

На выходе из лопаток турбинного колеса  потоки масла ударяются в неподвижные лопатки реактора. За счет реактивной силы потоков масла крутящий момент увеличивается.

В режиме гидромуфты, вследствие уменьшения нагрузки на турбинном валу, частота вращения турбинного и  насосного колес выравнивается. Реактор начинает вращаться в одном направлении  с турбинным и насосным колесами. Режим гидромуфты используется при движении автомобиля по ровным дорогам с определенной  скоростью.

Режим блокировки включается, как правило, после режимов гидромуфты  на всех передачах.  При переключении передач блокировка автоматически отключается.  В режиме блокировки  в полость бустера фрикционной блокировки  поступает жидкость АТФ.

Жидкость перемещает поршень, сжимает пакет дисков, жестко соединяя между собой турбинное и насосное колесо. В результате колеса начинают вращаться как одно целое. Режим блокировки включается при движении автомобиля по ровным дорогам  в целях уменьшения расхода топлива, на крутых спусках и т.д.    

Основные неисправности и ремонт гидротрансформатора АКПП

Итак, проблемы гидротрансформатора АКПП могут возникать по разным причинам. Первые признаки неисправности  гидротрансформатора: 

Что касается причин неисправности гидротрансформатора АКПП и способов их решения, в списке основных следует выделить:

  • Износ подшипников (опорных или промежуточных, между турбиной и насосом). При работе трансмиссии автомобиля без нагрузок  слышен небольшой механический шум, который  по мере увеличения скорости  автомобиля пропадает.  Проблему устраняют разборкой, дефектовкой или заменой изношенных подшипников.
  • Потеря свойств трансмиссионного масла, загрязнение масляного фильтра. При движении автомобиля на высоких скоростях появляются вибрации, которые со временем увеличиваются практически во всех режимах движения автомобиля. Неисправность устраняют путем замены масляного фильтра и трансмиссионного масла.

    Износ обгонной муфты. Перестает работать реактор гидротрансформатора, вследствие чего увеличение крутящего момента не происходит и, соответственно, падает динамика набора скорости. Неисправность устраняют заменой обгонной муфты.

  • Обрыв шлицевого соединения турбинного колеса с валом АКПП. Автомобиль прекращает движение, поскольку крутящий момент от ДВС на коробку просто не передается. Проблему решают путем восстановления шлицевого соединения или замены гидротрансформатора.
  • Разрушение лопастей колес или реактора. Во время движения автомобиля характерно появление громкого металлического скрежета и стука. В этом случае проблему решают путем  замены поврежденных составляющих или всего узла в сборе.
  • Перегрев. Эта проблема может возникнуть из-за так называемого «масляного голодания», либо по причине засорения системы охлаждения АКПП. В этом случае требуется очистка радиатора, фильтров. Также необходима полная замена трансмиссионной жидкости.

Что в итоге

С учетом того, что гидротрансформатор технически состоит из целого ряда комплектующих, как и в случае с другими механическими узлами автомобиля с ГДТ также могут возникнуть проблемы.

При этом данный узел связывает ДВС и АКПП, а также передает крутящий момент на коробку. По этой причине неисправности гидротрансформатора напрямую связаны с корректной работой автоматической трансмиссии автомобиля.

Еще важно понимать, что гидротрансформатор является дорогостоящим элементом. Это значит, что появление признаков  поломки гидротрансформатора или сбои в его работе являются поводом для проведения диагностики АКПП. В противном случае игнорирование проблемы может привести как к полному выходу из строя самого гидротрансформатора, так и к повреждениям АКПП. 

Читайте также

krutimotor.ru

Коробка автомат: гидротрансформатор плюс планетарный редуктор, что получится?

Здравствуйте дорогие читатели и любители автомобилей! Сегодня в статье пойдет речь о системе которая позволяет упростить жизнь водителю взяв на себя заботу по переключению передач. Такая трансмиссия называется автоматическая коробка передач принцип работы которой мы сегодня и рассмотрим.

В конце материала Вы уже не будете бояться таких непонятных слов как гидротрансформатор и планетарный механизм. Также мы рассмотрим режимы работы и нюансы эксплуатации.

История создания АКПП

С момента создания автомобиля инженеры бились над задачей упрощения органов управления. Чтобы сделать более дружелюбным для человека процесс смены передач, было изобретено несколько, сначала не связанных между собой механизмов. А именно:

  1. Планетарный механизм;
  2. Гидротрансформатор.

Первый пункт нашего списка начали применять еще на легендарных автомобилях Ford T в 1908 году. Но планетарный механизм применяемый там был чисто механическим, управлялся человеком.

 

 

Гидротрансформатор так же был изобретен в США компанией “Крайслер”. Именно она начала вести в конце 30-ых годов разработки по применению гидромуфт в автомобилях.

В то время было много дерзких и интересных решений, но одни были ненадежными а другие слишком дорогими. В итоге, мы пришли к тому что сейчас присутствует на рынке автомобилестроения.

АКПП и ее основные узлы

Абревиатура АКПП означает автоматическая коробка переключение передач. Иногда ее называют классическая гидротрансформаторная коробка передач, так как в последнее время автоматическими коробками стали называть системы на основе вариатора и роботизированной коробки передач.

Кроме гидротрансформатора к основным узлам можно отнести планетарный механизм, систему масляного управления и систему фрикционов.

Но перед тем как разбираться с устройством считаю необходимым пояснить для чего же нужна коробка передач. А необходимость ее вызвана работой двигателя в довольно узком режиме оборотов. Холостой ход это около 700 оборотов в минуту а максимальные обороты близки к 7000, то есть разница всего в 10 раз. К примеру, если при минимальных оборотах будет скорость 5 км/ч тогда максимальная скорость не превысит 50 км/ч, согласитесь это несерьезно.

Итак, вернемся к нашей теме и разберемся сначала с гидротрансформатором. Он состоит из следующих компонентов:

  • насосное колесо;
  • турбинное колесо;
  • статорное колесо.

В данной системе двигатель создает вращательное движение которое передается на насосное колесо что находится в корпусе заполненном специальным маслом.

В корпусе размещается и турбинное колесо, оно ловит масло от насосного и начинает передавать крутящий момент на планетарный механизм возвращая масло через статорное колесо обратно на насос.

Само же статорное колесо при большой разнице оборотов между насосом и турбиной стоит неподвижно разгоняя масло увеличивая давление в системе повышает крутящий момент в несколько раз.

При выравнивании оборотов, статорное колесо разблокируется и вращается вместе с насосным и турбинным колесом уменьшая сопротивление маслу что повышает эффективность системы.

Но это не устраняет проскальзывания масла между насосом и турбиной. Поэтому на высоких скоростях автомобиля блокируется работа гидротрансформатора, двигатель при помощи специальной муфты соединяется с планетарной коробкой передач напрямую.

Планетарная коробка передач состоит из планетарных редукторов, ленточных и фрикционных механизмов, а также блока управления.

Планетарный редуктор можно представить как большую шестерню (кольцевая) в которой как планеты размещены меньшие шестерни (сателлиты) связанные водилом и в самом центре находиться еще одна шестерня (солнечная).

Передаточное отношение меняется в зависимости от того какие шестерни в данный момент вращаються. Подтормаживанием шестерен заведуют ленточные и фрикционные механизмы. А блок управления руководит всей этой системой через масляные каналы получая информацию от всевозможные датчиков (скорости, нагрузки, режима селектора и т.д.)

Режимы работы автоматической трансмиссии

Режимы автоматической коробки передач выбираются водителем с помощью рычага. На данный момент устоялась система PRND, где каждая буква соответствует своему режиму работы автоматики.

P — это режим когда специальный тормоз удерживает выходной вал коробки передач от прокручивания, нужен для запуска двигателя и удержании его на неровной поверхности.

Положение R (реверс) предоставляет возможность двигаться задним ходом.

Режим N это нейтраль, можно запускать двигатель и буксировать автомобиль.

Буква D обозначает положение селектора при котором происходит автоматическая смена передач как в сторону повышения так и на понижение.

Также на современных коробках передач есть переключатель алгоритмов работы трансмиссии. В экономичном положении машина старается побыстрее перейти на повышение передачи для экономии топлива. В спортивном же наоборот, держит мотор на высоких оборотах, что бы реализовать при необходимости максимальную мощность двигателя.

Для зимних условий есть кнопка включение начала движения со второй передачи. А чтобы резко ускориться включается режим “Kickdown”, он сбрасывает несколько передач.

Так же присутствует имитация ручного управления «Типтроник», когда водитель принудительно задает желаемую передачу.

Нюансы эксплуатации

В заключении хочется отметить, что при всех современных ухищрениях расход топлива у них все равно остается больше на 10 — 15% в сравнении с механическими коробками.

Зато двигатель находиться в более благоприятных условиях и защищен от случайного включение не той передачи.

Буксировку с автоматической трансмиссией можно осуществлять на небольшие расстояния, примерно до 50 км. Плюс к этому такой автомобиль нельзя завести с “толкача”.Но это не умаляет ее достоинств, что и демонстрируют покупатели. Все больше и больше автомобилей оснащаются данной трансмиссией.

Надеюсь Вам было интересно!

Пожалуйста подписывайтесь на блог и рекомендуйте своим друзьям в социальных сетях материалы сайта.

Если конечно не в тягость)))

auto-ru.ru

Ремонт гидротрансформатора АКПП своими руками – это просто + Видео » АвтоНоватор

Информация для тех автолюбителей, которые хотят самостоятельно, без обращения за помощью в автотехцентры определить неисправность и произвести ремонт гидротрансформатора АКПП – важного элемента автоматической трансмиссии.

Что представляет собой гидротрансформатор АКПП – фото и описание

Эта лопастная система позволяет передавать крутящий момент от ДВС к КП. Кроме того, она дает возможность без участия водителя модифицировать частоту вращения и момент, которые поступают на ведомые валы транспортного средства. Как правило, данный механизм рекомендован для применения с вариаторами либо с автоматической КП.

Устройство гидротрансформатора АКПП

Оно состоит из статора (который также называют реактором), насосного колеса, блокировочного механизма, обгонной муфты и турбины. Все указанные элементы располагаются в одном корпусе, который монтируется на маховик автодвигателя. Внутрь механизма заливают специальный трансмиссионный состав.

Принцип работы гидротрансформатора АКПП

Обгонная муфта связывает насосное колесо с корпусом устройства, внутри которого образуется поток масла. Он начинает вращать колесо статора, а затем и турбину. Блокирование реактора происходит в автоматическом режиме при возникновении существенного отличия оборотов насоса и турбины. На колесо в этот момент поступает требуемый поток жидкости. Когда отмечается повышение числа оборотов двигателя, статор контролирует увеличение крутящего момента.

Разобравшись, как работает гидротрансформатор в АКПП, можно понять, что внутри него передача крутящего момента производится «мягко». За счет этого удается избежать нагрузок ударного характера на трансмиссию, а также добиться ощутимо плавного передвижения транспортного средства. При этом блокировка гидротрансформатора АКПП «экономит» топливо при перемещении автомобиля по шоссе. Включается она при скорости более 60 км/ч автоматически.

Признаки неисправности гидротрансформатора АКПП

Основные симптомы поломки гидротрансформатора АКПП следующие:

  • при включении передач слышен механический шум, который под нагрузкой исчезает: неисправность гидротрансформатора АКПП и упорных подшипников;
  • на скорости от 60 км/ч до 90 ощущается вибрация, вызванная неисправным механизмом блокировки: такие поломки гидротрансформатора АКПП обычно обусловлены тем, что продукты износа забивают масляный фильтр;
  • плохая динамика разгона ТС, которая сигнализирует о выходе из строя обгонной муфты.

Теперь вы знаете, как проверить гидротрансформатор АКПП, проблемы с функционированием которого могут значительно ухудшить комфорт и безопасность управления автомобилем.

Ремонт гидротрансформатора АКПП своими руками

Как правило, ресурс эксплуатации автоматической коробки передач идентичен сроку службы гидротрансформатора. Но бывают случаи, когда требуется ремонт или замена гидротрансформатора АКПП. Данный процесс не так сложен, как может показаться неопытному водителю, который не знает, как снять гидротрансформатор с АКПП.

Ты и твой автомобиль готовы к наступившей зиме? Новейшие гаджеты помогут с комфортом пережить зиму:

Чтобы добраться до «внутренностей» интересующего нас механизма, необходимо разрезать его корпус, после чего проверить на наличие дефектов, оценить уровень изношенности и проверить исправность его элементов. Осуществив замену неисправных компонентов устройства (важно поставить новые уплотнительные кольца и сальник гидротрансформатора АКПП), требуется вернуть механизм в нормальное состояние. Для этого производится сварка корпуса, проверка его герметичности, прочности крепления деталей и соответствие стандартам теплового зазора. Завершается установка гидротрансформатора на АКПП проведением балансировочных работ.

Если в процессе диагностики выясняется, что никакие запасные части и оборудование для ремонта гидротрансформатора АКПП не могут восстановить адекватную работоспособность устройства, следует устанавливать новый механизм. В ряде случаев с финансовой точки зрения его покупка и монтаж даже предпочтительнее проведения ремонтных работ.

Оцените статью: Поделитесь с друзьями!

carnovato.ru

Диагностика и признаки неисправности гидротрансформатора АКПП :: SYL.ru

С каждым годом численность автомобилей с АКПП возрастает. На то есть свои причины. Автоматическая трансмиссия намного удобней в эксплуатации, нежели механика. С ней водитель не устает в пробках, да и со сцеплением при должной эксплуатации не бывает проблем. Но устройство автоматической коробки немного сложнее механики. Одна из основных составляющих любой АКПП – это гидротрансформатор (в простонародье «бублик»). Со временем он может выходить из строя. Почему это происходит и каковы признаки неисправности гидротрансформатора АКПП? Рассмотрим в нашей сегодняшней статье.

О конструкции

Гидротрансформатор служит для изменения и передачи крутящего момента, что идет от мотора на коробку передач. В конструкцию элемента входит:

  • Насосное колесо.
  • Турбина.
  • Реакторное колесо.
  • Муфта свободного хода.
  • Блокировочная муфта.

ГДТ размещается в отдельном корпусе, который заполнен АТФ-жидкостью. Последняя выполняет функцию не только смазки, но и «мокрого» сцепления (поскольку корзины и диска как такового в автоматической коробке нет). Работает «бублик» по замкнутому циклу. Сперва АТФ-жидкость попадает на турбинное, а затем на реакторное колесо. Скорость лопастей последнего начинает усиливаться. Поток жидкости направляется на насосное колесо. В итоге увеличивается величина крутящего момента. С ростом частоты вращения коленвала, угловая скорость турбинного и насосного колеса выравнивается. Поток АТФ-жидкости начинает менять свое направление. В это же время срабатывает муфта свободного хода. Начинает вращаться реакторное колесо.

При дальнейшем росте скорости вращения гидротрансформатор блокируется (в работу включает специальная муфта). Так, передача крутящего момента от мотора на коробку производится напрямую. Это происходит до следующего включения или выключения передачи.

Работу гидротрансформатора контролирует электронный блок управления. Он воспринимает информацию со всех датчиков, что находятся в «бублике» и формирует выходной сигнал. При возникновении каких-либо проблем электроника тут же сообщит об ошибке. На практике происходит блокировка гидротрансформатора АКПП. Признаки неисправности могут быть разными. Это как электроника, так и механическая часть. Но если коробка встала в аварийный режим, однозначно ее следует продиагностировать.

Сколько служит?

Обычно гидротрансформатор рассчитан на весь срок службы автоматической коробки. Это 250-300 тысяч километров. Старые «мерседесовские» гидротрансформаторы (4АКПП) могут выхаживать и по 500 тысяч. Неисправности гидротрансформатора АКПП «Тойоты Марк-2» 80-х годов тоже возникают редко. Но как и любой другой механизм, он может выйти из строя раньше. Чтобы предотвратить серьезный ремонт, нужно вовремя выявлять поломку и знать признаки неисправности гидротрансформатора АКПП. Самые характерные из них мы перечислим ниже.

Звуки, вибрация

Как самостоятельно определить признаки неисправности гидротрансформатора АКПП? В первую очередь, нужно прислушаться к работе самой коробки. Так, при переключении передач может возникать механический звук (шуршание). Поначалу он едва заметен. А при увеличении оборотов двигателя и вовсе пропадает. О чем это говорит? Такие признаки неисправности гидротрансформатора АКПП свидетельствуют о проблеме с упорными подшипниками игольчатого типа. Элемент располагается между крышкой гидротрансформатора и турбинным (либо реакторным) колесом. Если при переключении передач возникает громкий металлический стук, это говорит о деформации лопаток турбинного колеса. Ремонту такой элемент уже не подлежит.

Если при скоростях 60-90 километров в час возникает легкая вибрация, это говорит о забитом масляном фильтре. Также подобные симптомы происходят из-за некачественной или старой АТФ-жидкости. Решение проблемы – замена фильтра и масла. В большинстве случаев ремонт на этом заканчивается.

Многие применяют частичную замену масла – сливают часть старого и доливают новое, повторяя этапы 2-3 раза. Но специалисты рекомендуют не экономить на полной замене АТФ-жидкости. Она производится на стенде под давлением. В чем плюс такой процедуры? Замена масла будет произведена на 100 процентов, а грязь из коробки полностью вымоется. Повторить это в условиях гаража невозможно – только при наличии стенда.

Аварийный режим

Подразумевает работу трансмиссии только на первых трех скоростях. Как определить неисправность гидротрансформатора АКПП? На современных авто дополнительно высвечивается предупреждение на панели приборов. Коробка может вставать в аварийный режим по разным причинам:

  • Повреждение корпуса КПП.
  • Наличие стружки в АТФ-жидкости.
  • Наличие металлических обломков турбины.
  • Неисправности фрикционной группы и муфты.

Что примечательно, в аварийный режим коробка может входить лишь периодически. Например, после нагрева АТФ-жидкости до определенных температур. Причину нужно искать в датчиках (расхода воздуха, распредвала и даже системы АБС). Если коробка встает в аварию неожиданно, стоит осмотреть целостность электрической проводки.

При переходе с первой на вторую передачу может ощущаться глухой удар в режиме «Д». Эти признаки неисправности гидротрансформатора АКПП вибрацией тоже могут сопровождаться. В данном случае проблема решается сканированием входных и выходных датчиков. Существуют и другие симптомы неисправности гидротрансформатора АКПП. О них мы расскажем далее.

Проблемы с динамикой

Автомобиль может плохо набирать скорость. Причин тому множество, но если рассматривать признаки неисправности гидротрансформатора АКПП («БМВ» в том числе), то это обгонная муфта. Если она вышла из строя, ГДТ следует разобрать и заменить поломанную деталь. Иногда случается, что после остановки автомобиль и вовсе не может тронуться. Это говорит о повреждении шлица на турбинном колесе. Выход из ситуации – установка новых шлицов. В запущенных случаях приходится менять полностью турбинное колесо.

Запах горелой пластмассы

Такое может возникать на стоящем автомобиле. Запах горелого пластика ощущается в районе коробки передач. О чем это говорит? Подобные признаки неисправности гидротрансформатора АКПП («Тойоты» в том числе) возникают из-за перегрева и плавления полимерных деталей «бублика». Это является следствием забитого масляного радиатора. Он может находиться как в самой коробке, так и отдельно от нее. Исправная система охлаждения АКПП – залог надежной работы гидротрансформатора.

Двигатель глохнет

При попытке трансмиссии перейти на повышенную или пониженную передачу, мотор начинает глохнуть. Это происходит из-за сбоев в электронике, которая блокирует работу гидротрансформатора. Зачастую виновником проблемы является электронный блок управления. Но о нем мы еще поговорим ниже.

Причины неправильной работы ГДТ

Специалисты выделяют несколько факторов, которые могут влиять на работу гидравлического трансформатора:

  • Кулиса рычага АКПП.
  • Масло (АТФ-жидкость).
  • Электронный блок управления АКПП.

Рассмотрим эти проблемы более подробно.

Кулиса

С годами в АКПП старого типа может выходить из строя кулиса. Такие агрегаты имеют механическую связь селектора с коробкой. Это приводит к затруднению включения нужно режима КПП. Селектор заедает в одном положении. Выход из ситуации – замена селектора и кулисы. В некоторых автомобилях данную операцию можно сделать без демонтажа самой КПП.

Масло

От состояния АТФ-жидкости во многом зависит ресурс и исправность АКПП. Специалисты рекомендуют производить ее замену раз в 40-50 тысяч километров. Однако своевременная замена еще не является залогом продолжительной работы гидротрансформатора. В случае потеков и низкого уровня АТФ-жидкости «бублик» выйдет из строя очень быстро. Как произвести быструю диагностику? Нужно запустить двигатель, открыть капот и достать масляный щуп АКПП. На нем есть надпись «Cold» или «НОТ». В первом случае прогревать коробку не обязательно. Если уровень ниже нормы, его срочно нужно возобновить. Заливается жидкость через то же отверстие для щупа.

Обратите внимание и на состояние самого масла. Так можно вовремя определить и предотвратить неисправности, связанные с гидротрансформатором. Наличие стружки на щупе исключено. Если это так, значит, либо вышло из строя турбинное или реакторное колесо, либо износилась торцевая шайба.

Обратите внимание! При эксплуатации АКПП с низким уровнем АТФ-жидкости, возможен перегрев ГДТ.

Периодически осматривайте днище автомобиля, а именно крышку (поддон) автоматической коробки. Иногда уплотнительные прокладки могут давать течь. Эксплуатировать автомобиль с такой неисправностью нежелательно, поскольку уровень масла может упасть в любой момент.

Электронный блок управления

Это основной узел, управляющий работой автоматической коробки. Блок при неисправностях может неправильно выбирать обороты для переключения скоростей либо же полностью блокировать работу трансмиссии. ЭБУ – довольно надежный механизм, но при воздействии определённых факторов он выходит из строя. Это могут быть:

  • Резкие перепады напряжения бортовой сети.
  • Механические удары, вибрации.
  • Повышенная температура.
  • Высокая влажность.
  • Повреждение изоляции и окисление контактов.

Поломки, связанные с электронным блоком, решаются его полной заменой либо установкой новых отдельных управляющих шлейфов.

Неполадки с гидроблоком

Неисправности гидротрансформатора АКПП могут возникать и из-за гидроблока. Внешне он являет собой некую плиту и выглядит следующим образом: Гидроблок служит для передачи АТФ-жидкости под давлением по определенным каналам с целью включить либо выключить конкретную передачу. При неисправностях данная плита может провоцировать вибрации и толчки при смене режима работы трансмиссии. Это основные признаки неисправности гидротрансформатора АКПП. На современных автомобилях неисправность гидроблока отображается на бортовом компьютере. Также плита не терпит высоких и продолжительных нагрузок. Это может быть буксировка тяжелого транспортного средства или старт с двух педалей. Нередко неисправности гидротрансформатора АКПП возникают зимой. Это является следствием эксплуатации коробки с холодной АТФ-жидкостью. При температуре ниже -5 градусов, автоматическую трансмиссию нужно прогреть. Делается это просто. Нужно поочередно включать все режимы (Паркинг, Нейтраль и Драйв), не начиная движение, с интервалом в 5-10 секунд. Это позволит разогреть масло и не допустить поломок гидротрансформатора АКПП. Рабочая температура для АТФ-жидкости – 75-80 градусов по Цельсию.

Заключение

Итак, мы выяснили основные признаки и причины неисправностей гидротрансформатора АКПП. В большинстве случаев поломка сопровождается ошибками на приборной доске и характерным звуком работы самой коробки. При появлении пинков и вибраций, следует применять детальную диагностику. В зависимости от масштаба проблемы, решается это заменой масла или деталей самого гидротрансформатора (турбинное колесо, подшипники). Своевременное выявление неисправностей позволит вам избежать серьезного ремонта.

www.syl.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *