Масло из турбины может вылетать по самым разным причинам, в частности, из-за забитого воздушного фильтра или системы воздухозабора, моторное масло начало пригорать или оно изначально не соответствовало температурному режиму, закоксовывание масляных каналов двигателя. Более сложными причинами бывает поломка крыльчатки, значительный износ подшипников турбины, заклинивание ее вала, из-за чего крыльчатка не вращается вовсе. Однако в большинстве случаев течь масла из турбины обусловлена несложными в ремонтном отношении неисправностями, большинство из которых многие автовладельцы вполне способны устранить самостоятельно.
Содержание
Перед тем как перейти к рассмотрению непосредственно причин, из-за которых возможно подтекание масла, необходимо определиться с его допустимым объемом. Дело в том, что любая, даже полностью исправная, турбина будет подъедать масло.
Большой расход масла
Если двигатель жрет масло, то это как минимум указывает на неисправность ЦПГ, износ маслоколпачков или забитую вентиляцию
картера. Большой расход масла — признаки, причины и что нужно делать
Подробнее
Забитый воздушный фильтр. Это самая простая ситуация, которая, однако, может стать причиной указанной проблемы. Нужно проверить фильтр и при необходимости заменить его (в редких случаях получается его прочистить, но все же лучше не искушать судьбу и поставить новый, особенно если вы эксплуатируете машину на бездорожье). Зимой вместо или вместе с засорением в некоторых случаях возможно его замерзание (например, в условиях очень высокой влажности). В любом случае, обязательно нужно проверить состояние фильтра.
Коробка воздушного фильтра и/или его заборный патрубок. Тут ситуация аналогична. Даже если воздушный фильтр в порядке нужно проверить состояние указанных узлов. Если они забиты — нужно исправить ситуацию и прочистить их. Сопротивление поступающего воздуха должно быть не выше 20 мм водного столба при работе двигателя на холостом ходу (приблизительно 2 технические атмосферы, или около 200 кПа). В противном случае нужно выполнить ревизию и чистку систему или ее отдельных элементов.
Нарушение герметичности крышки воздушного фильтра. Если такая ситуация имеет место, то неизбежно попадание в воздушную систему пыли, песка и мелкого мусора. Все эти частички будут работать как абразив в турбине, постепенно «убивать» ее из строя вплоть до полного выхода из строя. Поэтому ни в коем случае нельзя допускать разгерметизации воздушной системы у двигателя с турбиной.
Некачественное или неподходящее масло. Любой двигатель внутреннего сгорания очень чувствителен к качеству моторного масла, а турбированные двигатели — тем более, поскольку скорости вращения и температура у них гораздо выше. Соответственно, во-первых, необходимо пользоваться тем маслом, которое рекомендует завод-изготовитель вашей машины. А во-вторых, нужно выбирать ту смазочную жидкость, которая является наиболее качественной, от более известного бренда, синтетическое или полусинтетическое, и не заливать в силовой агрегат всякий суррогат.
Жаростойкость масла. Масло для турбин обычно более жаростойкое, чем обычное, поэтому нужно пользоваться соответствующей смазывающей жидкостью. Такое масло не пригорает, не прикипает к стенкам элементов турбины, не засоряет масляные каналы и нормально смазывает подшипники. В противном случае турбина будет работать в экстремальных условиях и существует риск ее быстрого выхода из строя.
Интервал замены масла. В каждом двигателе масло нужно менять по регламенту! Для турбированных моторов это особенно актуально. Лучше выполнять соответствующую замену приблизительно на 10% раньше, чем это указано по регламенту изготовителем автомобиля. Это наверняка увеличит ресурс как двигателя, так и турбины.
Через сколько км менять масло в двигателе
Интервал замены моторного масла нужно рассматривать исходя из условий эксплуатации, пробега авто, качества расходников и еще 7-ми факторов. Периодичность 8-12 тыс. км. общий показатель
Подробнее
Попадание масла из турбины в интеркулер (впускной коллектор). Такая ситуация возникает нечасто, однако ее причиной может быть уже упомянутый выше забитый воздушный фильтр, его крышка или патрубки. Другой причиной в данном случае могут стать забитые масляные каналы. В результате этого происходит разность давления, из-за которой, собственно, масло и «выплевывается» в интеркулер.
Попадание масла в глушитель. Тут аналогично предыдущему пункту. В системе возникает разность давления, которая спровоцирована либо забитой воздушной системой (воздушным фильтром, патрубком, крышкой) или масляные каналы. Соответственно, в первую очередь необходимо проверить состояние описанных систем. Если это не помогло — возможно, сама турбина уже имеет значительный износ и нужно выполнять ее ревизию, но перед тем нужно выполнить проверку турбины.
В некоторых случаях такая проблема может следствием использования в процессе монтажа подающего и сливного маслопроводов герметиков. Их остатки могли раствориться в масле и стать причиной того, что масляные каналы закоксовались, в том числе могут частично выйти из строя подшипники компрессора. В данном случае необходимо выполнить чистку соответствующих каналов и отдельных частей турбины.
Нередко результатом попадания масла в глушитель и вообще в систему выхлопа будет синий дым из выхлопной трубы автомобиля.Теперь переходим к более сложным причинам, соответственно, и дорогостоящим ремонтам. Они возникают в случае, если турбина очень сильно износилась вследствие ее неправильной эксплуатации или просто из-за своей «старости». Износ мог быть вызван чрезмерной нагрузкой на двигатель, использование неподходящего или некачественного масла, замена его не по регламенту, механическое повреждение и так далее.
Выход из строя крыльчатки. Такая ситуация возможна, если имел место значительный люфт на ее валу. Это возможно либо от старости либо от воздействия на вал абразивных материалов. В любом случае ремонту крыльчатка не подлежит, ее нужно только менять. При этом обычно выполняются сопутствующие ремонты. Самостоятельно их вряд ли имеет смысл выполнять, лучше обратиться за помощью в автосервис.
Износ подшипников. При этом наблюдается значительный расход масла. И оно может попадать в полость, в непосредственной близости от них. А поскольку подшипники не ремонтируются, то их нужно менять. Лучше также обратиться за помощью в автосервис. В некоторых случаях проблема состоит не столько в непосредственной замене подшипников, сколько в их подборе (например, на редкие машины нужно заказывать запчасти из-за рубежа и ждать значительное время, пока они будут доставлены).
Заклинивание вала крыльчатки. При этом она вообще не вращается, то есть, турбина не работает. Это одна из самых тяжелых ситуаций. Обычно его заклинивает по причине перекоса. В свою очередь, перекос может возникнуть из-за механического повреждения, значительного износа или выхода из строя подшипников. Тут нужна комплексная диагностика и ремонт, поэтому необходимо обратиться за помощью в автосервис.
Неисправности автомобильной турбины. Как устранить неполадки?
Полезные рекомендации по устранению неисправности турбины двигателя автомобиля. 3 частые причины неисправности турбины и основные признаки выхода из строя турбокомпрессора. А также как их устранить
Подробнее
Естественно, что выбор того или иного решения устранения неисправностей напрямую зависит от того, что именно стало причиной того, что масло капает или течет из турбины. Однако перечислим наиболее вероятные варианты, от простых к более сложным.
Помните, что перегревание турбокомпрессора способствует образованию на его поверхности закоксования от моторного масла. Поэтому перед тем как заглушить турбированный двигатель, необходимо дать ему поработать на холостых оборотах некоторое время с тем, чтобы он немного остыл.
Также необходимо помнить, что работа при высоких нагрузках (на высоких оборотах) способствует не только чрезмерному износу турбокомпрессора, но и может привести к деформации подшипника вала ротора, подгоранию масла, и общему снижению ресурса отдельных его частей. Поэтому по возможности нужно избегать такого режима эксплуатации двигателя.
Теперь остановимся на более редких, частных, случаях, которые, однако, иногда беспокоят автолюбителей.
Механическое повреждение турбины. В частности, это может быть вследствие ДТП или другой аварии, попадание на крыльчатку какого-нибудь постороннего тяжелого предмета (например, болта или гайки, оставленного после монтажа), или попросту брак изделия. В этом случае, к сожалению, ремонт турбины вряд ли возможен, и лучше поменять ее, поскольку поврежденный узел все равно будет иметь гораздо более низкий ресурс, поэтому это будет невыгодно с экономической точки зрения.
Например, имеет место течь масла снаружи турбины со стороны компрессора. Если при этом диск диффузора прикрепляется к сердцевине при помощи болтов, например так как это реализовано в турбокомпрессорах Holset h2C или h2E, то, возможно, один из четырех крепежных болтов уменьшил момент натяжения или сломался. Реже возможна его потеря по причине вибрации. Однако если его просто нет — нужно установить новый и подтянуть все болты с необходимым моментом. Но когда болт сломался и внутренняя его часть попала в турбину, то ее нужно демонтировать и попытаться найти отломанную часть. В самом худшем случае — выполнить ее полную замену.
Течь из соединения диска диффузора с улиткой. Тут проблема состоит в том, что нужно убедиться, а масло ли вытекает из упомянутого соединения. Так как в старых моделях турбокомпрессоров использовалась специальная густая смазка, обеспечивающая их герметичность. Однако в процессе эксплуатации турбины, под воздействием высоких температур и повреждении уплотнений эта смазка может вытекать. Поэтому для дополнительной диагностики необходимо демонтировать улитку и выяснить, имеют ли место потеки масла внутри воздушных клапанов. Если их нет, а вместо них имеется лишь влажность, то можно не беспокоиться, вытереть ее ветошью, и собрать весь агрегат в исходное состояние. В противном случае необходимо выполнить дополнительную диагностику и воспользоваться одним из приведенных выше советов.
Высокий уровень масла в картере. Изредка в турбированных двигателях лишнее масло может выливаться из системы вследствие его высокого уровня в картере (выше отметки MAX). В данном случае необходимо слить излишки смазывающей жидкости до максимально допустимого уровня. Делать это можно либо в гаражных условиях, либо в автосервисе.
Конструкционные особенности двигателя. В частности, известны случаи, когда некоторые мотора в силу своей конструкции сами создавали сопротивление самотечному сливу масла из компрессора. В частности, это происходит потому, что противовес коленчатого вала двигателя своей массой как бы забрасывает масло обратно. И тут уже ничего поделать нельзя. Нужно лишь внимательно следить за чистотой мотора и уровнем масла.
Износ элементов цилиндропоршневой группы (ЦПГ). При этом возможна ситуация, когда отработанные газы прорываются в поддон картера и создают там повышенное давление. Особенно это усугубляется, если вентиляция картерных газов работает некорректно или не в полной мере. Соответственно, при этом самотечный слив масла затруднен, и турбина попросту выгоняет его из системы через слабые уплотнения. Особенно если последние уже старые и прохудившиеся.
Забитый сапунный фильтр. Он находится в системе вентиляции картерных газов и может также со временем забиваться. А это, в свою очередь, приводит к ее некорректной работе. Поэтому вместе с проверкой работоспособности вентиляции имеет место проверить и состояние указанного фильтра. При необходимости его нужно заменить.
Неправильная установка турбины. Или другой вариант — установка заведомо некачественной или неисправной турбины. Этот вариант, конечно, редкость, однако если вы выполняли ремонтные работы в автосервисе с сомнительной репутацией, то его также нельзя исключать.
Отключение клапана ЕГР (EGR). Некоторые автолюбители в ситуации, когда турбина «подъедает» масло, советуют отключить клапан EGR, то есть, клапан рециркуляции отработанных газов. На самом деле, действительно, такой шаг можно предпринять, однако необходимо дополнительно ознакомиться с последствиями этого мероприятия, поскольку он влияет на многие процессы в двигателе. Но помните, что даже если вы решитесь на такой шаг, все равно необходимо будет найти причину, из-за которой происходит «подъедание» масла. Ведь при этом его уровень постоянно падает, а работа двигателя в условиях масляного голодания очень вредна для силового агрегата и турбины.
Спрашивайте в комментариях. Ответим обязательно!
Чем сложнее техника, тем чаще она выходит из строя и тем дороже обходится её восстановление — это правило является актуальным для любого механизма, включая и мотор автомобиля. При профилактическом обслуживании дизельного двигателя, оснащённого турбонаддувом и промежуточным охладителем (интеркулером) многие владельцы транспортных средств с удивлением обнаруживают в последнем следы масла. Паниковать и готовиться к огромным затратам при этом не стоит — вполне возможно, что проблему удастся решить «малой кровью». Сначала необходимо определить, почему же турбина гонит масло в интеркулер, а затем уже приступать к устранению обнаруженного дефекта.
Причины присутствия масла в интеркулере могут носить различный характер
И тут у некоторых автомобилистов, не слишком подробно вникающих в устройство своего автомобиля, может возникнуть вопрос — а что, собственно говоря, такое интеркулер, как он выглядит и зачем нужен? Обратив своё внимание на школьный курс физики, мы можем вспомнить, что при сильном нагревании вещества расширяются, а при охлаждении — наоборот, уплотняются. Если автомобиль оборудован турбонаддувом, воздух в нём проходит сквозь нагнетатель, приводимый в движение выхлопными газами. Последние, как известно, имеют очень высокую температуру, что приводит к нагреванию воздуха, использующегося в топливной смеси до 150–200 градусов. В результате сама смесь сильно расширяется, становится неоднородной и сгорает не полностью.
Чтобы улучшить характеристики приводного узла, смесь нужно охладить — следовательно, после турбины стоит установить радиатор, которым и является интеркулер. Он позволяет достичь множества положительных изменений, среди которых стоит назвать:
Видео о том, как работает интеркулер:
Изначально интеркулеры предназначались исключительно для установки на дизельные моторы, которые являются очень чувствительными к повышенной температуре смеси — ведь дополнительный радиатор снижает температуру воздуха, выходящего из турбины, до 50–75 градусов. Однако в настоящее время ведущие производители и тюнинговые ателье практикуют монтаж интеркулеров также на бензиновые моторы.
Чаще всего встречаются воздушные интеркулеры, которые представляют собой конструкцию, подобную стандартному радиатору системы охлаждения — отличием является только прохождение через внутренние соты воздуха вместо жидкости. Они дешевле и практичнее, однако, требуют наличия большого объёма свободного пространства под капотом. Жидкостные интеркулеры намного меньше, но они требуют использования собственного насоса и электронного блока управления. Как бы там ни было, масло в интеркулере дизельного двигателя вы можете обнаружить вне зависимости от того, какой конструкцией он обладает.
Если вы нашли масло в интеркулере, не стоит паниковать — вполне возможно, что вам понадобится всего лишь пара часов на устранение этого недостатка. В первую очередь, проверьте состояние сливного маслопровода, который проложен между турбиной и картером мотора — он должен быть прямым и не содержать существенных изгибов. При изогнутой сливной трубе в турбине возникает повышенное давление, которое заставляет масло продавливаться сквозь кольца уплотнения и попадать в интеркулер. Как правило, этот трубопровод изготавливается из плотного жёсткого материала, но при длительной эксплуатации он может деформироваться. Решение предельно простое — выровнять маслопровод и закрепить его в этом положении.
Если турбина кидает масло в интеркулер, осмотрите также воздуховод, ведущий к ней — в нём не должно быть никаких трещин либо отверстий. Причиной может быть и сильно забитый фильтр, не пропускающий достаточное количество воздуха. В обоих случаях внутри нагнетателя образуется зона разрежения, которая вытягивает масло и постепенно разрушает кольца уплотнения, загрязняя интеркулер. Решение — очистить фильтр, а при первой возможности заменить его, а также устранить пробоины воздухопровода.
Иногда так просто отделаться от возникших проблем не удаётся — масло в патрубке интеркулера появляется в результате нарушения сообщения с картером мотора. Причиной может быть образование засоров различного типа в сливном маслопроводе — от попадания в него мусора до возникновения нагара. Очень часто автолюбители, самостоятельно проводящие ремонт дизельного мотора, используют для крепления маслопровода не специальные средства, а обычные герметики, которые при нагреве проникают внутрь трубки и образуют пробки. Решение проблемы — снять сливной маслопровод, тщательно прочистить его и промыть, стараясь не повредить стенки трубки.
Однако это ещё не худший вариант развития событий — вполне возможно, что смазочный материал в картере поднимается выше уровня дренажного патрубка, и в результате турбина кидает масло в интеркулер. Хорошо, если вы просто переборщили с объёмом применяемого масла — а вот при нарушении вентиляции картера ситуация будет не столь легко поправимой. Одной из причин возникновения проблемы может быть нарушение целостности уплотнительных колец в цилиндро-поршневой группе, в результате чего отработанные газы будут попадать в картер и выдавливать масло через сливную трубку. Решение — капитальный ремонт двигателя с заменой колец.
Предположим, вы уже разобрались, почему масло в интеркулере появилось столь внезапно, и устранили причину попадания смазочного материала в промежуточный охладитель. Однако вам предстоит ещё выполнить очистку самого интеркулера. Если не сделать этого, масло будет смешиваться с проходящим через радиатор воздухом и попадать в топливную смесь, ухудшая параметры её горения. Кроме того, существенно снизится эффективность охлаждения воздуха в интеркулере, что приведёт к лишению автомобиля преимуществ, получаемых от его установки. В самом неприятном случае масло может загореться, что обычно происходит в результате перегрева мотора при длительной работе в предельных режимах.
Необходимо провести комплексную очистку этого приспособления — чтобы сделать это, его придётся демонтировать. Большинство интеркулеров, работающих по принципу «воздух-воздух» снять можно максимально просто — для этого достаточно открутить несколько болтов и разжать хомуты, а вот с жидкостными моделями могут возникнуть сложности. Чтобы узнать, чем промыть интеркулер от масла, внимательно изучите инструкцию по эксплуатации транспортного средства — обычно производитель предоставляет перечень допустимых средств. Если указания на них отсутствуют, приобрести их не удаётся или они обходятся слишком дорого, можно обратить внимание на универсальную автомобильную химию. В частности, хорошие результаты даёт применение средства Profoam 2000.
В сети можно часто встретить рекомендации относительно применения бензина, керосина, Уайт-спирита и прочих веществ, однако применять их без консультации со специалистом нельзя. Некоторые интеркулеры содержат материалы, которые легко повреждаются растворителями или горючим — соответственно, использование таких средств приведёт к необратимому повреждению детали силового агрегата. Идеальным вариантом является использование услуг сервисного центра, хотя это потребует от вас немалых расходов.
После того как вы промыли интеркулер согласно инструкции, указанной на ёмкости с очистительным средством, смойте остатки автомобильной химии водой. Будьте внимательны — наливать её следует только под малым давлением, так как соты радиатора могут достаточно легко повреждаться большим напором. Повторяйте цикл очистки до тех пор, пока из интеркулера не начнёт выходить чистая вода — обычно для этого требуется 5–6 промывок. В конце можете продуть устройство тёплым воздухом под небольшим давлением — но помните, что высокая температура и увеличенный напор могут повредить интеркулер. Когда всё будет завершено, и вы полностью устраните лишнюю воду, приспособление стоит также очистить от внешних загрязнений и установить на автомобильный двигатель.
Помните, что чем дольше масло будет находиться в интеркулере, тем сложнее его будет вымыть обычными средствами, не прибегая к приобретению дорогостоящей профессиональной автохимии. Кроме того, игнорирование проблемы приведёт к её усугублению, что заставит вас потратить немалые средства на восстановление нормальной работоспособности двигателя и связанных с ним систем автомобиля. Поэтому, как только вы обнаружили течь масла в интеркулер, немедленно прекратите эксплуатацию транспортного средства и займитесь его диагностикой. Если самостоятельно причину обнаружить не удаётся, обратитесь к профессионалу, являющемуся сотрудником автомобильного сервисного предприятия. В любом случае оставлять без внимания проблему нельзя — это обойдётся вам чересчур дорого.
В процессе эксплуатации дизельных автомобилей, оснащенных турбиной, моторное масло часто проникает в полость интеркулера двигателя внутреннего сгорания. При попадании смазочного материала в охладитель системы турбонаддува происходит резкое снижение мощности силового агрегата, а при воздействии на педаль акселератора наблюдаются неожиданные провалы. Описанные проблемы связаны с неисправностями в системе.
При сжатии в турбокомпрессоре воздушные массы получают сверхвысокий нагрев. Перед подачей в рабочие цилиндры они нуждаются в промежуточном охлаждении, иначе объема воздуха будет недостаточно, чтобы обеспечить наибольшую эффективность сгорания топлива. Если в цилиндры поступает разогретый кислород, резко снижаются мощностные характеристики мотора и возрастает расход горючего.
Интеркулер работает по принципу радиатора. Он расположен сзади турбины. В задачу устройства входит качественное охлаждение сжатого воздуха (воздушное, жидкостное, комбинированное), направляемого в камеры сгорания двигателя. Благодаря охлаждению, в цилиндры подается воздух в достаточных объемах, необходимых для сжигания большего количества дизельного топлива. При помощи охладителя температура наддувочного воздуха снижается до 55-70 °С.
Если турбина вбрасывает смазочный материал в охладитель, необходимо проверить исправность работы турбокомпрессора. Помимо нарушений в турбокомпрессоре, причины могут состоять в следующем:
Во избежание подобных дефектов в работе системы турбонаддува, рекомендуется проводить ее регулярное обслуживание. Профилактические мероприятия по уходу за интеркулером турбины:
Важно: если водитель будет продолжать активно использовать автомобиль на фоне имеющихся неисправностей в системе турбонаддува, это неизбежно приведет к серьезным поломкам мотора, требующим дорогостоящего капитального ремонта.
Одна из тенденций автомобилестроения – повышение мощности автомобиля при одновременном снижении рабочего объема двигателя.
Современное решение этой задачи – установка на автомобиль системы турбонаддува. Воздух с использованием энергии отработавших газов через турбину подается под давлением в камеры сгорания. При этом происходит лучшее сгорание топлива, увеличивается мощность и общий КПД двигателя.
Чтобы повысить эффективность турбонаддува между турбиной и двигателем устанавливают специальный охладитель – интеркулер.
Частой проблемой при эксплуатации турбированного двигателя становится появление масла в интеркулере. При этом теряется мощность двигателя.
Чтобы понять, насколько это опасно, устранить или предотвратить эту неприятность, необходимо уметь вовремя ее обнаружить и правильно диагностировать.
В данной статье постараемся разобраться с этими вопросами.
Интеркулер – это теплообменный аппарат, предназначенный для охлаждения нагретого сжатого воздуха, поступающего под давлением от турбины в двигатель. Это неотъемлемая часть системы турбонаддува.
По сути это устройство представляет медный или алюминиевый радиатор, по трубкам которого проходит и охлаждается сжатый воздух. Охлаждение производится с помощью воздуха или жидкости.
Обычно эти аппараты устанавливаются в передней части автомобиля:
Жидкостные интеркулеры могут устанавливаться в любом месте автомобиля исходя из особенностей его компоновки.
Изначально интеркулеры предназначались исключительно для турбированных дизельных двигателей, однако в настоящее время появилось немало решений по турбированию бензиновых агрегатов.
На первый взгляд – совершенно непонятно, откуда может взяться масло в интеркулере. Ведь поступает в него сжатый воздух, на выходе – тоже сжатый воздух, только охлажденный.
Чтобы выяснить, как все же это может произойти, необходимо рассмотреть не только устройство самого агрегата, но и понять принцип действия системы турбонаддува.
Итак, мы уже знаем, что нагретый воздух подается в интеркулер турбиной. Турбина представляет собой колесо с лопастями и действует по принципу вентилятора. При высокой скорости вращения турбины происходит сжатие воздуха и его нагрев. Сжатый воздух попадает в интеркулер.
Турбина приводится в действие энергией отработавших газов, которые раскручивают ее до высоких скоростей.
С основными причинами разобрались.
Зададимся вопросом – а насколько опасно попадание масла в охладитель? Может быть это не причиняет никакого вреда автомобилю и его силовой установке?
Небольшое количество масла (25-30 мл) практически всегда присутствует в интеркулере и не приносит какого-либо вреда ни ему, ни двигателю.
Однако, если масла становится много, то оно вместе с воздухом оказывается в камере сгорания цилиндра и изменят условия сгорания воздушно-топливной смеси. При этом не происходит полного сгорания, теряется мощность двигателя, образуется нагар, и коксование.
Но и это еще не самое страшное. В некоторых случаях масла в цилиндры поступает так много, что возможно его возгорание и перегрев двигателя. В результате – двигатель придется отдавать в капремонт.
Чтобы устранить эту неисправность необходимо провести диагностику и определить, отчего и почему в интеркулере появилось масло.
Для первичной диагностики при обнаружении масла внутри или снаружи теплообменника или на его патрубках необходимо выполнить следующие шаги:
Причина попадания масла в интеркулер, скорее всего, связана с объектами, перечисленными в этом списке.
Как поступать далее, чтобы устранить неисправность?
При засорении масляного фильтра в системе возрастает давление, которое продавливает и разрушает сальники двигателя. Масло начинает подтекать, а турбина кидает его капли внутрь интеркулера. Фильтр в этом случае надо заменить. Однако сальники уже разрушены и их также придется менять.
Загрязненный фильтр и загрязненный воздухопровод вызывают разряжение, из-за которого в цилиндр поступает недостаточное количество воздуха. Это приводит к переобогащению воздушно-топливной смеси и не дает двигателю работать в оптимальном режиме. Кроме того, из-за создавшейся разницы давлений в турбину, а, значит, и в интеркулер всасываются капельки масла.
Установка чистого фильтра и прочистка воздуховодов снизят течь масла и улучшает параметры работы ДВС.
При неисправной системе охлаждения или при длительной эксплуатации в тяжелых режимах двигатель может перегреваться и закипать. В результате перегрева масло разжижается и начинает усиленно испаряться, повышая давление. Сальники турбины, особенно уже изношенные, не могут обеспечить герметизацию в таких условиях. Подтекающее масло турбина гонит в интеркулер.
В этом случае необходимо проверить состояние системы охлаждения и вентиляции картера, состояние сальников турбины.
В случае обнаружения изношенных или поврежденных сальников их нужно заменить на новые.
Если на маслопроводе обнаружились перегибы и деформации – исправьте его геометрию.
Если этого сделать по каким-то причинам не удается или обнаружена трещина – замените неисправную запчасть.
При повышенном уровне масла оно поступает в маслопровод к турбине и выдавливается через сальники, откуда забрасывается в интеркулер.
Избыточное количество моторного масла нужно слить, доведя его уровень до установленных производителем значений. Однако одновременно нужно определить, почему уровень масла оказался повышенным и в случае необходимости устранить неисправность.
Эта неисправность приводит к созданию повышенного давления в картере. При этом масло проникает через маслопровод к турбине и продавливается через ее сальники, а затем потоком воздуха заносится в интеркулер.
В этом случае следует проверять не только систему вентиляции, но и подвергнуть диагностике поршни, ЦПГ. Для правильной диагностики и устранению неисправности в этом случае лучше обратиться к специалистам.
Какова бы ни была причина неисправности, ее следует устранить.
Какие-то действия можно провести собственными силами, но лучше посетить специализированный сервисный центр, который сделает диагностику и ремонт на профессиональном уровне.
Общим пунктом работ по устранению неисправности является очищение интеркулера от засорений и остатков масла.
Если не сделать эту процедуру, эффективность охлаждения воздуха останется недостаточной для достижения двигателем оптимальных режимов работы. Кроме того, остатки масла вместе с воздухом будут поступать в цилиндры, снижая качество сгорания воздушно-топливной смеси.
Для очистки интеркулера его придется снять. С воздушными охладителями проблем обычно не возникает – для этого достаточно ослабить хомуты и вывернуть несколько болтов. Жидкостные охладители снять сложнее. Очистку следует производить специальными средствами, рекомендованными производителем. Применение неподходящих моющих средств без консультации со специалистами нежелательно.
Отдельные конструктивные элементы некоторых интеркулеров могут быть изготовлены из полимерных материалов или эластомеров. Применение агрессивных по отношению к ним очистителей и растворителей приведет к выходу из строя всего устройства.
После промывки остатки очистителя и внешние загрязнения аккуратно смываются водой. Мойки высокого давления применять не следует, так как как они способны повредить ячейки радиатора.
После полной очистки интеркулер следует высушить и установить на место.
Опытные автомобилисты, эксплуатирующие автомобили с турбонаддувом советуют периодически проверять состояние интеркулера и очищать его от загрязнений, которые неизбежно скапливаются в ячейках – пыль, дорожная грязь, растительный мусор, остатки мелких насекомых. Это не только сохраняет эффективность теплообмена, но и является профилактической мерой предотвращения серьезных проблем.
При обнаружении следов масла на патрубках или радиаторе интеркулера чаще всего свидетельствует о его неисправности. В этом случае необходимо прекратить или максимально ограничить эксплуатацию автомобиля, как можно скорее провести диагностику и устранить поломку.
Помните, что эксплуатация автомобиля с неисправным турбонаддувом приводит к серьезным проблемам ДВС, вплоть до выхода его из строя.
Оптимальная эксплуатация турбокомпрессора возможна лишь тогда, когда при использовании этого высокоточного механизма соблюдены правила, иначе возникают проблемы. Часто причиной поломок становится масло в турбине. Что предпринять, если турбокомпрессор гонит масло?
1. Масло поступает во впускную систему из компрессора
Возможные причины:
Для устранения неполадок необходимо проверить сопротивление поступающего воздуха. Параметры разрежения в области воздушного фильтра – не более 20 мм водного столба (на холостом ходу). Если остановить двигатель, резиновые патрубки вернут свою начальную форму. Напоследок необходимо освободить впускной коллектор иинтеркулер от масла. Если на крыльчатке нет царапин и биение подшипников не наблюдается, турбину менять не нужно.
2. Масло поступает во впускную систему двигателя
Возможна нехватка подкачанного воздуха в патрубках, интеркулере, коллекторе. Она возникает по причине утечки, которая увеличивает количество воздуха, идущее через компрессор, и уменьшает давление. В результате масло вытекает через компрессорную часть. Следует устранить утечку: заменить прокладки на новые, туже затянуть хомуты.
Необходимо проверить места, из которых масло может теряться по пути до турбины:
3. Масло поступает в выпускную систему
Следует заглянуть в выпускной коллектор: скорее всего, это масляные пары или топливо. Конденсат, возникающий из-за разницы температур, часто принимают за следы масла. Если турбина на двигатель абсолютно новая, а в коллекторе обнаружено масло, возможно, что оно попало из двигателя.
4. Масло поступает в обе системы
Причин может быть две:
При осмотре исправности элементов автомобиля водитель может заметить на дизельном моторе, что в интеркулере, который является промежуточным охладителем двигателей с турбонаддувом, имеются следы масла. Тому может быть множество причин, при этом как довольно «безобидных», так и серьезных. В любом случае, нужно определить, почему турбина гонит масло в интеркулер, либо откуда оно вообще там могло взяться.
Оглавление: 1. Зачем нужен интеркулер 2. Что собой представляет интеркулер 3. Почему масло попадает в интеркулер 4. Как промыть интеркулер после попадания масла
Для водителей, которые не особо разбираются в конструкции автомобилей, может быть сразу не понятно, для чего предназначен интеркулер. Чтобы понять его назначение, нужно вспомнить из школьного курса физики, что при сильном нагреве детали могут расширяться, а при охлаждении уплотняться и сжиматься.
На моделях двигателей с турбонаддувом воздух при движении преодолевает пространство нагнетателя и приводится в движение с помощью горячих выхлопных газов. Поскольку выхлопные газы имеют высокую температуру, соответственно и воздух нагревается. Это приводит к расширению смеси, из-за чего теряются ее характеристики, и если в подобном виде ее подавать на сгорание, она сгорит не полностью. Соответственно, смесь нужно предварительно охладить, что и входит в обязанности интеркулера. За счет установленного интеркулера:
Обратите внимание: Интеркулеры ранее автопроизводители устанавливали исключительно на дизельные двигатели, где крайне важно, чтобы температура используемой смеси была низкой. Но в данный момент интеркулеры начали устанавливаться и на бензиновые моторы, чаще это происходит не на заводе, а в автомобильных тюнинг-салонах, при повышении мощностных характеристик двигателя.
Интеркулеры в данный момент используются:
Стоит отметить, что независимо от того, какой интеркулер установлен, все равно водитель может столкнуться с ситуацией, когда он обнаружит в нем масло.
Обнаружив масло в интеркулере, нужно в кратчайшие сроки определить причину неисправности. Это могут быть как незначительные поломки, так и серьезные проблемы, способные привести к более серьезным повреждениям рабочих агрегатов двигателя. Рекомендуем действовать по следующему сценарию, чтобы определить, почему масло попало в интеркулер:
Выше рассмотрены довольно простые проблемы, обнаружить и устранить которые водитель может самостоятельно, чтобы предотвратить попадание масла в интеркулер. Однако причины его там появления могут быть и более серьезные, например, нарушение сообщения с картером мотора. Чаще всего это возникает из-за образования засоров в сливном маслопроводе. При этом засоры могут быть разного характера, например, образованные нагаром. Чтобы решить проблему, потребуется снять с автомобиля сливной маслопровод, тщательно его очистить и установить на место. Важно в процессе очистки не повредить стенки трубки.
Еще одна причина, почему масло оказывается в интеркулере – это его высокий уровень. Если масло поднимается выше уровня дренажного патрубка, турбина будет направлять его в интеркулер. Если водитель просто налил много масла, излишки потребуется слить, но гораздо чаще причиной такой проблемы является нарушение вентиляции картера, например, из-за прохудившихся уплотнительных колец в цилиндро-поршневой группе. Когда такая проблема имеет место быть, отработанные газы направляются в картер и выталкивают через сливную трубку масло. В таком случае потребуется ремонт двигателя с заменой уплотнительных колец.
После определения и устранения причины, которая приводит к попаданию масла в интеркулер, необходимо также выполнить очистку самого интеркулера, перед тем как продолжить эксплуатацию автомобиля. Если масло не удалить, оно будет попадать в воздух, следующий через радиатор. Тем самым, частицы масла окажутся в топливовоздушной смеси, что в целом скажется на качестве работы двигателя. Вместе с тем, снизится качество охлаждения интеркулером проходящего воздуха.
Обратите внимание: В редких случаях оставшееся масло в интеркулере, при высоких температурах, может загореться.
Чтобы очистить интеркулер от скопившегося масла, необходимо его снять с автомобиля. Если используется жидкостный интеркулер, лучше обратиться к специалистам или инструкции по снятия конкретной модели. Когда речь идет о воздушном устройстве, снять его можно очень просто – достаточно разжать хомуты и открутить несколько болтов.
Далее следует прочистить интеркулер. Для этого можно использовать специализированные средства (информация о которых должна быть указана в инструкции по эксплуатации автомобиля), либо допустимо применение универсальных автомобильных средств, например, Profoam 2000.
Важно: Если в инструкции по эксплуатации автомобиля не указано, что чистку интеркулера можно производить бензином, а также различными растворителями (уайт-спирит), применять их нельзя. Вероятнее всего, использование подобных средств приведет к необратимому повреждению устройства.
После того как интеркулер будет очищен от остатков масла, очистите его от оставшегося чистящего средства дистиллированной водой.
Обратите внимание: Воду нельзя подавать под высоким давлением, иначе это приведет к повреждению сот интеркулера.
Далее просушите интеркулер (можно оставить его сушиться на несколько часов, либо продуть феном). При продувании феном установите минимальную температуру и минимальное давление, чтобы не повредить устройство.
Когда интеркулер будет высушен, установите его обратной на автомобиль.
Загрузка…При установке турбины на автомобиль необходимо выполнить следующие операции:
1. Заменить масло в двигателе и масляный фильтр
Масло играет очень важную роль в работе турбокомпрессора. Именно от качества и чистоты масла зависит долговечность работы турбины. В процессе работы двигателя масло загрязняется продуктами сгорания топлива и теряет свои смазывающие свойства. В масле появляются мелкие твердые частицы сажи, продукты износа масляного насоса, вкладышей коленвала и других частей двигателя.
Весь этот «мусор» очень сильно изнашивает вал и подшипники турбокомпрессора. Вал турбины вращается в так называемом «масляном клине» т.е. между валом и подшипниками находится масляная пленка, и если в масляной пленке будут присутствовать посторонние предметы, то это приведет к потере смазывающих свойств и интенсивному износу деталей турбины.
Своевременная замена масла и масляного фильтра уменьшит износ деталей турбины и продлит срок их эксплуатации. Большинство турбин выходят из строя именно из-за некачественного или грязного масла.
2. Очистить поддон картера двигателя
В поддоне картера двигателя оседают продукты сгорания топлива и масла, стружка и частицы износа деталей двигателя. Эта накопившаяся «грязь» не сливается вместе с маслом при его замене и со временем образует смолянистый слой на дне картера. Это приводит к быстрому загрязнению чистого масла. Поэтому, периодически необходимо снимать и чистить поддон картера двигателя.
3. Очистить (или заменить) фильтра(сапуны) и каналы вентиляции картерных газов
Система вентиляции картера предназначена для уменьшения выброса вредных веществ из картера двигателя в атмосферу. При работе двигателя из камер сгорания в картер просачиваются отработавшие газы. В картере также находятся пары масла, топлива и воды. Все вместе они называются картерными газами. Скопление картерных газов ухудшает свойства и состав моторного масла, разрушает металлические части двигателя.
При засорении системы вентиляции картерных газов они скапливаются в нижней части двигателя и создают сопротивление сливу масла из турбокомпрессора в картер. В результате чего масло начинает протекать в холодную и горячую части турбины. Из холодной части турбины масло попадает в интеркулер и двигатель, а из горячей в выхлопную систему. В горячей части под воздействием высокой температуры масло коксуется, образуя нагар, что приводит к износу и выходу турбины из строя. Даже, абсолютно исправная турбина начинает течь, если картерных газов слишком много (изношен двигатель или не работает система вентиляции картерных газов).
4. Очистить (или заменить) интеркулер.
Очень часто при поломке старой турбины масло в большом количестве попадает в интеркулер. Если интеркулер не очистить от этого масла, то после установки новой турбины оно смешается с воздухом и попадет в двигатель. Для дизельного двигателя такая масляно-воздушная смесь является дополнительным топливом и двигатель может «пойти в разнос» . Чтобы этого не случилось необходимо очистить или заменить (официальные фирменные сервисы только меняют) интеркулер от масла.
5. Очистить (или заменить) катализатор и(или) DPF/FAP фильтра.
Катализатор и DPF/FAP фильтра — это устройства выхлопной системы автомобиля, предназначенные для снижения выброса вредных веществ в атмосферу с отработавшими газами. Срок службы автомобильного катализатора главным образом зависит от качества топлива. При определенных условиях катализатор можно «убить», выездив полный бак некачественной солярки. Средний срок службы катализатора 180-200 тыс.км. В процессе работы катализатор засоряется выхлопными газами, уменьшается площадь проходного сечения, создается препятствие выходу выхлопных газов. В результате чего повышаются осевые нагрузки на вал турбины и опорный подшипник. Появляется осевой люфт в турбокомпрессоре и он выходит из строя.
6. Очистить (или заменить) воздушный фильтр.
Некоторые автолюбители относятся к воздушному фильтру весьма равнодушно и ездят, пока он не станет на вид, вроде половой тряпки.
Для качественного сгорания горючей смеси необходимо, чтобы в ней содержалось воздуха больше, чем топлива от 15 до 20 раз. Обычный автомобиль на 100 км пробега потребляет 12 — 15 м3 воздуха из атмосферы. В воздухе постоянно находятся пыль, мелкие камни, вылетающие из под колёс автомобиля, семена растений, насекомые и пр. Если этот воздух не очищать, то эти частицы могут попасть во впускной коллектор, турбину и в двигатель, и будут действовать на детали как абразив, ускоряя их износ. Весьма скоро работа турбокомпрессора ухудшится и, в конце концов, он преждевременно выйдет из строя.
У фильтрующего элемента имеется еще один важный показатель — предельное сопротивление засасываемому воздуху. Чем более засорен фильтрующий элемент, тем выше его сопротивление воздушному потоку, и тем меньше воздуха поступает на смесеобразование. В некоторых режимах это ведет к большему обогащению смеси и к неполному ее сгоранию. Таким образом, мощность двигателя снижается, а расход топлива увеличивается. Сопротивление всасыванию воздуха создает дополнительную нагрузку на детали турбины и уменьшает их срок службы.
Помимо своего основного предназначения, воздушный фильтр также выполняет функцию глушителя шума, который распространяется по впускному тракту.
Мы рекомендуем производить замену(или очистку) воздушного фильтра каждые 10 тыс.км. пробега автомобиля, а в сельской местности 5-8 тыс.км.
7. Проверить герметичность и чистоту патрубков всасывания воздуха в турбокомпрессор.
Перед тем как установить новую турбину и завести двигатель, необходимо внимательно проверить состояние патрубков, идущих от воздушного фильтра к турбокомпрессору. Очень часто в этом патрубке остаются фрагменты компрессорного колеса и гайка от старой разрушенной турбины. Эти элементы прилипают к маслу, скопившемуся внутри патрубка, и не всегда их можно просто стряхнуть или выдуть. Такая застрявшая гайка становится «миной замедленного действия». Турбина может её втянуть мгновенно, а может пройти и месяц. Итог один – повреждение компрессорного колеса и выход турбокомпрессора из строя. Патрубки и корпус воздушного фильтра не должны иметь трещин и разрывов, все соединения должны быть герметичны. Это предотвратит попадание посторонних предметов в область всасывания турбокомпрессора.
8. Проверить давление подачи масла в турбокомпрессор.
Как известно, вращаться валу турбины с огромной скоростью (250 000 об/мин.) позволяет наличие «масляного клина» между валом и подшипниками скольжения. Недостаточное давление в масляной магистрали приводит к возникновению сухого трения в местах контакта вала и подшипников. Резко повышается температура и подшипники наплавляются на вал и опорные втулки. При проведении дефектации такой турбины это будет видно по характерным цветам побежалости и кольцевым следам наплавленных подшипников. Помимо смазки, масло выполняет роль отвода тепла от вала турбины. Поэтому важно не только давление, но и количество масла, проходящего через турбину в единицу времени. Закоксованность и деформация шлангов приводят к уменьшению потока масла и перегреву турбокомпрессора. Перед подсоединением маслоподающей магистрали к турбине необходимо проверить давление и поток масла. Для этого можно опустить маслоподающую трубку в пластиковую бутылку и прокрутить двигатель стартером, но не заводить его. Струя масла должна быть плотной и равномерной. Метод «дедовский», но он работает.
9. Проверить и очистить каналы слива масла из турбокомпрессора.
Недостаточное давление масла приводит к сухому трению, а избыточное давление приводит к протеканию масла в области холодной и горячей улитки. Забитость каналов слива создает препятствие сливу масла в картер двигателя. Повышается давление внутри корпуса турбины. В турбине нет сальников. Масло удерживается внутри корпуса бесконтактным динамическим уплотнением лабиринтного типа. При такой конструкции защита от протекания масла происходит не на 100%, но этого достаточно для нормальной работы сбалансированного по давлению механизма. При повышении давления внутри корпуса турбины лабиринты начинают пропускать масло из корпуса наружу. Турбина течет. Перед монтажом нового турбокомпрессора необходимо вычистить каналы слива масла и устранить различные их изломы и деформации.
10. Перед первым стартом наполнить маслом маслоподающую магистраль.
Одна из грубейших ошибок которую допускают неопытные мастера — незаполненная маслоподающая магистраль. Достаточно одной секунды «масляного голодания» чтобы «убить» турбину.
В наших требованиях, предъявляемых к установке турбокомпрессора, нет ничего невыполнимого и сложного. Это стандартные общепринятые правила необходимые для нормальной работы механизма называемого турбина.
На вопрос «Как долго прослужит это турбинное масло?» следует ответить звуковой инженерной реакцией «это зависит от обстоятельств».
Поставщики турбинного масла могут дать довольно широкие оценки, скажем, от 5 до 15 лет для применения в газовых турбинах. Любая попытка получить более точную оценку требует учета такого количества переменных, что становится в некоторой степени бесполезной. Вода, тепло, загрязнения, часы работы и методы технического обслуживания будут иметь значительное влияние на долговечность турбинного масла.
Нельзя отрицать, что правильно протестированные и обслуживаемые, более качественные турбинные масла обеспечат более длительный срок службы, чем плохо проверенные и обслуживаемые продукты более низкого качества. Ниже приводится обсуждение новых эксплуатационных характеристик турбинного масла, которые будут способствовать более длительной и безотказной работе.
Более 100 тонн стали, вращающихся со скоростью 3600 об / мин, поддерживаются подшипниками скольжения на масляной подушке, которая тоньше человеческого волоса.На электростанциях по всему миру одна и та же гидродинамика происходит изо дня в день без особого уведомления.
Упущенная выгода во время сезонных пиков может исчисляться миллионами долларов. В среднем коммунальное предприятие продает электроэнергию по цене около 50 долларов за МВт в час в непиковые периоды и до 1000 долларов за МВт в час в периоды пиковой нагрузки. Неправильный выбор и техническое обслуживание турбинного масла может привести к производственным потерям, превышающим 500 000 долларов США в день.
При выборе турбинного масла для паровых, газовых, гидро- и авиационных турбин в рамках процесса выбора следует оценивать услуги поставщика масла и обязательства перед заказчиком.
Перед тем, как приступить к процессу выбора, важно иметь представление о физических и химических характеристиках турбинных масел по сравнению с другими смазочными маслами.
Паровые, газовые и гидротурбины работают на семействе смазочных масел, известных как масла R&O (масло с ингибитором ржавчины и окисления). Геометрия турбинного оборудования, рабочие циклы, методы технического обслуживания, рабочие температуры и возможность загрязнения системы предъявляют особые требования к смазочным маслам по сравнению с другими смазочными маслами, такими как бензиновые и дизельные двигатели.
Объем отстойников паровых и газовых турбин может составлять от 1 000 до 20 000 галлонов, что является экономическим стимулом для смазочного масла с длительным сроком службы. Низкие нормы подпитки турбинного масла (примерно пять процентов в год) также способствуют потребности в высококачественных смазочных материалах с длительным сроком службы. Без значительных проблем с загрязнением масла срок службы турбинного масла в первую очередь определяется устойчивостью к окислению.
На окислительную стабильность отрицательно влияют тепло, вода, аэрация и загрязнение твердыми частицами.Антиоксиданты, ингибиторы ржавчины и деэмульгирующие присадки смешиваются с базовым маслом высшего качества для продления срока службы масла. С этой же целью в системах смазки турбин устанавливаются охладители смазочного масла, системы удаления воды и фильтры.
В отличие от большинства бензиновых и дизельных моторных масел, турбинное масло предназначено для отвода воды и позволяет твердым частицам оседать там, где они могут быть удалены через дренажные системы отстойника или системы фильтрации почек во время работы. Для облегчения отделения загрязнений большинство турбинных масел не содержат добавок с высоким содержанием детергентов или диспергаторов, которые очищают и уносят загрязнения.Турбинные масла не подвергаются воздействию топлива или сажи, поэтому их не нужно часто сливать и заменять.
Хорошо обслуживаемое масло для паровых турбин с умеренными темпами подпитки должно прослужить от 20 до 30 лет. Когда масло для паровой турбины выходит из строя на ранней стадии из-за окисления, это часто происходит из-за загрязнения водой. Вода снижает стойкость к окислению и способствует образованию ржавчины, которая, помимо прочего, действует как катализатор окисления.
Различные количества воды будут постоянно попадать в системы смазки паровой турбины из-за утечки сальникового уплотнения. Поскольку вал турбины проходит через корпус турбины, необходимы паровые уплотнения низкого давления, чтобы минимизировать утечку пара или попадание воздуха в вакуумный конденсатор.
Вода или конденсированный пар обычно отводится от системы смазки, но неизбежно некоторое количество воды проникает в корпус и попадает в систему смазочного масла.Состояние сальникового уплотнения, давление пара сальникового уплотнения и состояние дымососа сальникового уплотнения влияют на количество воды, попадающей в систему смазки.
Обычно системы отвода пара и высокоскоростное нисходящее масло создают вакуум, который может втягивать пар через уплотнения вала в подшипник и масляную систему. Вода также может попадать из-за отказов охладителя смазочного масла, неправильной очистки электростанции, загрязнения водой подпиточного масла и конденсированной влаги из окружающей среды.
Во многих случаях влияние плохого разделения масла и воды можно компенсировать правильным сочетанием и качеством присадок, включая антиоксиданты, ингибиторы ржавчины и присадки, улучшающие деэмульгируемость.
Избыточная вода также может быть удалена на постоянной основе с помощью ловушек для воды, центрифуг, коалесцеров, дегидраторов над резервуаром и / или вакуумных дегидраторов. Если деэмульгируемость турбинного масла не удалась, воздействие окисления смазочного масла, связанного с водой, будет зависеть от производительности систем отделения воды.
Тепло также приведет к сокращению срока службы турбинного масла из-за повышенного окисления. В паровых турбинах общего пользования температура подшипников обычно составляет от 120ºF до 160ºF (от 49ºC до 71ºC), а температура масляного поддона составляет 120ºF (49ºC). Обычно считается, что воздействие тепла удваивает скорость окисления на каждые 18 градусов выше 140ºF (на 10 градусов выше 60ºC).
Обычное минеральное масло начинает быстро окисляться при температуре выше 180 ° F (82 ° C).Большинство опорных подшипников с оловянным покрытием начинают выходить из строя при температуре 250 ° F (121 ° C), что значительно превышает температурный предел для обычных турбинных масел. Высококачественные антиоксиданты могут замедлить термическое окисление, но необходимо свести к минимуму избыток тепла и воды, чтобы продлить срок службы турбинного масла.
Для большинства крупных газотурбинных агрегатов с рамой высокая рабочая температура является основной причиной преждевременного выхода из строя турбинного масла. Стремление к более высокому КПД турбин и температурам сгорания в газовых турбинах было основным стимулом для тенденции к более термостойким турбинным маслам.Сегодняшние узлы с большой рамой работают при температуре подшипников в диапазоне от 160 до 250 ° F (от 71 до 121 ° C).
Сообщается, что рамы нового поколения работают при еще более высоких температурах. Производители газовых турбин увеличили свои рекомендуемые ограничения на характеристики RPVOT — ASTM D2272 (испытание на окисление в сосуде под давлением при вращении) и TOST — ASTM D943 (Устойчивость к окислению турбинного масла), чтобы соответствовать этим более высоким рабочим температурам.
По мере того как газовые турбины нового поколения появляются на рынке коммунальных услуг, изменения в рабочих циклах также создают новые препятствия для смазывания.Проблемы со смазкой, характерные для газовых турбин, работающих в циклическом режиме, начали возникать в середине 1990-х годов. Более высокие температуры подшипников и цикличность работы приводят к засорению гидравлики системы, что задерживает запуск оборудования.
Правильно подобранные гидрокрекинговые турбинные масла были разработаны для решения этой проблемы и увеличения интервалов замены масла для газовых турбин. Такие продукты, как Exxon Teresstic GTC и Mobil DTE 832, продемонстрировали отличные характеристики в течение почти пяти лет службы в газовых турбинах с циклическим режимом работы, где обычные минеральные масла часто выходили из строя в течение одного-двух лет.
В гидротурбинах обычно используются масла ISO 46 или 68 R&O. Деэмульгируемость и гидролитическая стабильность являются ключевыми рабочими параметрами, влияющими на срок службы турбинного масла из-за постоянного присутствия воды. Колебания температуры окружающей среды в гидроэлектростанциях также делают стабильность вязкости, измеряемую индексом вязкости, важным критерием эффективности.
Авиационные газовые турбины представляют собой уникальные проблемы с турбинными маслами, которые требуют масел с гораздо более высокой стойкостью к окислению.Основное беспокойство вызывает тот факт, что смазочное масло в авиационных турбинах находится в прямом контакте с металлическими поверхностями в диапазоне от 204 до 316 ° C (400–600 ° F). Температура смазочного масла в поддоне может составлять от 160 до 250 ° F (от 71 до 121 ° C).
Эти компактные газовые турбины используют масло для смазки и передачи тепла обратно в масляный поддон. Кроме того, их циклический режим работы вызывает значительные термические и окислительные нагрузки на смазочное масло. Эти самые сложные условия требуют использования синтетических смазочных масел высокой чистоты.Средний расход смазочного масла 0,15 галлона в час поможет омолодить турбомасло в этих сложных условиях.
Турбинные масла современной технологии для турбин наземной энергетики описываются как турбомасла 5 сСт. Турбины на базе авиационных двигателей работают с гораздо меньшими маслосборниками, обычно 50 галлонов или меньше. Ротор турбины работает с более высокими скоростями от 8000 до 20 000 об / мин и поддерживается подшипниками качения.
Синтетические турбомасла разработаны для удовлетворения требований газовых турбомоторов военных самолетов, определенных в формате военных спецификаций.Эти спецификации MIL составлены, чтобы гарантировать, что аналогичные по качеству и полностью совместимые масла доступны во всем мире и указаны в спецификациях смазочных материалов OEM.
Турбомасла типа II были коммерциализированы в начале 1960-х годов для удовлетворения требований ВМС США по улучшенным характеристикам, в результате чего был создан MIL — L (PRF) — 23699. Большинство авиационных производных в энергетике сегодня используют эти масла Type II, MIL — L. (PRF) — 23699, базовое масло на основе сложного эфира полиола, синтетические турбомасла.Эти масла типа II обладают значительными эксплуатационными преимуществами по сравнению с более ранними синтетическими турбо-маслами на основе диэфиров типа I.
Усовершенствованные турбомасла типа II были коммерциализированы в начале 1980-х годов для удовлетворения требований ВМС США по лучшей устойчивости к высоким температурам. Это привело к созданию новой спецификации MIL — L (PRF) — 23699 HTS. В 1993 году Mobil JetOil 291 было коммерциализировано как первое турбомасло четвертого поколения, удовлетворяющее современным условиям высоких температур и высоких нагрузок реактивных масел.Продолжаются улучшения в технологии смазочных материалов с турбонаддувом.
В подшипниковых узлах генератора обычно используется масло ISO 32 R&O или гидравлическое масло. Более низкие температуры застывания гидравлического масла по сравнению с маслом R&O могут диктовать необходимость использования гидравлического масла в холодных условиях.
Масла для паровых, газовых и гидротурбинных двигателей представляют собой смесь высокоочищенных или гидроочищенных базовых масел на основе нефти, обычно ISO VG 32 и 46 или 68. Поставщики смазочных материалов разработали турбинные масла для удовлетворения различных требований турбин в силовых установках и производстве электроэнергии.
Эти составы были разработаны в соответствии со спецификациями производителей турбин. Многие производители турбин отказались от утверждения конкретных торговых марок турбинных масел из-за усовершенствованных технологий в своих турбинах и соответствующих улучшений турбинных масел. Производители оригинального оборудования определили предлагаемые или рекомендуемые критерии проверки характеристик смазочного масла и обычно предусматривают, что масло, которое, как известно, успешно работает в полевых условиях, все еще может использоваться, даже если все рекомендуемые значения не были соблюдены.
Стендовые испытания смазочного масла, соответствующие отраслевым стандартам, могут дать хорошее представление об эксплуатационных характеристиках и ожидаемом сроке службы турбинных масел. Однако производители турбин и поставщики масел в целом согласны с тем, что прошлые успешные эксплуатационные характеристики конкретного масла в аналогичных условиях являются наилучшим общим представлением о качестве и характеристиках.
Независимо от типа или срока службы турбинного масла, качество базовых масел и химический состав присадок будут иметь решающее значение для его долговечности.Высококачественные базовые масла характеризуются более высоким процентным содержанием насыщенных веществ, более низким процентным содержанием ароматических углеводородов и более низким содержанием серы и азота. Характеристики присадок должны быть тщательно проверены. Их также необходимо смешивать с маслом в строго контролируемом процессе.
Ключом к превосходному турбинному маслу является сохранение свойств. Было обнаружено, что некоторые составы турбинного масла дают хорошие результаты лабораторных испытаний, но могут испытывать преждевременное окисление из-за выпадения присадок и окисления базового масла.
Опять же, лабораторный анализ смазочного масла может поддержать ваши усилия по определению долговечности турбинного масла, но прямой практический опыт должен иметь приоритет. Обратите внимание, что поставщики турбинного масла будут предлагать типичные данные анализа смазочного масла, чтобы помочь оценить прогнозируемые характеристики. Используются типичные данные, потому что смазочные масла незначительно отличаются от партии к партии из-за незначительных изменений базовых компонентов.
Промышленные паровые и газотурбинные масла могут быть как минеральными (Группа 1), так и гидрообработанными (Группа 2).Высококачественные традиционные масла на минеральной основе хорошо зарекомендовали себя как в паровых, так и в газовых турбинах более 30 лет. Тенденция к более высокому КПД циклических газовых турбин стимулировала разработку турбинных масел Группы 2, подвергнутых гидрообработке.
Большинство турбинных масел, подвергнутых гидрообработке, будут иметь лучшие начальные показатели RPVOT и TOST, чем обычные турбинные масла. Это преимущество в стойкости к окислению подходит для применения в газовых турбинах, работающих в тяжелых условиях.
Преимущества окислительной способности турбинного масла, подвергнутого гидрообработке, могут не потребоваться во многих менее требовательных применениях паровых и газовых турбин. Известно, что обычные масла на минеральной основе обладают лучшей растворимостью, чем масла, подвергнутые гидрообработке, которые могут обеспечивать лучшее удерживание пакета присадок и повышенную способность растворять продукты окисления, которые в противном случае потенциально могли бы привести к образованию лака и шлама.
При написании спецификации турбинного масла для систем, недоступных для полного слива и промывки, также следует рассмотреть вопрос о проверке совместимости марок турбинного масла.Неправильный химический состав присадок или низкое качество масла в процессе эксплуатации могут препятствовать смешиванию различных и несовместимых турбинных масел. Ваш поставщик масла должен провести испытания на совместимость, чтобы подтвердить пригодность для дальнейшей эксплуатации.
Это испытание должно касаться состояния масла в процессе эксплуатации по сравнению с различными возможными смесями с предлагаемым новым маслом. Эксплуатационное масло следует проверить на пригодность для дальнейшей эксплуатации. Затем смесь 50/50 должна быть протестирована на устойчивость к окислению (RPVOT ASTM D2272), деэмульгируемость (ASTM D1401), пену (ASTM D892, последовательность 2) и отсутствие выпадения пакета присадок, что засвидетельствовано в ходе семидневного испытания на совместимость при хранении.
Промывку системы смазочного масла турбины и первоначальную фильтрацию следует решать одновременно с выбором турбинного масла. Промывка системы смазки может быть либо вытеснительной промывкой после слива и заливки, либо высокоскоростной промывкой для первоначальной заливки турбинного масла. Промывка вытеснением выполняется одновременно с заменой турбинного масла, а промывка с высокой скоростью предназначена для удаления загрязняющих веществ, попадающих при транспортировке и вводе в эксплуатацию новой турбины.
Промывка вытеснением с использованием отдельного промывочного масла выполняется для удаления остаточного продукта окисления масла, который не удаляется сливом или вакуумом. Промывка вытеснением проводится с использованием циркуляционных насосов системы смазки без каких-либо изменений в обычных путях циркуляции масла, за исключением возможной фильтрации почечного контура.
Эта промывка обычно выполняется на основе временного интервала в зависимости от чистоты (уровней частиц), чтобы облегчить удаление растворимых и нерастворимых загрязняющих веществ, которые обычно не удаляются системными фильтрами.
Большинство производителей турбин предлагают рекомендации по высокоскоростной промывке и фильтрации. Некоторые подрядчики и поставщики масла также предлагают инструкции по промывке и фильтрации. Часто при вводе турбины в эксплуатацию эти руководящие принципы сокращаются, чтобы сократить затраты и время. Есть общие элементы высокоскоростной промывки, которые обычно поддерживаются заинтересованными сторонами. Есть также некоторые процедурные проблемы, которые могут отличаться и должны решаться на основе соотношения риска и вознаграждения.
Общие элементы взаимного согласия при высокоскоростной промывке следующие:
Емкости для подачи и хранения должны быть чистыми, сухими и без запаха.Промывка дизельным топливом недопустима.
Скорость жидкости в два-три раза выше нормальной, достигаемая с помощью внешних насосов большого объема или путем последовательной сегментной промывки через перемычки подшипников.
Удаление масла после промывки завершено для проверки и ручной очистки (безворсовой ветошью) внутренних поверхностей системы смазочного масла турбины.
Высокоэффективная гидросистема байпасной системы исключает риск повреждения мелкими частицами.
Возможные дополнительные или альтернативные элементы высокоскоростной промывки:
Использование отдельного промывочного масла для удаления растворимых в масле загрязняющих веществ, которые могут повлиять на пену, деэмульгируемость и устойчивость к окислению
Необходимо отфильтровать начальную заправку масла до уровня, соответствующего спецификации фильтрации
.Термоциклирование масла при промывке
Вибраторы для трубопроводов и использование резиновых молотков на коленах труб
Установка специальных фильтров для проверки чистоты и отверстий для отбора проб
Желаемые критерии чистоты для выкупа смыва
Лаборатория ISO 17/16/14 — 16/14/11 допустимый диапазон твердых частиц
Использование локальных оптических счетчиков частиц
Сетчатый фильтр 100 меш, частицы не обнаруживаются невооруженным глазом
Патч-тест Millipore
Предварительное планирование и встречи со строителями, запуском, поставщиком нефти и конечным пользователем должны быть запланированы заранее, чтобы достичь консенсуса по этим процедурам промывки.
Хорошей практикой для документации характеристик турбинного масла является отбор пробы объемом 1 галлон из резервуара подачи, а затем пробы второго галлона из резервуара турбины после 24 часов работы. Рекомендуемые испытания соответствуют испытаниям для оценки состояния турбинного масла:
Прошлый опыт, рекомендации производителей турбин, отзывы клиентов и репутация поставщика масла — ключевые элементы, которые следует учитывать при выборе турбинного масла. Правильный первоначальный выбор турбинного масла и продолжающееся техническое обслуживание с кондиционированием должны подготовить почву для многих лет безотказной эксплуатации.На многих заводах закон Мерфи действует в самый неподходящий момент. Это когда вы по-настоящему оцените турбинное масло с превосходными эксплуатационными характеристиками и поставщика масла с обширной технической поддержкой.
Список литературы
1. Ассоциация инженеров черной металлургии AISE. (1996). Руководство для инженеров по смазке — второе издание. Питтсбург, Пенсильвания.
2. Блох, Х. П. (2000). Практическая смазка для промышленных объектов. Литберн, Джорджия: Fairmont Press.
3. Корпорация Exxon Mobil. Руководство по осмотру турбины. Фэрфакс, Вирджиния.
4. Свифт, С.Т., Батлер Д.К. и Девальд В. (2001).
Требования к качеству турбинного масла и практическому применению. Смазка турбин в 21 веке ASTM STP 1407. West Conshohocken, PA.
5. ASTM. (1997). Стандартная практика мониторинга минеральных турбинных масел для паровых и газовых турбин в процессе эксплуатации ASTM D4378-97. Ежегодная книга стандартов ASTM Vol. 05.01.
Опубликовано Тимом Скоттом 5 июня 2015 г.
Когда вы запускаете мастерскую по ремонту турбокомпрессоров, вы часто слышите эти 5 слов. Следующие слова обычно звучат так: «Мне просто нужно заменить уплотнения». Хммм, нет.
Хорошо, поэтому я подумал, что напишу для вас пост по этому поводу. Во-первых, вы не взорвали уплотнение турбокомпрессора. Практически все уплотнения представляют собой поршневые кольца из стали. У некоторых есть карбоновые уплотнения со стороны компрессора. Углеродные уплотнения изначально предназначались для систем с протяжкой через карбюратор, низко установленных турбин и систем литья кривошипа высокого давления.Карбюраторы будут иметь высокий вакуум на уплотнении компрессора. Это, в свою очередь, вытянет масло из турбокомпрессора. Вам действительно не нужно больше беспокоиться об этих системах. Эта система умерла в середине 80-х. Некоторые из мустангов SVO управляли ими. Тем не менее, углеродные уплотнения все еще используются сегодня.
Хорошо, перейдем к уплотнениям турбины. Теперь существует несколько различных типов уплотнений для вала турбины. Наиболее популярным является стальное поршневое кольцо с одинарным зазором.Отлично работает уже много лет. Вещи, которые ему не нравятся: высокое давление в картере, низкие турбины, слишком большое давление масла. Сколько из них взорвут эту печать ???? НИКТО!!! Следующее уплотнение — беззазорное кольцо. Вы можете сделать это двумя способами. Запустить поршневое кольцо с фиксатором лабиринта на зазор. Или вы можете сложить 2 кольца один за другим, а затем компенсировать два промежутка. Это очень популярно в автомобилях Porsche. Многие из этих автомобилей работают с давлением масла 6 бар, низкими турбинами и масляными насосами. Для настоящего уплотнения лучшая установка — это два кольца без зазора в отдельных канавках.Это очень хорошо запечатает. Однако есть и обратная сторона. К тому времени, как вы заметите утечку, мало надежды на дешевый ремонт.
Хорошо, вернемся к теме негерметичного турбокомпрессора. Если с вашим турбонаддувом годами все в порядке, и он начинает протекать. Вам нужно обратить внимание на несколько вещей. Прежде всего проверьте люфт вала. Всегда есть немного стороны. Но он не должен касаться корпуса компрессора. Затем проверьте игру на входе и выходе. Вы действительно не должны ничего особо чувствовать.Если это так, значит, вы находитесь на начальной стадии выхода из строя упорного подшипника. Все это может быть в порядке и все еще течет. У вас может быть углеродный сбой. Это когда мазут порезал сталь на валу турбины. Это делает канавку слишком большой для уплотнения, чтобы удерживать масло. Это самая популярная неисправность, которую я вижу в турбонагнетателях с малой рамой. Далее следует проверить давление в картере. Плохая система PCV может вызвать турбо-утечку. Также из-за сильного удара поршня. Почему эти две причины могут привести к утечке турбонагнетателя? Что ж, это так же просто, как перекрыть обратный маслопровод турбонагнетателя.Обратный трубопровод соединен с картером двигателя. Удар поршня назад идет вверх по обратной линии. Затем он протолкнет масло через уплотнения. И уплотнения больше предназначены для удержания давления турбины и наддува вне картера.
Этот пост становится все длиннее, поэтому я сделаю часть 2. Есть вопросы? Просто застрели меня строчкой. Всегда рады помочь!
Масляная системаБлок двигателя : Wärtsilä предполагает, что чугун с шаровидным графитом был естественным выбором для современных блоков цилиндров из-за его свойств прочности и жесткости, а также свободы, которую дает литье.Оптимальное использование современных литейных технологий позволило объединить большинство масляных и водяных каналов, что привело к созданию двигателя практически без труб с чистым внешним видом. Упругая установка, ставшая теперь обычным явлением, требует жесткой рамы двигателя; Интегрированные каналы, разработанные с учетом этого, служат двойной цели.
Коленчатый вал и подшипники : достижения в области развития горения требуют кривошипно-шатунной передачи, которая может надежно работать при высоком давлении в цилиндре. Коленчатый вал должен быть прочным, а удельные нагрузки на подшипник должны поддерживаться на приемлемом уровне; это было достигнуто за счет оптимизации ходовых размеров кривошипа и галтелей.Удельные нагрузки на подшипники консервативны, а расстояние между цилиндрами (важно для общей длины двигателя) сведено к минимуму. Помимо низких нагрузок на подшипники, другим важным фактором безопасной работы подшипников является толщина масляной пленки. Большая толщина пленки в коренных подшипниках обеспечивается за счет оптимальной балансировки вращающихся масс, а в подшипниках шатуна — за счет не имеющих канавок опорных поверхностей в критических областях. Все эти особенности обеспечивают свободный выбор наиболее подходящего материала подшипника.Применяются и другие концепции подшипников с толстыми подушками, проверенные на двигателе Wärtsilä 46 (см. Стр. 698).
Поршень и кольца : жесткий композитный поршень со стальной головкой и юбкой из чугуна с шаровидным графитом уже много лет применяется для дизельных двигателей с высокими номинальными характеристиками, чтобы обеспечить надежность в условиях высокого давления в цилиндре и температуры сгорания. Запатентованная Wärtsilä смазка юбки применяется для минимизации потерь на трение и обеспечения надлежащей смазки поршневых колец и юбки.Каждое кольцо в пакете из трех колец имеет размеры и профиль для конкретной задачи. Баланс давления над и под каждым кольцом имеет решающее значение для предотвращения отложений нагара в кольцевых канавках двигателя, работающего на тяжелом топливе (рис. 24.28).
Рис. 24.28. Пакет из трех колец для поршня двигателя Wärtsilä 64; обратите внимание на антиполировочное кольцо, встроенное в верхнюю гильзу цилиндра (вверху справа).
Гильза цилиндра и антиполировочное кольцо : толстая гильза с высоким воротником спроектирована с жесткостью, необходимой для того, чтобы выдерживать как силы предварительного напряжения, так и давления сгорания, практически без деформации.Его температура регулируется путем охлаждения отверстия в верхней части манжеты для достижения низкой тепловой нагрузки и предотвращения коррозии серной кислотой. Охлаждающая вода распределяется по вкладышам с помощью простых водораспределительных колец на нижнем конце втулки. На верхнем конце гильзы установлено антиполировочное кольцо, которое устраняет полировку отверстия и снижает расход смазочного масла. Функция кольца заключается в калибровке углеродных отложений, образующихся на верхней контактной площадке поршня, до толщины, достаточно малой для предотвращения любого контакта между стенкой гильзы и отложениями в любом положении поршня.Когда нет контакта между гильзой и отложениями на верхней поверхности поршня, поршень не может соскребать масло вверх; в то же время значительно снижается износ футеровки.
Шатун : трехкомпонентный стержень со всеми обработанными сильно нагруженными поверхностями является самой безопасной конструкцией для двигателей такого размера, предназначенных для непрерывной работы при высоких давлениях сгорания, согласно Wärtsilä. Для облегчения обслуживания и доступа верхняя поверхность шарнира расположена прямо над корпусом подшипника шатуна.Для одновременного затягивания всех четырех винтов разработан специальный гидравлический инструмент. Промежуточная пластина со специальной обработкой поверхности расположена между основными частями, чтобы исключить любой риск износа контактных поверхностей.
Головка блока цилиндров : высокая надежность и простота обслуживания обусловлены жесткой конической / коробчатой конструкцией, способной выдерживать высокое давление сгорания и обеспечивать круглость гильзы цилиндра и равномерный контакт между выпускными клапанами и их седлами.Конструкция головки основана на четырехвинтовой концепции, разработанной Wärtsilä и применяемой более 20 лет. Такая конструкция также обеспечивает свободу, необходимую для проектирования впускных и выпускных отверстий с минимальными потерями потока. Конструкция порта была оптимизирована с использованием анализа вычислительной гидродинамики (CFD) в сочетании с полномасштабными измерениями расхода. Обширный опыт Wärtsilä в сжигании тяжелого топлива способствовал разработке конструкции выпускного клапана, основным критерием для которой является правильная температура; это достигается за счет тщательно контролируемого охлаждения и отдельного контура охлаждения седла для обеспечения длительного срока службы клапанов и седел.
Система впрыска топлива : технология разделенного насоса, впервые представленная в двигателе W64, предлагает преимущества с точки зрения эксплуатационной гибкости, механической прочности и экономической эффективности. Время впрыска топлива можно свободно регулировать независимо от количества впрыска, а настройка параметров впрыска в соответствии с условиями работы двигателя улучшает характеристики двигателя и снижает выбросы выхлопных газов. Меньшие элементы насоса закрытого типа, полученные в результате крупносерийного производства двигателей меньшего размера, снижают механические нагрузки и повышают надежность, в то время как меньшие нагрузки на ролики, толкатели и кулачки повышают надежность привода насоса.
Это новое решение было продиктовано, когда производители ТНВД предположили, что для такого большого среднеоборотного двигателя будет очень трудно изготавливать плунжеры насоса такого размера и точности, которые необходимы для обеспечения надежности, присущей двигателям меньшей конструкции. Поскольку мощность Wärtsilä 64 примерно вдвое больше, чем у установленной Wärtsilä 46, было решено использовать два поршня (каждый размером примерно W46) на цилиндр двигателя.
Два поршня имеют несколько разные функции (рис.24.29). Оба нагнетают топливо на каждом такте и подключены к одной и той же магистрали, откуда топливо подается в форсунку по единой магистрали высокого давления. Хотя оба поршня перекачивают топливо одинаково, для регулировки количества топлива необходимо управлять только одним из них. Это позволило зарезервировать другой плунжер для другой задачи: поворачивать его для управления моментом впрыска во время работы двигателя. Таким образом, открылись новые возможности для управления различными режимами нагрузки и качества топлива, включая возможность замедления впрыска, когда требуются более низкие значения выбросов NOx.
Рис. 24.29. Функции сдвоенных плунжеров топливного насоса для двигателя Wärtsilä 64.
Вклад в надежность конструкции топливного насоса достигается за счет разделения нагрузки плунжера между двумя кулачками и роликами, что снижает нагрузку на эти компоненты и гарантирует безопасную работу при давлении впрыска до 2000 бар. Соответствующие толкатели для этих компонентов интегрированы в тот же корпус, что и толкатели для впускных и выпускных клапанов.
Топливная система высокого давления была спроектирована и испытана на долговечность при 2000 бар; фактическое давление впрыска около 1400 бар, таким образом, представляет собой значительный запас прочности.Для насосного элемента не требуется смазочное масло, поскольку плунжер имеет износостойкое покрытие с низким коэффициентом трения. Профилированная геометрия плунжера сохраняет зазор между плунжером и цилиндром небольшим, позволяя лишь минимальному количеству масла проходить вниз по плунжеру; небольшая утечка собирается и возвращается в топливную систему. Исключается возможность смешивания топлива со смазочным маслом. Форсунки и держатели форсунок изготовлены из высококачественной закаленной стали, чтобы выдерживать высокие давления впрыска и, в сочетании с масляным охлаждением форсунок, увеличивать срок их службы.
Безопасность топливной системы низкого давления обеспечивается запатентованной Wärtsilä концепцией нескольких корпусов. Топливопровод состоит из каналов, просверленных в литых деталях, которые прочно закреплены на блоке двигателя и соединены друг с другом простыми вставными соединениями для облегчения сборки и разборки. Насосы соединены вместе и образуют полную топливную магистраль низкого давления с подающим и обратным каналами; отпадает необходимость в сварных трубах. Безопасность дополнительно повышается за счет размещения всех систем низкого и высокого давления в полностью закрытом отсеке.
Система турбонаддува : на основе неохлаждаемых турбонагнетателей с внутренними подшипниками скольжения, смазываемыми из системы смазочного масла двигателя. Система турбонаддува Spex является стандартной, с опцией перепускной заслонки выхлопных газов или байпаса воздуха в зависимости от области применения. Spex, который использует импульсы давления, не нарушая продувку цилиндра, описан в разделе «Wärtsilä 46». Интерфейс между двигателем и турбонагнетателем усовершенствован, что исключает необходимость использования всех приспособлений и трубопроводов, которые раньше использовались.
Система охлаждения : разделена на отдельные контуры HT и LT (рис. 24.30). Температура гильзы цилиндра и головки блока цилиндров регулируется по контуру HT; температура системы поддерживается на высоком уровне (около 95 ° C) для безопасного воспламенения / сжигания некачественного тяжелого топлива, в том числе при работе при низких нагрузках. Дополнительное преимущество — максимальная рекуперация тепла. Чтобы еще больше увеличить рекуперируемое тепло от этого контура, он подключен к высокотемпературной части двухступенчатого охладителя наддувочного воздуха.Водяной насос HT встроен в модуль крышки насоса на свободном конце двигателя; Таким образом, полный контур HT практически не имеет труб.
Рис. 24.30. Система водяного охлаждения двигателя Wärtsilä 64.
Контур LT обслуживает часть LT охладителя наддувочного воздуха и встроенный охладитель смазочного масла. Он полностью интегрирован с такими частями двигателя, как водяной насос LT с модулем крышки насоса, термостатический клапан LT с модулем смазочного масла и передаточные каналы в блоке двигателя.Кроме того, контур LT обеспечивает отдельное охлаждение седел выпускных клапанов и более низкую температуру седла / клапана, что способствует увеличению срока службы этих компонентов. Насосы с прямым приводом обеспечивают безопасную работу даже при кратковременном отключении электроэнергии.
Система смазочного масла : все двигатели W64 оснащены полностью встроенной системой смазочного масла, включающей:
Модуль крышки насоса: главный винтовой насос с приводом от двигателя со встроенным предохранительным клапаном; модуль предварительной смазки; винтовой насос предварительной смазки с электрическим приводом; клапан регулирования давления; и центробежный фильтр для индикации качества смазочного масла.
Модуль смазочного масла: охладитель смазочного масла; масляные термостатические клапаны; полнопоточный автоматический фильтр; и специальные фильтры для приработки перед каждым коренным подшипником, распределительным валом и турбокомпрессором.
В двигателях с рядным цилиндром модуль смазочного масла всегда расположен на задней стороне двигателя, в то время как в V-образных двигателях он может быть установлен на двигателе на маховике или свободном конце, в зависимости от положения турбонагнетателя. Фильтрация смазочного масла основана на использовании фильтра с автоматической обратной промывкой, который требует минимального обслуживания и не требует одноразовых фильтрующих картриджей.
Система автоматизации : интегрированная с двигателем система, WECS, является стандартной и имеет следующие основные элементы:
Шкаф главного блока управления (MCU), который включает сам MCU, релейный модуль с резервным функции, локальный дисплей (LDU), кнопки управления и резервные инструменты. MCU обрабатывает всю связь с внешней системой.
Распределенный блок управления (DCU), обрабатывающий передачу сигнала по шине CAN на MCU.
Блоки мультиплексирования датчиков (SMU), передающие информацию датчика в MCU.
Программное обеспечение, загружаемое в систему, легко настраивается в соответствии с приборами и функциями безопасности и управления, необходимыми для каждой установки. Шкаф MCU хорошо защищен и встроен в двигатель; большая часть оставшегося оборудования размещена в специальном электрическом отсеке рядом с двигателем.
Ханну Яэскеляйнен, Магди К.Хаир
Это предварительный просмотр статьи, ограниченный некоторым исходным содержанием. Для полного доступа требуется подписка DieselNet.
Пожалуйста, войдите в систему , чтобы просмотреть полную версию этого документа.
Abstract : Турбокомпрессоры — это центробежные компрессоры, приводимые в действие турбиной выхлопного газа и используемые в двигателях для повышения давления наддувочного воздуха. Производительность турбокомпрессора влияет на все важные параметры двигателя, такие как экономия топлива, мощность и выбросы. Прежде чем перейти к более подробному обсуждению специфики турбокомпрессора, важно понять ряд фундаментальных концепций.
Турбокомпрессор состоит из колеса компрессора и колеса турбины выхлопного газа, соединенных сплошным валом и используемого для повышения давления всасываемого воздуха двигателя внутреннего сгорания. Турбина выхлопного газа извлекает энергию из выхлопного газа и использует ее для привода компрессора и преодоления трения. В большинстве автомобильных применений и компрессор, и турбинное колесо являются радиальными. В некоторых приложениях, таких как средне- и низкооборотные дизельные двигатели, можно использовать колесо турбины с осевым потоком вместо турбины с радиальным потоком.Поток газов через типичный турбокомпрессор с радиальным компрессором и турбинными колесами показан на Рисунке 1 [482] .
Рисунок 1 . Конструкция турбокомпрессора и расход газов(Источник: Schwitzer)
Center-Housing. Общий вал турбина-компрессор поддерживается системой подшипников в центральном корпусе (корпусе подшипника), расположенном между компрессором и турбиной (Рисунок 2). Узел колеса вала (SWA) относится к валу с прикрепленными колесами компрессора и турбины, т.е.е., вращающийся узел. Узел вращения центрального корпуса (CHRA) относится к SWA, установленному в центральном корпусе, но без корпусов компрессора и турбины. Центральный корпус обычно отлит из серого чугуна, но в некоторых случаях может использоваться и алюминий. Уплотнения предотвращают попадание масла в компрессор и турбину. Турбокомпрессоры для систем с высокой температурой выхлопных газов, таких как двигатели с искровым зажиганием, также могут иметь охлаждающие каналы в центральном корпусе.
Рисунок 2 . Турбокомпрессор в разрезеТурбонагнетатель отработавших газов бензинового двигателя в разрезе, показывающий колесо компрессора (слева) и колесо турбины (справа). Подшипниковая система состоит из упорного подшипника и двух полностью плавающих опорных подшипников. Обратите внимание на охлаждающие каналы.
(Источник: BorgWarner)
Подшипники турбокомпрессора
Подшипники. Система подшипников турбокомпрессора проста по конструкции, но играет ключевую роль в ряде важных функций.К наиболее важным из них относятся: контроль радиального и осевого движения вала и колес и минимизация потерь на трение в подшипниковой системе. Подшипниковым системам уделяется значительное внимание из-за их влияния на трение турбокомпрессора и его влияние на топливную экономичность двигателя.
За исключением некоторых крупных турбонагнетателей для тихоходных двигателей, подшипники, поддерживающие вал, обычно расположены между колесами в выступе. Эта гибкая конструкция ротора гарантирует, что турбокомпрессор будет работать выше своей первой и, возможно, второй критических скоростей, и, следовательно, может подвергаться динамическим условиям ротора, таким как завихрение и синхронная вибрация.
Уплотнения. Уплотнения расположены на обоих концах корпуса подшипника. Эти уплотнения представляют собой сложную конструктивную проблему из-за необходимости поддерживать низкие потери на трение, относительно больших перемещений вала из-за зазора в подшипниках и неблагоприятных градиентов давления в некоторых условиях.
Эти уплотнения в основном служат для предотвращения попадания всасываемого воздуха и выхлопных газов в центральный корпус. Давление во впускной и выпускной системах обычно выше, чем в центральном корпусе турбокомпрессора, который обычно находится на уровне давления в картере двигателя.По существу, они в первую очередь предназначены для уплотнения центрального корпуса, когда давление в центральном корпусе ниже, чем во впускной и выпускной системах. Эти уплотнения не предназначены для использования в качестве основного средства предотвращения утечки масла из центрального корпуса в выхлопную и воздушную системы. Попадание масла в контакт с этими уплотнениями обычно предотвращается другими средствами, такими как масляные дефлекторы и вращающиеся пальцы.
Уплотнения турбокомпрессора отличаются от мягких манжетных уплотнений, которые обычно используются во вращающемся оборудовании, работающем при гораздо более низких скоростях и температурах.Уплотнение с поршневым кольцом — это один из наиболее часто используемых типов уплотнений. Он состоит из металлического кольца, внешне похожего на поршневое кольцо. Уплотнение остается неподвижным при вращении вала. Иногда используются уплотнения лабиринтного типа. Обычно уплотнения вала турбонагнетателя не предотвращают утечку масла, если перепад давления меняется на противоположный, так что давление в центральном корпусе выше, чем во впускной или выпускной системах.
###
Назначение турбонагнетателя — сжимать воздух, поступающий в дизельный двигатель, это позволяет двигателю сжимать больше воздуха в цилиндр, а больше воздуха означает, что можно добавить больше топлива.Двигатель сжигает воздух и топливо для создания механической мощности. Чем больше воздуха и топлива он может сжечь, тем мощнее он будет.
Проще говоря, турбокомпрессор состоит из турбины и компрессора, соединенных общим валом, опирающимся на систему подшипников. Турбокомпрессор преобразует отработанную энергию выхлопных газов двигателя в сжатый воздух, который он проталкивает в двигатель. Это позволяет двигателю сжигать больше топлива, производя больше мощности и улучшая общую эффективность процесса сгорания.
Турбина состоит из двух компонентов; колесо турбины и коллектор, обычно называемый корпусом турбины. Выхлопной газ направляется через корпус в рабочее колесо турбины. Энергия выхлопных газов вращает турбину. После того, как газ прошел через лопасти колеса, он покидает корпус турбины через зону выпуска выхлопных газов.
Компрессоры противоположны турбинам.Они состоят из двух секций; рабочее колесо или колесо компрессора и корпус компрессора. Колесо компрессора соединено с турбиной валом из кованой стали. Когда колесо компрессора вращается, воздух втягивается и сжимается, поскольку лопасти вращаются с высокой скоростью. Корпус предназначен для преобразования воздушного потока с высокой скоростью и низким давлением в поток воздуха с низкой скоростью и высоким давлением посредством процесса, называемого диффузией.
Чтобы добиться этого ускорения, турбонагнетатель использует поток выхлопных газов двигателя для вращения турбины, которая, в свою очередь, вращает воздушный насос.Турбина в турбонагнетателе вращается со скоростью до 150 000 оборотов в минуту (об / мин), что примерно в 30 раз быстрее, чем может развивать большинство автомобильных двигателей. Поскольку он соединен с выхлопом, температура в турбине также очень высока.
Воздух поступает в компрессор с температурой, эквивалентной температуре атмосферы, однако, поскольку сжатие вызывает повышение температуры воздуха, он покидает крышку компрессора при температуре до 200 ° C.
Подшипниковая система турбонагнетателя смазывается маслом от двигателя.Масло под давлением подается в корпус подшипника через опорные подшипники и упорную систему. Масло также действует как хладагент, отводящий тепло, выделяемое турбиной.
Опорные подшипники свободно плавающего вращательного типа. Для правильной работы опорные подшипники должны плавать между масляной пленкой. Зазоры подшипников очень маленькие, меньше ширины человеческого волоса. Грязное масло или засоры в отверстиях для подачи масла могут серьезно повредить турбокомпрессор.
Двигатель внутреннего сгоранияЭлектростанции, которые могут надежно работать на различных газообразных или жидких топливах, обеспечивают энергетическую безопасность в случае перебоев в поставках топлива. Многотопливные двигатели Wärtsilä могут мгновенно переключать топливо, сохраняя при этом полную мощность и высокий КПД. Такая гибкость обеспечивает ключевое преимущество перед газовыми турбинами, которые имеют пониженную готовность и производительность при работе на жидком топливе. Благодаря гибкости в отношении топлива электростанции Wärtsilä могут удовлетворять растущие потребности диспетчеризации и оперативно реагировать на изменения в наличии топлива.
Энергетическая безопасность остается серьезной проблемой для многих стран мира. Потенциальные угрозыТопливная гибкость — это способность сжигать различные виды топлива и сразу же переключать виды топлива во время работы без снижения нагрузки или снижения эксплуатационной готовности электростанции. Жидкие топлива и альтернативные газовые топлива, которые могут использоваться для производства электроэнергии, включают сжиженный нефтяной газ (LPG), сырую нефть, остаточное жидкое топливо (RFO) и дистиллятное топливо, включая легкое жидкое топливо (LFO), нафту и дизельное топливо.Однако не все электростанции предназначены для работы на жидком топливе в течение продолжительных периодов времени. Когда из-за нехватки природного газа газовые турбины сжигают мазут в качестве резервного, требуются дополнительные проверки и техническое обслуживание, что приводит к более частым отключениям. Двигатели внутреннего сгорания Wärtsilä предназначены для сжигания различных газообразных и жидких видов топлива без необходимости увеличивать объем технического обслуживания или снижения эксплуатационной готовности, обеспечивая эффективное и надежное энергоснабжение 24/7/365.
Хотя газовые турбины часто рекламируются как обладающие гибкостью топлива, около 90 процентов газовых турбин во всем мире работают на природном газе или сжиженном природном газе (СПГ) из-за его чистоты и легкости сгорания.Только около 400 газовых турбин GE во всем мире работают на сырой нефти, нафте или тяжелом топливе. Парк заводов Wärtsilä, работающих на мазуте, включает более 4000 заводов с 8900 двигателями в 165 странах, как показано на Рисунке 1. Ряд электростанций Wärtsilä были спроектированы для работы на жидком топливе, а инфраструктура природного газа была построена или расширена с использованием нескольких -возможность топлива для удовлетворения как краткосрочных, так и долгосрочных потребностей в электроэнергии.
Рисунок 1: Обширный глобальный парк электростанций Wärtsilä, работающих на мазуте
Помимо жидкого топлива, Wärtsilä предлагает многотопливные решения, в которых СНГ используется в качестве топлива вместе с жидким топливом
или природным газом в качестве альтернативного топлива.СНГ становится все более привлекательным топливом для выработки электроэнергии
, особенно на островах и в небольших энергосистемах, из-за его широкой доступности и низких затрат на инфраструктуру.
Жидкое топливо представляет множество проблем для газовых турбин, поскольку оно может содержать водорастворимые соли, высокие концентрации тяжелых металлов и других примесей. Сырая и остаточная нефть более вязкие и содержат более высокие концентрации следов металлов, чем дистилляты.Металлы и соли являются абразивными для лопаток турбин и могут образовывать отложения золы, которые приводят к загрязнению и коррозии компонентов тракта горячего газа. Поскольку в газовых турбинах сгорание происходит непрерывно, блок необходимо отключить для проверки и технического обслуживания. Для газовых турбин, работающих на жидком топливе, требуется сочетание подготовки топлива (очистка, смешивание, нагрев и повышение давления) и более частых циклов технического обслуживания. Катализаторы могут быть добавлены для улучшения сгорания, и в некоторых случаях тяжелое жидкое топливо (HFO) или сырая нефть могут быть смешаны с более чистым жидким топливом для достижения допустимого содержания серы, золы и металлов.Для топлива, содержащего ванадий или свинец, растворимые в масле и не удаляемые промывкой или центрифугированием, требуются ингибиторы коррозии для использования в газовых турбинах. Обычно считается, что дистиллятное топливо относительно не содержит загрязняющих веществ, но загрязнение во время транспортировки и доставки топлива привело к возникновению коррозии в газовых турбинах.
Капитальный ремонт газовой турбины, предназначенной для сжигания жидкого топлива на природном газе, является дорогостоящим и требует корректировки контроля температуры горения, пересмотренных процедур запуска и останова, а также циклов автономной очистки для удаления отложений золы.В результате снижается доступность газотурбинной электростанции. Поскольку некоторые жидкие топлива содержат летучие компоненты с низкой температурой вспышки (например, нафта), взрывозащита также часто требуется для газовых турбин. Таким образом, способность большинства газовых турбин работать на жидком топливе очень ограничена с точки зрения характеристик топливных масел, которые могут использоваться, и количества времени, в течение которого турбина может работать на таких видах топлива.
Варианты жидкого топлива для газовых турбин различаются в зависимости от производителя и модели, при этом в некоторых газовых турбинах можно использовать только No.2 дистиллята. Для работы с различными видами топлива используются несколько систем подачи топлива и камеры сгорания. GE предлагает пакет HFO для своих газовых турбин 7E и 9E; газовая турбина Siemens SGT-500 может сжигать сырую нефть, HFO и бионефти; и Alstom предлагает возможность использования жидкого топлива на своих моделях GT24 и GT26.
Техническое обслуживание двигателяWärtsilä не зависит от типа топлива, поскольку двигатели не чувствительны к металлам или солям в жидком топливе. Никаких ингибиторов коррозии не требуется, и требуется лишь минимальная подготовка топлива (центробежные сепараторы и фильтры) для сжигания топлива более низкого качества, включая HFO / RFO и сырую нефть.Поскольку в двигателях внутреннего сгорания сгорание происходит с перерывами с выбросом продуктов сгорания во время такта выпуска, предотвращается накопление золы.
В то время как использование золообразующего топлива (например, HFO) снижает мощность газовой турбины на 4-5 процентов по сравнению с работой на природном газе, многотопливные двигатели Wärtsilä сохраняют ту же мощность и высокий КПД независимо от того, работают ли они на природном газе, LFO или HFO. . Если подача природного газа прерывается, многотопливная электростанция Wärtsilä мгновенно переключается на резервный мазут и поддерживает нагрузку без каких-либо штрафов за техническое обслуживание.Когда требуется текущее обслуживание, модульная архитектура электростанций Wärtsilä позволяет отключить двигатель, сохраняя при этом большую часть мощности электростанции.
В двухтопливных двигателях Wärtsilä (DF) используется технология сжигания обедненной смеси при работе на газе и нормальный процесс дизельного топлива при работе на мазуте. Двигатели Wärtsilä DF имеют три системы подачи топлива, которые работают параллельно: система впрыска пилотного топлива, система подачи жидкого топлива и система впуска газа. Система жидкого резервного топлива позволяет двигателю автоматически и мгновенно переключаться с работы на газе на работу на жидком топливе при любой нагрузке.Подача трех видов топлива также позволяет мгновенно переключаться с LFO на HFO. Гибкость в использовании топлива была основным фактором при выборе технологии многотопливных двигателей Wärtsilä для решения проблем с энергоснабжением в Иордании. Электростанция IPP3 мощностью 573 МВт, состоящая из 38 двигателей Wärtsilä 50DF, которые могут использовать природный газ, LFO и HFO, является крупнейшей трехтопливной электростанцией в мире, обеспечивающей Иорданию надежной мощностью.В то время как газовым турбинам требуется около 10 минут для переключения с газа базовой нагрузки на мазут, многотопливные двигатели Wärtsilä могут мгновенно переключаться с природного газа на мазут.Переход на газ с жидкого топлива занимает примерно 90 секунд без снижения нагрузки. Как показано в Таблице 1 ниже, многотопливные двигатели Wärtsilä обладают многочисленными преимуществами по сравнению с газовыми турбинами для гибких топливных решений, включая способность работать на широком диапазоне видов топлива без ущерба для работоспособности электростанции или дополнительных затрат на техническое обслуживание. Такая топливная гибкость обеспечивает экономию средств, поскольку электростанция Wärtsilä может гарантировать надежное энергоснабжение, поскольку запасы топлива меняются с течением времени.
Таблица 1. Топливная гибкость двигателей Wärtsilä по сравнению с газовыми турбинами
Характеристика топливной гибкости | Двигатели Wärtsilä DF | Газовые турбины |
---|---|---|
Возможность работы на природном газе, сырой нефти, HFO и LFO | ||
Мгновенное переключение с газа на мазут | ||
Переключить топливо с сохранением полной нагрузки | ||
Нечувствительность к металлам и солям в жидком топливе | ||
Нет необходимости в повышенном техническом обслуживании при работе на мазуте |
IHI предлагает широкий спектр продукции для выработки электроэнергии, включая газовые турбины, дизельные двигатели и газовые двигатели с энергосистемами простого, когенерационного и комбинированного цикла.Мы также предоставляем удаленный мониторинг, техническое обслуживание двигателя и другие услуги на протяжении всего жизненного цикла продукта. Мы добиваемся сокращения выбросов NOx и CO2 за счет использования газовых турбин с высоким КПД и низким уровнем выбросов. Поставляем газовые турбины для быстроходных судов и других морских судов. Мы также поставляем полный спектр дизельных двигателей, от больших двигателей, способных работать на средних и низких скоростях, до моделей малых и средних размеров, обеспечивающих низкие, средние и высокие скорости. В наш разнообразный модельный ряд входят дизельные двигатели для наземных генераторов.
Это электростанции класса 100 МВт, которые сочетают в себе две газовые турбины LM6000, два парогенератора с рекуперацией тепла и одну паровую турбину, чтобы производить самую эффективную в мире выработку электроэнергии, а также обеспечивать наилучшие экологические характеристики и надежность.
Это электростанции класса 20–30 МВт, в которых используется высокоэффективная и очень надежная газовая турбина LM2500, созданная на основе легкого и компактного авиадвигателя.
Это типичные энергосберегающие системы, которые вырабатывают 2 МВт мощности и 6 тонн пара в час за счет сочетания нашей оригинальной спроектированной и разработанной газовой турбины IM270 с высоким КПД и низким уровнем выбросов NOx и парогенератора-утилизатора.
Это системы когенерации класса 4-6 МВт и оригинальные системы когенерации IHI, которые могут изменять выработку как электроэнергии, так и тепла (пара) в соответствии с потребностями.Если есть избыток пара, он может быть преобразован в выработку электроэнергии для рекуперации энергии.
Это двухтопливный двигатель, использующий технологии сгорания с предварительным смешиванием и обедненной смесью, которые считались технически сложными для низкооборотного двухтактного двигателя.
Это большая особенность, позволяющая существенно снизить количество выбросов NOx двигателем.
Дизельный двигатель
Двигатели X — это двигатели нового поколения, которые разработаны и спроектированы с высокой эксплуатационной гибкостью, чтобы адаптироваться к различным условиям работы двигателя и удовлетворять требованиям более низкого расхода топлива.Двигатели 9X82 устанавливаются на контейнеровозы компании NYK 14 000 TEU в качестве главного двигателя. Эти двигатели 9X82 оснащены «двойной рейтинговой системой», которая включает функции оптимизации двух диапазонов мощности для работы с высокой и низкой нагрузкой. Эта «Двойная рейтинговая система» — лучшая в мире технология, которая позволяет судам значительно снизить потребление топлива и снизить выбросы CO2 для обоих диапазонов, что значительно способствует экономии эксплуатационной энергии при эксплуатации судна.
Четырехтактный среднеоборотный двигатель, используемый в качестве основного двигателя для больших паромов и патрульных катеров береговой охраны, а также в качестве генератора для наземных электростанций.
Дизельный двигатель — это «экологичный» среднеоборотный дизельный двигатель (от 2070 до 6660 кВт) следующего поколения, который, очевидно, соответствует нормам IMO Tier II NOx, а также ориентирован на будущее судовых двигателей.
Используемый в земле для генераторов (от 2000 до 6300 кВт), дизельный двигатель обеспечивает высокий КПД и низкий расход топлива мирового класса, используя как DO, так и HFO.
28AHX-DF — это экологически чистый двигатель, соответствующий нормам IMO Tier III по NOx в газовом режиме.В нем используется сжигание чистого газа, что позволяет соблюдать новые правила без селективного каталитического восстановления (SCR).
Газовый двигатель вносит значительный вклад в сокращение выбросов CO2 за счет высокоэффективной работы с использованием природного газа и городского газа, а также низкокалорийных газов, таких как газообразные в плавильных печах.
Электрогенераторы серии AGS с системой зажигания от свечи зажигания мощностью 2000–6000 кВтэ и с системой зажигания с микропилотом типа AG поставляются как в Японию, так и за границу в качестве стационарных генераторов энергии.
Z-PELLER® — самая популярная силовая установка на мировом рынке буксиров.Заказчики высоко оценивают этот силовой агрегат за его высокое качество и долговечность.
Наша линейка Z-PELLER® предлагает непрерывную мощность от 735 кВт (1000 л.с.) до 3310 кВт (4500 л.с.), что позволяет нам реагировать на различные потребности клиентов.
NICO производит и поставляет так называемое оборудование для впрыска топлива, клапан впрыска топлива и насос впрыска топлива для 4-тактного двигателя Deisel для производителей двигателей, таких как отечественные производители двигателей, европейцы, корейцы и китайцы, а также компания Niigatra Power Systems. Материнская компания NICO.NICO также разрабатывает FIE с электрическим управлением (то есть CRS: Common Rail System), а также обычные механические FIE.
Продукты
.