Menu

Разъем obd2 – схема подключения, коды ошибок, алгоритм диагностики автомобиля

Диагностический разъем OBD2

Содержание статьи

Разработка разъема obd2 началась 1988 году, а уже с 1994 года начали выпускать автомобили, отвечающие стандартам obd2, двумя годами позже он вступил в силу окончательно и стал обязательным для всех легковых и коммерческих автомобилей в США.

Позже и европейские законодатели также приняли obd2  за основу при разработке требований EURO 3, в числе которых есть и требования к системе бортовой диагностики — EOBD. В Европе принятые нормы действуют с 2001 года.

Дело в том, что в начале 1990-х годов в США стремительно развивалось экологическое движение, на фоне которого в США были приняты определенные стандарты, по которым ввели обязательное оснащение автомобилей электронными блоками управления (ЭБУ, ECU), или, если проще — системой за контролем работы двигателя и всех параметров, отвечающих за состав выхлопа.

Стандарт OBD2

Стандарты предполагали считывание информации об отклонениях в экологических параметрах работы двигателя, а также диагностики ЭБУ, obd2 как раз и является системой накопления и считывания подобных протоколов информации. Изначальная «экологическая направленность» obd2, с одной стороны, ограничила возможности по его использованию в диагностике всего спектра неисправностей, но с другой стороны  определила его крайне интересную судьбу и, как следствие, широкое распространение не только в США, но и на других автомобильных рынках.

С помощью obd2 можно снять практически любые данные, но общее количество физических интерфейсов и протоколов напугает любого. Это объяснимо тем, что к моменту появления первых версий спецификаций obd2 большинство автопроизводителей уже успели разработать что-то своё. Конечно, введение стандартов привело к некому порядку, но также потребовало включения в спецификацию всех интерфейсов и протоколов, которые на тот момент существовали, практически у всех.

В obd2 разъёме присутствуют три стандартных интерфейса:

MS_CAN, K/L-Line, 1850, там же плюс аккумулятора и две земли (сигнальная и просто масса). Это по стандарту, остальные 7 из 16 выводов – ОЕМ, то есть каждый производитель эти выводы использует как по его мнению наиболее удобно. Но и стандартные выводы зачастую имеют расширенные, продвинутые функции.

Например, MS_CAN может быть HS_CAN, HS_CAN может быть на других пинах (неоговоренных стандартом) наряду со стандартным MS_CAN., Пин №1 может быть: у Ford – SW_CAN, у WAGов – IGN_ON, у Кia – check_engene и т.д.

Все интерфейсы OBD2 также сильно развивались:

тот же интерфейс K –Line изначально был однонаправленным, сейчас он двунаправленный, Бодрейт CAN интерфейса также растёт. На сегодняшний день большинство европейских авто 90-х и начала 2000-х можно продиагностировать имея только K –Line, а большинство американских – только SAE1850. Сегодняшний вектор развития – это всё более широкое применение CAN, повышение скорости обмена, всё чаще видим и однопроводный SW_CAN.

Безусловно, стоит отдать дань стандартам, но все же каждый производитель привносит что-то свое в реализацию той или иной модели автомобиля и не всегда получается следовать стандартам и поэтому obd2 делает свое дело. Этот микроконтроллер, с набором интерфейсов, соответствующих стандарту J1962M переводит всё многообразие данных на разных интерфейсах диагностических разъёмов в язык, оптимальный для приложений, используемых для диагностики автомобиля.

В основном, сейчас большинство протоколов расшифровывается приложением, что позволяет любому профессионалу и не очень оценить данные по ошибкам и параметрам системы.  Первым массовым интерпретатором obd2 с открытым протоколом стал ELM327. Это 8-ми битный микроконтроллер MicroChip PIC18F2580, который стал широко распространён в авто кругах и его стоимость хоть и разнообразна, но вполне приемлема.

Использование такого адаптера автолюбителями начинается от —  положить в бардачок на всякий случаи и заканчивается —  сбросить ошибку перед продажей недобросовестным продавцом.

Обновление прошивок и переконфигурирование электронных блоков также возможно большинством адаптеров, но всё-таки лучше в таком случае обратиться к специалистам.

Кому-то просто нравится владеть всей информацией о параметрах работы двигателя и других систем в красивом интерфейсе приложения на телефоне.

Многих мучают вопросы: Насколько необходим данный стандарт obd2 в реальной практике, каковы его плюсы и минусы? Каким требованиям должны удовлетворять диагностические приборы?

Прежде всего надо понимать, что главное отличие данной системы самодиагностики от всех других — это ориентация на токсичность, которая, к сожалению, имеет место быть при использовании любого автомобиля.
В это понятие входят и вредные вещества, содержащиеся в выхлопных газах, и испарения топлива, и утечка хладагента из системы кондиционирования.

Такая ориентация определяет все сильные и слабые стороны стандартов obd2. Так как далеко не все неисправности имеют прямое влияние на токсичность, это сужает сферу действия стандарта. Но, с другой стороны, основными и самыми важными устройствами автомобиля являются двигатель и трансмиссия, а этого вполне достаточно, чтобы констатировать важность применения стандартов obd2.

Унификация OBD2

Вторым важным отличием стандарта obd2 является унификация. Стандартный диагностический разъём, унифицированные протоколы обмена, единая система обозначения кодов неисправностей дает производителям диагностического оборудования возможность создавать недорогие универсальные приборы, а специалистам значительно сокращать затраты на приобретение дорогостоящего оборудования для диагностирования и стандартизировать процесс, сокращая время на диагностику.

Одним из самых важных достижений стандарта диагностики obd2 является развитие оперативной диагностики и значительное упрощение данной процедуры. На блок управления возложено огромное количество функций, обеспечивающих беспрерывный контроль всех систем автомобиля. Благодарю развитию и усовершенствованию модельных рядов автопроизводителей, количество функций контроля блока управления кардинально растет с каждым поколением.

Давайте рассмотрим, как можно использовать диагностические возможности obd2 в повседневной работе.

Это и отражает документ J1979, определяющий диагностические режимы, которые должны поддерживаться как блоком управления двигателем/АКП, так и диагностическим оборудованием.

Ниже список этих режимов: — Параметры в реальном времени
— Сохраненный кадр параметров
— Мониторинг для непостоянно тестируемых систем
— Результаты мониторинга для постоянно тестируемых систем
— Управление исполнительными компонентами
— Идентификационные параметры автомобиля
— Считывание кодов неисправностей
— Стирание кодов неисправностей, сброс статуса мониторов
— Мониторинг датчика кислорода

Расположение OBD2

Ну и конечно же инструкция, где найти этот разъем в автомобиле. Диагностический разъем obd2 должен располагаться в радиусе максимум 18 см от рулевой колонки. В основном поддерживает до 20 параметров. Однако, для контроля над какой-либо системой ориентироваться достаточно по 2-3 параметрам, в редких случаях используют больше. Количество параметров и тип выдачи зависит от подключаемого сканера для диагностики. Разъем оснащен 16-ю контактами. Совмещение бортовых систем со сканером диагностики происходит благодаря распиновке.

Как правило, имеется возможность поддержки приблизительно 20 параметров. Для реализации контроля над какой-либо системой достаточно располагать 2-3 параметрами. В некоторых случаях их требуется больше. На количество параметров, контроль за которыми осуществляется одновременно, и форма их выдачи находится в зависимости от устройства, осуществляющего сканирование, и скорости передачи информации.

Подводя итоги, стоит отметить крайнюю полезность внедрения экологических норм еще в далеких 1990-х. Об этом все чаще задумывается современное общество. А obd2 помогает контролировать автомобиль водителям.

В случае несоответствия состава выхлопных газов стандартам загорается check engine, это сигнал об необходимости срочной проверки двигателя.

elm327.club

Разъем диагностики OBD-II, как интерфейс для IoT / Unet corporate blog / Habr

Когда-то давно, примерно в середине 90-х, во время появления процессора Pentium Pro, один из основателей компании Intel Гордон Мур заметил, что: «Если бы автомобилестроение развивалось со скоростью эволюции полупроводниковой промышленности, то сегодня Роллс-Ройс мог бы проехать полмиллиона миль на одном галлоне бензина, и было бы дешевле его выбросить, чем платить за парковку». Но, пожалуй, уже сегодня автомобилестроение совершает гигантский шаг развития в направлении, как кардинальной смены типа топлива, так и технологий управления автомобилем. Практически недавно представлены коммерческие электромобили и авто на водородном топливе, а автопилот становится желаемым компонентом электронной «начинки» транспортного средства. В большинстве своем, как раз стремительный рывок автопрома обусловлен появлением надежных и безопасных решений на основе умной электроники для автомобильных бортовых систем управления. Но, где же в повседневной жизни Интернет в автомобиле, где же технологии Интернета вещей (IoT), а также многим известная концепция подключенного к сети автомобиля (Connected Car)?


The Rolls-Royce 103EX. Rolls-Royce unveils driverless, electric concept car, complete with silk love seat – The Telegraph.

На самом деле, все вышеперечисленные технологии уже существуют и используются, однако, только в достаточно обособленных решениях. Виною тому, строгие требования к обеспечению безопасности, которые непременно должны быть реализованы при запуске любой новой технологии или решения на транспорте. Поэтому, нельзя сказать, что, садясь в автомобиль со смартфоном, можно автоматически получить решение IoT или Connected Car. В большинстве стран, и это очень логично, существует запрет на использование смартфона или других гаджетов за рулем, а если говорить о голосовых ассистентах, то в большинстве случаев они сейчас раздражают и отвлекают, как водителя, так и пассажиров. В свою очередь, медиа-центр, дополнительные видеоэкраны и отличная акустика, конечно, являются очень привлекательными составляющими современного автомобиля. Но хочется поймать себя на слове, и отметить, что как хорошо приглушить музыку и просто смотреть в окошко на проносящиеся мимо улицы или природу. Конечно, есть пробки, но в этой публикации ставится цель отметить не сколько этическую составляющую или рассмотреть проблемы информационного перенасыщения участников дорожного движения, а рассмотреть те «невидимые» компоненты технологий IoT, которые уже используются в транспортных средствах и доступны для широкого применения.

На сегодня, интересным и очень перспективным решением автомобильного IoT, является платформа Open Connected Car компании Mojio. Эта платформа с открытым интерфейсом (API) предоставляет облачный сервис для «подключенных» авто и уже доступны коммерческие предложения. Например, телекоммуникационный гигант Т-Mobile, на базе этой платформы, предоставляет сервис SyncUP DRIVE. Это программно-аппаратное решение на базе портативного устройства, подключаемого к автомобилю через разъем диагностики OBD-II, и соответствующее мобильное приложение. Благодаря такому подходу можно эффективно выполнять непрерывный мониторинг параметров работы своего автомобиля и в любой момент времени получать его текущее месторасположение. Приложение может рассказать о стилях вождения, предупредить о профилактическом обслуживании, а также уведомить владельца о проблемах с транспортным средством. Кроме того, SyncUP DRIVE разворачивает в автомобиле точку доступа Wi-Fi, используя доступ по высокоскоростному протоколу мобильного стандарта LTE.


The Open Connected Car Platform – Mojio

Для подключения к автомобилю используется стандартный диагностический разъем OBD-II. Большинство серийных автомобилей, выпущенных после 1996 года, уже оснащены таким разъемом. Хотя такой разъем диагностики и стандартизирован, но в нем поддерживаются сразу несколько протоколов различных систем управления двигателем (физически используются разные контакты на разъеме), которые должен «знать» коммуникационный модуль IoT. Соответственно в разных марках автомобилей могут быть разные внутренние шины получения данных диагностики с бока управления двигателя (ECU — Electronic control unit). Для работы с сервисом SyncUP DRIVE предлагается решение на основе модуля VM6200S компании ZTEWelink.

Модуль VM6200S поддерживает подключение по мобильному протоколу LTE, содержит интегрированный 3-х осевой датчик ускорений и 3-х осевой гироскоп, приемник GPS-сигналов, чип OBD-II, с поддержкой протоколов ISO 15765-4 (CAN), ISO 14230-4 KWP (Keyword Protocol 2000), ISO 9141-2 (Chrysler, Euro, and Asian automobiles), SAE J1850 PWM (Ford vehicles), SAE J1850 VPW (GM vehicles). Таким образом, модуль позволяет развернуть точку доступа Wi-Fi 802.11 b/g/n/, регистрировать события во время движения, выполнять диагностику работы двигателя, оценивать экономичность расхода топлива и т.п. А поскольку партнерами Mojio являются проекты Amazon Alexa, сервис IFTTT и другие, то для разработчиков и интеграторов решений открываются все перспективы вплоть до создания социального IoT на основе «подключенного» автомобиля, как составляющей такой инфраструктуры.


VM6200S4G OBD Device – ZTEWelink Corporation

Но не только SyncUP DRIVE сейчас представлена на рынке, например, многие компании предоставляют нечто подобное. Конечно, недавно появившийся Samsung Connect auto device – одно из таких интересных предложений, превращающих автомобиль в подключенное устройство. Решение от Samsung аналогичным образом использует мобильную сеть поколения 4G LTE и разворачивает внутри автомобиля точку доступа Wi-Fi: 802.11 a/b/g/n. Connect auto device поддерживает подключение Bluetooth v4.1, содержит GPS-приемник, датчик ускорений, гироскоп и базируется на 4-х ядерном процессоре с частотой 1.2GHz и операционной системе Tizen. Следует отметить, что корейский электронный гигант Samsung говорит о защищенности системы за счет использования Samsung Knox – мобильного решения с защитой уровня предприятия. Фактически Samsung Knox – это программно-аппаратное решение для усиления защиты операционной системы Android.


Samsung Connect auto

Таким образом, информация, полученная по средствам считывания данных OBD-II, текущие координаты месторасположения с GPS-приемника и параметры динамики движения автомобиля, полученные с гиро-сенсоров, на текущий момент времени и де-факто, стали основой для превращения любого транспортного средства в устройство IoT. Дальше можно рассмотреть сценарии использования агрегированной информации, полученной от автомобилей, применять различные методики обработки Big Data, и при этом не нужно забывать о перспективах объединения таких данных с информацией от инфраструктуры «умных» дорог. Но прежде чем заняться обработкой данных, нужно их сначала получить, поэтому в этой публикации уделим основное внимание аппаратной составляющей реализации сценариев работы на уровне диагностического разъема OBD-II.

Так или иначе, но все ранее рассмотренные решения – это более совершенные промышленные изделия, по сравнению с обычным устройством считывания кодов диагностики на базе микросхемы ELM327 канадской компании Elm Electronics. ELM327 – это универсальный преобразователь протоколов, используемых в диагностических шинах автомобилей, в последовательный протокол типа RS-232.


Структурная схема микросхемы ELM327 v2.2 – Elm Electronics

Взаимодействие с ELM327 осуществляется стандартными AT-командами, поддерживаемыми микросхемой. Нужно просто организовать обмен текстовыми сообщениями по, уже ставшему классикой, протоколу RS-232 (или правильнее UART, т.к. речь идет только о потоке данных, а не уровнях сигнала). А само физическое соединение низкого уровня по USB, Bluetooth или Wi-Fi просто реализуется, с применением микросхем преобразования последовательного протокола UART. Получается, чтобы превратить автомобиль в устройство IoT вполне достаточно, не забыв о согласовании уровней напряжений, подключить микросхему ELM327 к диагностическому разъему OBD-II и на выходе этой микросхемы, например, поставить преобразователь последовательного интерфейса в Bluetooth или Wi-Fi. Затем, можно со своего смартфона «считывать» диагностику автомобиля. Впрочем, таких готовых модулей или блоков на рынке предостаточно. А их цена на AliExpress колеблется в пределах US $2.50 – US $10. Хотя модуль и не должен потреблять много энергии, но будет очень удобно, если на нем уже присутствует кнопка отключения питания. Кстати, с точки зрения защищенности – это тоже не плохо.


Mini ELM327 Bluetooth OBD-II Car Diagnostic Adaptor V1.5

Теперь можно подключить стандартный модуль Mini ELM327 Bluetooth OBD-II V1.5 (интересно, что во многих источниках советуют использовать модули со старой прошивкой версии 1.5, а не новые с версией 2.2, т.е. как аргумент высказывается более стабильная работа модуля на старой прошивке и поддержка большего количества авто, но это очень субъективно) и поэкспериментировать с подключением смартфона к выбранному модулю, например, для платформы Android можно использовать одну из самых популярных программ диагностики Torque Lite (OBD2 & Car) или Torque Pro (OBD 2 & Car), а также что-нибудь попроще или использовать свои наработки.


Работа приложения Torque Pro под Android.

Кстати, хочется отметить, очень удобный сервис MockUPhone с бесплатными mock-up современных гаджетов, который очень пригодился, для подготовки скриншота работы программы Torque. Но это небольшое отступление от темы публикации. Нужно заметить, что в большинстве случаев, разъем OBD-II, к которому подключается модуль диагностики, находится под рулевой колонкой автомобиля.


Getting Started with OBD-II – SparkFun Electronics

Понятно, что уже готовых решений существует множество. Но если речь идет о разработке сервиса на основе IoT или более конкретно – реализуется концепция Connected Car, то достаточно удобно использовать эмулятор бортовой информационной сети автомобиля, чтобы не бегать каждый раз к автомобилю. Например, Mojio для работы со своим API предлагает онлайн симулятор автомобиля, а на примере работы с облачным сервисом IBM Watson IoT Platform в статье: «Sending Vehicle Data to the IBM Watson IoT Platform – IBM developerWorks Recipes» предлагается для отправки в облако данных с транспортного средства использовать мобильное приложение, например, «IBM IoT for Automotive — OBDII Fleet Management App for Android», которое взаимодействует с разворачиваемым облачным сервисом «IBM IoT for Automotive (Bluemix) — Fleet Management Starter Application», но если не отвлекаться на эти проекты можно использовать просто эмулятор данных: «Car Simulator». Правда, все эти решения, в основном, эмулируют уже как бы полученные данные, а нам интересен именно эмулятор бортовой информационной сети. Наиболее известное такое решение – это ECUsim 2000, стоимость которого начинается с отметки US $200 и зависит от количества поддерживаемых эмулируемых протоколов.


ECUsim 2000 OBD Simulator – ScanTool

Конечно, профессиональный эмулятор не заменишь, но энтузиастов и гиков вполне может заинтересовать самостоятельная реализация менее сложного проекта на Arduino или Raspberry Pi. Например, можно ограничиться только наиболее распространенным интерфейсом CAN (Controller Area Network). В свое время, стандарт CAN, предложенный компанией Bosch, совершил заметный прогресс в разработке систем для автомобильной электроники. Если автомобиль в сети Интернет появился только недавно, то концепция сети внутри автомобиля существует уже с середины 80-х. Идея очень проста, и как Ethernet совершил прорыв в компьютерных сетях, так и CAN стал основой надежных коммуникаций внутри автомобиля.


An Arduino Based CAN Bus Network – Henry’s Bench

Раньше в автомобиле, как правило, к центральному блоку управления двигателем «стекались» шины и провода различных подключенных модулей и устройств. Последовательная двухпроводная шина CAN позволила реализовывать уже независимые интеллектуальные модули, например, центральный блок управления стал просто одним из таких модулей, которые «общаются» друг с другом фактически по сетевому протоколу. При этом значительно уменьшается количество проводки внутри автомобиля.

В отличие от Ethernet, сеть CAN значительнее надежнее, что обусловило ее применение не только в автопроме, но и в системах промышленной автоматики, решениях умного дома и т.п. На физическом уровне в CAN используется двухпроводная линия, CAN Lo и CAN Hi, которые побитно передают данные, упакованные в пакет. На концах шины присутствуют согласующие сопротивления по 120 Ом, а также для подавления помех следует использовать скрутку проводов. Скорость передачи данных может достигать 1 Мбит/с.


A Controller Area Network (CAN bus)

Передача данных в CAN bus чем-то напоминает модель «издатель-подписчик», где каждое устройство на шине имеет уникальный идентификатор и, когда передает данные одно устройство, то все остальные слушают, и принимают решение на основе этого идентификатора – нужны ли конкретно им эти данные для приема и обработки или нет. В общем, протокол достаточно сложен, но для микроконтроллера или микропроцессора вряд ли придется писать реализацию CAN, а также думать об особенностях физической среды передачи данных. Для решения этих задач уже есть готовые аппаратные контроллеры шины, а для согласования уровней, зачастую применяются интегральные преобразователи. Например, контроллер MCP2515 с интерфейсом SPI и трансивер (согласовательная микросхема уровней) MCP2551. Как раз на базе этих микросхем и предложен проект Arduino OBD2 Simulator, опубликованный на площадке Instructable. Для его реализации потребуется лишь плата Arduino UNO и CAN-BUS Shield, например, компании Seeed Technology.


Эксперименты с применением Arduino OBD2 Simulator

В принципе, для разработки эмулятора данных OBD-II, не помешает наличие блока питания DC на 12V для модуля ELM327, а также разъем OBD-II. Впрочем, no-name преобразователь DC-DC-USB-TO-12V вполне может решить проблему, т.к. несколько блоков питания на 5V, пожалуй, будут под рукой у любого разработчика для Интернета вещей и не только. Для подключения к OBD-II потребуется два информационных провода CAN_H и CAN_L, а также наличие питания 12 V, но как было замечено ранее, 12 V нужно только для обеспечения работоспособности для модуля ELM327.


CAN-BUS Shield V1.2 — Seeed Development Limited Wiki

На плате расширения CAN-BUS Shield очень удобно использовать не разъем D-SUB, а просто клеммник на два контакта (CAN_H, CAN_L). С точки зрения разработки программного кода, следует отметить, что прототип энтузиасты выложили на GitHub. Сейчас платы от Seeed изменились, да и в любом случае для контроллера MCP2515 лучше использовать новые драйверы все той-же Seeed-Studio. Конечно, оригинальную программу нужно будет немного доработать под новые драйверы, но это дело на пару минут.


Работа с CAN-BUS в среде Arduino IDE на основе low cost OBD2 ECU Simulator

Однако, рассмотренный пример очень примитивен, так как все параметры, отправляемые по протоколу OBD-II, просто генерируются случайным образом, нет связи параметров работы двигателя между собой и т.д. Как продолжение проекта очевидным является разработка приложения, похожего на Freematics OBD-II Emulator GUI. Это графическая оболочка с открытым исходным кодом, которая используется в аппаратном решении Freematics OBD-II Emulator.


Freematics OBD-II Emulator GUI – Freematics

Таким образом, собрав на базе Arduino модуль, позволяющий работать с CAN, вполне можно создать эмулятор OBD-II, так как протокол диагностики хорошо описан и его несложно реализовать. Следует отметить, что реализация взаимодействия микроконтроллера и бортовой шины CAN – это совсем другая задача и нужно понимать, что внутренние высокоуровневые протоколы этой шины не документируются автопроизводителями, да и с другой стороны – не следует внедрятся во внутреннее устройство автомобильной электроники, чтобы не коим образом не снизить безопасность эксплуатации транспортных средств. Если говорить о CAN в общем, то для разработки своих устройств на базе этой шины вполне можно использовать высокоуровневый открытый протокол CANopen.

Остается дело за малым – немного свободного времени и в удовольствие выполнять разработку своего кода. Правда, где же это время найти в конце года? Но будем оптимистами. А вот, если говорить о применении такого эмулятора OBD-II, то самое прямое направление – это разработка уже своего модуля для диагностического разъема. Например, за отправную точку можно взять открытый проект Carloop, который нацелен на создание модуля подключения автомобиля к облаку с использованием технологий 3G, Wi-Fi или Bluetooth.


Carloop Bluetooth

Проект Carloop основывается на использовании плат: Particle Photon (на базе Wi-Fi модуля Cypress BCM43362, который поддерживает стандарт 802.11b/g/n; контроллера семейства ARM Cortex M3 – STM32F205 на частоте 120Mhz; 1MB флеш-памяти; 128KB оперативной памяти) и Electron (платы с поддержкой подключения к сети мобильной связи 3G/2G). Платформа Particle и сама очень интересна, поскольку базируется на облачном сервисе подключения устройств IoT, облачной IDE для разработки, например, на базе плат Photon, где используется язык похожий на C/C++ для Arduino. Фактически Particle – это отдельная тема для публикации, а проект Carloop однозначно заслуживает отдельного внимания со сороны энтузиастов автомобиля, как подключенного устройства IoT.

Подключив автомобиль к сети Интернет и сервисам IoT, можно реализовать множества сценариев, которые несомненно будут способствовать удобству эксплуатации транспортных средств, повышению комфорта и, просто, эфективному решению повседневных задач, конечно, включая и решение транспортных перевозок. Например, данные о стиле вождения, надежности работы двигателя и агрегатов автомобиля, вполне могут и уже сейчас учитываются страховыми компаниями. Текущее месторасположение автомобиля будет актуально для сервисов такси и аренды автомобилей. Взаимодействие участников дорожного движения стает более удобной при использовании IoT, так же проблема парковок, поиска свободных мест на стоянке, и многое-многое другое.

Надеемся, что идея этой публикации достигнута – в одном месте собраны материалы по работе с диагностическим разъемом OBD-II, как на уровне простого считывания кодов неисправностей, так и эмуляции физического подключения к автомобилю. Также надеемся на комментарии читателей. В завершении хочется отметить, что рассмотрены лишь некоторые вопросы разработки устройств Connected Car, но «за кадром» остались многие технологии, которые, так или иначе, превращают современный автомобиль в устройство IoT и делают поезки более комфортными и безопасными. Разумеется мы будем возвращаться к этим темам в наших будущих публикациях.

Интересные ресурсы и ссылки:


— Car Hacking: так ли безопасны системы безопасности автомобиля? – Хабрахабр
— Микропроцессору- 25 лет! – Computerworld
— T‑Mobile SyncUP DRIVE – T-MOBILE
— ZTE и Mojio сделают практически любой автомобиль частью Интернета вещей – ZTE Corporation
— Samsung Knox – SAMSUNG
— Возможности CAN протокола – Журнал «СТА»
— Интернет вещей в вашем доме — подключите к дому свою машину – IBM developerWorks
— Vehicle telematics analytics using Watson IoT Platform Cloud Analytics – IBM developerWorks Recipes
— Использование сети CAN и стека CANopen – Хабрахабр
— Протокол высокого уровня CANopen – Журнал РАДИОЛОЦМАН
— Бортовой компьютер для авто на Arduino своими руками – Geektimes
— Wiring the MCP2515 Controller Area Network CAN BUS Diagnostics – 14CORE
— Arduino OBD2 ELM327 I2C-LCD HC05 Bluetooth – Instructables
—Разработка Android приложения для работы с OBDII протоколом – Хабрахабр

habr.com

распиновка, виды и блокировка своими руками

Диагностический автомобильный разъем представляет собой специальный выход, которым комплектуются все без исключения современные авто и большинство уже выпущенных машин. Этот элемент необходим для проведения проверки работоспособности узлов и агрегатов транспортного средства и выявления неисправностей в их работе. Подробная информация о ДР приведена в этой статье.

Содержание

[ Раскрыть]

[ Скрыть]

Характеристика диагностического разъема

Виды и распиновка диагностических разъемов может отличаться в зависимости от марок автомобилей. Чтобы узнать, какой вид разъема для диагностики установлен на вашем авто и где он находится, необходимо воспользоваться сервисным мануалом, поскольку расположение также может отличаться. Для начала ознакомимся с основной информацией касательно видов и расположения устройств для диагностики (автор видео — Мир авто).

Разновидности

Вид разъема, как сказано выше, может отличаться в зависимости от модели машины. Тем не менее, на сегодняшний день в современных авто могут использоваться только устройства, соответствующие стандартам OBD-1 и OBD-2. В основном все новые авто оборудованы OBD-2.

Подробное описание и схема наиболее распространенных колодок приведена ниже:

СхемаОписаниеАвто

Выход с обозначением контактов

Данный тип представляет собой 12-контактное устройство, в котором:
  • А — это GND выход;
  • В — К-Line выход, которого может не быть;
  • M — K-Line;
  • G — колодка управления топливным насосом;
  • Н — питание от бортовой сети, но этого контакта может не быть.
Устанавливается на все модели автомобилей ВАЗ с инжекторными двигателями, выпущенные до 2002 года.

OBD-2 устройство для ВАЗ

Такой тип 16-контактного устройства соответствует стандарту OBD-2. В данном случае описывать назначение контактов мы не будем, стоит только сказать, что обмен данными с блоком управления осуществляется по контакту K.Таким девайсом оборудуются все двигатели ВАЗ инжекторного типа, выпущенные после 2002 года. При этом стандарт мотора должен соответствовать нормам Евро3.

OBD-2 выход для всех Фольксвагенов и большинства других современных авто

В данном случае назначение контактов следующее:
  • 2 — шина плюс;
  • 4 — земля;
  • 5 — сигнальное заземление;
  • 6 — контакт CAN высокий;
  • 7 — линия диагностики К;
  • 10 — шина минус;
  • 14 — контакт CAN низкий;
  • 15 — L-контакт для проверки;
  • 16 — питание от бортовой сети.
Такой диагностический разъем ставится на все без исключения автомобили Фольксваген, выпущенные после 1996 года. Также им оснащались некоторые Фольцы, произведенные в период с 1994 по 1996 годы. Аналогично таким выходом для диагностики оборудуются многие транспортные средства, выпущенные после 1996 года, в том числе Хонда, Рено, БМВ и т.д.

OBD для Хонды

  • 1 — контакт K-Line;
  • 2 — контакт питания от аккумулятора авто;
  • 3 — заземление или масса;
  • элементы 4 и 5 применяются для считывания кодом самодиагностики.
Диагностические разъемы автомобилей Хонда, выпущенные до 2001 года.

OBD для всех современных автомобилей Деу

Назначение контактов в данном случае следующее:
  • 2 — шина плюс;
  • 4 — земля;
  • 5 — сигнальное заземление;
  • 6 — CAN-шина;
  • 7 — выход для проверки авто К;
  • 10 — шина минус;
  • 14 — еще одна CAN-шина, низкая;
  • 15 — выход для проверки авто L;
  • выход для питания от бортовой сети.
Диагностические разъемы автомобилей Деу, выпущенных после 2000 года.

Расположение

Автомобильный ДР для проверки систем

Многим автовладельца интересно — где находятся устройства в их авто? Как сказано выше, расположение диагностических разъемов может быть разным в зависимости от модели транспортного средства и года ее выпуска.

Если вы не знаете, где искать ДР, его расположение может быть следующим:

  1. В моторном отсеке. Такое расположение ДР актуально для автомобилей семейства ГАЗ.
  2. Под вещевым ящиком со стороны переднего пассажира. Раньше такие ДР ставились на ВАЗы, выпущенные до 2002 года.
  3. В более современных ВАЗах расположение ДР другое — устройство находится в салоне транспортного средства, а именно под центральной консолью со стороны водителя.
  4. В районе левой ноги водителя под пластиковой облицовкой. Такое расположение актуально для Фольксвагенов, выпущенных до 1996 года, в частности, речь идет о микроавтобусах LT.
  5. В блоке предохранителей. Как правило, в этом месте ДР установлены в машинах Фольксваген, выпущенных в период с 1989 по 1997 год.
  6. Под центральной консолью со стороны водителя — это место установки сегодня является наиболее распространенным среди автомобильных производителей. Если вашего автомобиля нет в этой статье, то ищите разъем в этом месте.
  7. Под пепельницей.
  8. В автомобилях Деу ДР может располагаться и со стороны водителя, и со стороны пассажира (автор видео — Мир Матизов).

Основные способы блокировки

На сегодняшний день блокировка диагностического разъема является одним из основных вариантов защиты своего транспортного средства от угона. Благодаря блокировке автовладелец сможет предотвратить незаконное подключение к различным системам машины и избежать возможного обхода противоугонной системы программным способом. При блокировке ДР преступник не сможет произвести проверку заблокированных элементов мотора.

Вариантов блокирования устройства может быть несколько:

  1. Первый из них — это перенос самого ДР в другое место. Так злоумышленник, который попытается угнать машину, столкнется с проблемой поиска ДР, который может быть установлен где угодно. Автовладелец может перенести устройство в моторный отсек или спрятать его где-нибудь в салоне.
  2. Перепиновка контактов ДР и изготовление специального переходника для его использования. В этом случае достаточно только переназначить несколько проводов на устройстве. Но для того, чтобы пользоваться таким ДР, потребуется специальный переходник, где контактны также будут перепинованы. В противном случае диагностика транспортного средства будет невозможной.
  3. Полное удаление ДР и установке вместо него нестандартного устройства. В дальнейшем для проведения диагностики потребуется ответная часть от такого ДР с колодкой проводов, то есть, по сути, тот же переходник.
  4. Еще один метод, который в последнее время получил большой распространение — это использование так называемой секретки. Секретка представляет собой девайс, предназначенный для усиления функций установленного иммобилайзера. Как правило, большинство современных производителей изготавливают секретные компоненты так, что ДР по своей конструкции остается таким же, при этом никакие переходники для его эксплуатации не нужны. В случае попытки угона осуществляется блокировка проводки, которая идет от ДР в салоне и в моторном отсеке, а в образовавшийся разрыв ставится управляющая схема. Что касается управления, то здесь все зависит от производителя устройства. К примеру, может быть установлен дополнительный ДР, который будет выведен в другом месте, а иногда управление может осуществляться посредством SMS-команд.
 Загрузка …

Видео «Обзор блокировочной системы ДР»

Из видео ниже вы можете ознакомиться с одной из наиболее современных систем блокировки ДР от угона машины (автор ролика — канал Угона.нет — защита от угона).

avtozam.com

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *