Menu

Разъем obd 2 протокол aldl: OBDII — система бортовой диагностики автомобилей

Содержание

OBDII — система бортовой диагностики автомобилей

Бортовая диагностика, или OBD, это автомобильный термин, который имеет прямое отношение к системе самодиагностики автомобиля. OBD предоставляет доступ к важнейшей информации о состоянии систем автомобиля механику или его владельцу. Количество диагностической информации сильно изменилось с момента появления первых систем в начале 80-х гг. Первые OBD управляли включением индикаторной лампы неисправности, или MIL, при возникновении поломки — но сопровождающая информация, связанная  с  возможной причиной неисправности, в этих системах отсутствовала. Современные системы OBD используют стандартный цифровой разъем для передачи данных в режиме реального времени и диагностических кодов неисправности, или DTC, которые позволяют быстро выявить неисправность и найти способ ее устранения.

    История систем OBD

1969 г.: 

Фольксваген устанавливает первый бортовой компьютер с функцией сканирования систем на модели типа 3 с инжекторной системой подачи топлива. 

1975 г.: 

Датсан 280Z Бортовые компьютеры начинают устанавливаться на пассажирских автомобилях, в основном, в связи с необходимостью регулярных настроек инжекторных систем подачи топлива. Появляется простейшая система OBD, в которой отсутствовал стандартный протокол мониторинга и передачи данных.  

1980 г.:

 Дженерал Моторс создает собственный интерфейс и протокол для тестирования ЭБУ двигателя (ECM) на сборочной линии. Протокол «Диагностика на сборочной линии» (ALDL) работает со скоростью передачи данных 160 бод в режиме широтно-импульсной модуляции (ШИМ) и контролирует работу лишь небольшого числа систем автомобиля. ALDL присутствовала на автомобилях, проданных в Калифорнии, в 1980 г. и затем в США в 1981 г.. ALDL не предназначалась для диагностики систем вне заводских стен. Единственной доступной для владельца функцией был так называемый «Мигающий код». После замыкания контактов A и B (при включенном зажигании и выключенном двигателе), лампа «Проверить двигатель»  (CEL) или «Требуется обслуживание» (SES) начинает мигать в режиме двузначного цифрового кода, которому соответствует определенная неисправность. Автомобили с инжекторами двигателями марки «Кадиллак» (бензиновые) оснащались полноценной системой бортовой диагностики, которая выдавала коды неисправностей, выполняла контроль исполнительных устройств и датчиков с помощью новейшего цифрового экрана системы климат-контроля. Одновременное нажатие кнопок «Off» (Выкл.) и «Warmer» (Обогрев) в течение нескольких секунд включало режим самодиагностики, поэтому внешнее диагностическое устройство не требовалось.

1986 г.: 

Появляется обновленная версия протокола ALDL, работающая на скорости передачи данных до 8192 бод с использованием однопроводного UART (универсальный асинхронный приемопередатчик). Этот протокол получил название GM XDE-5024B.

1988 г.: 

Общество автомобильных инженеров (SAE) рекомендует стандартизировать диагностический разъем и диагностические сигналы.

1991 г.:  

Совет по воздушным ресурсам Калифорнии (CARB) требует, чтобы все новые автомобили, проданные на территории Калифорнии в 1991 году и позже, имели режим OBD. Эти требования относятся к «OBD-I», хотя данное название официально не использовали  до введения протокола OBD-II. Разъем для передачи данных и его расположение не были стандартизированы, как и сам протокол передачи данных.

 1994 г.: 

Мотивируя свое желание внедрить программу проверки токсичности автомобилей  в США, CARB выпускает спецификацию для OBD-II и требует, чтобы система была установлена на всех автомобилях, проданных в Калифорнии, начиная с 1996 модельного года  (см. CCR, параграф 13, раздел 1968.1 и 40 CFR, часть 86, раздел 86.094). Коды DTC и диагностический разъем, рекомендованные обществом SAE,  включены в указанные требования.

1996 г.: 

Требования OBD-II обязательны для всех автомобилей, проданных на территории США.

2001 г.:  

Европейский Союз вводит систему EOBD , которая становится обязательной для всех автомобилей с бензиновыми двигателями, проданных на территории ЕС с 2001 модельного года (см. Стандарты токсичности в ЕС Директива 98/69/EC).

2004 г.: 

 Европейский Союз вводит систему EOBD, которая становится обязательной для всех автомобилей с дизельными двигателями, проданных на территории ЕС.

2008 г.: 

Все автомобили, проданные на территории США, должны соответствовать стандарту ISO 15765-4  (шина типа Бортовой контроллер связи (CAN)).

2008 г.: 

Ряд легковых автомобилей в Китае в соответствии с требованиями Администрации по защите окружающей среды должны быть оснащены системой OBD (стандарт GB18352) к 01 июлю 2008 г. За исключением некоторых провинций Китая.

2010: 

HDOBD (автомобили высокой грузоподъемности) стандарт обязателен для определенных коммерческих (непассажирских) автомобилей, проданных на территории США.

Стандартные интерфейсы

ALDL

Интерфейс ALDL Дженерал Моторс (диагностика на сборочной линии) иногда называют предшественником или заводской версией OBD-I. Интерфейс имел множество вариантов в зависимости от блоков управления (PCM, ECM, ECU). Разные варианты немного отличались раскладками разъемов и скоростями передачи данных в бодах. Более ранние версии работали на скорости 160 бод, а более поздние – на скорости до 8192 бод и использовали двунаправленную линию передачи данных, связанную с ЭБУ PCM.

OBD-I

Стандарт OBD-I был создан для того, чтобы мотивировать автопроизводителей на разработку более надежных систем снижения токсичности, которые должны эффективно работать в течение всего полезного срока службы автомобиля. Цель состояла в том, чтобы путем ежегодной проверки токсичности автомобилей в Калифорнии, отказывать в регистрации тем автомобилям, которые не проходят данный тест, таким образом, это должно было стимулировать владельцев на покупку более надежных автомобилей. В целом, программа OBD-I себя не оправдала, так как диагностическая информация не была стандартизирована, а сложности с получением надежной информации о токсичности выбросов привели к провалу в реализации ежегодной программы контроля токсичности автомобилей.

OBD-1.5

OBD 1.5 представляет собой половинчатую версию системы OBD-II, которую компания Дженерал Моторс использовала на некоторых автомобилях 1994, 1995 и 1996 г. выпуска (компания не указывала термин OBD 1.5 в документации на данные автомобили — в руководствах по ремонту присутствовали разделы OBD и OBD-II).Например, Корвет 94–95 г. выпуска имел один датчик кислорода, установленный после каталитического нейтрализатора (хотя автомобили оснащались двумя каталитическими нейтрализаторами), и неполный набор кодов OBD-II. 

В Корветах 1994 г. выпуска использовались следующие коды OBD-II:  P0116-P0118, P0131-P0135, P0151-P0155, P0158, P0160-P0161, P0171-P0175, P0420, P1114-P1115, P1133, P1153 и P1158. Эта гибридная система была установлена на автомобилях Дженерал Моторс с платформами H-body 94-95 г. выпуска, W-body (Бьюик Регал, Шевроле Люмина (только 95 г. выпуска), Шевроле Монте-Карло (только 95 г. выпуска), Понтиак Гран при, Олдсмобил Котлас Суприм) 94-95 г. выпуска, L-body (Шевроле Берета/Корсика) 94-95 г. выпуска, Y-body (Шевроле Корвет) 94-95 г. выпуска,  F-body (Шевроле Камаро и Понтиак Файрберд) 95 г. выпуска, J-Body (Шевроле Кавалер и Понтиак Санфайр) и N-Body (Бьюик Скайларк, Олдсмобил Ачива, Понтиак Гранд Ам) 95 и 96 г. выпуска и также Сааб 94-95 г. выпуска с атмосферными двигателями 2,3 л.

Раскладка разъема ALDL на этих автомобилях выглядела так:

       В разъемах ALDL контакт 9 предназначен для передачи данных, контакты 4 и 5 выполняют роль заземления, а контакт 16 – напряжение АКБ.

Для OBD 1.5 предусмотрен совместимый сканер для считывания кодов OBD 1.5. Диагностика других систем автомобиля также выполнялась через указанный разъем. Например, на Корветах предусмотрены интерфейсы для последовательной передачи данных Класса 2 ЭБУ PCM, диагностирования СCM, передачи данных радиосистемы, системы пассивной безопасности, системы настройки подвески в зависимости от стиля вождения, системы предупреждения о низком давлении в шинах, системы бесконтактного доступа в автомобиль.

OBD 1.5 была установлена также на автомобилях Митсубиси 95-97 г. выпуска, некоторых Фольксвагенах с двигателем VR6 1995 г. выпуска, а также на моделях Бьюик Ривьера 1995 г. выпуска, Форд Скорпио начиная с 95 г. выпуска.

   OBD-II

OBD-II представляет собой дальнейшее развитие системы OBD-I с точки зрения стандартизации и совместимости. Стандарт OBD-II предусматривает наличие диагностического разъема определенного типа (это касается также раскладки разъема) и использование протоколов для передачи данных в форме сигналов и в формате сообщений. Он также содержит список параметров автомобиля. В диагностическом разъеме предусмотрен контакт с напряжением АКБ для питания сканера, поэтому нет необходимости подключать диагностический прибор отдельно к источнику питания. Но, некоторые механики все-таки продолжают это делать во избежание потери данных в случае исчезновения бортового питания автомобиля или из-за неисправности. Наконец, стандарт OBD-II имеет более широкий список кодов DTC. В результате стандартизации на автомобиле применяется одно устройство, которое опрашивает все блоки управления автомобиля. OBD-II реализована в двух версиях: OBD-IIA и OBD-IIB. Стандартизация OBD-II введена с целью удовлетворения автомобилем жестких требований токсичности, и, несмотря на то, что диагностический разъем предназначался только для передачи данных, связанных с контролем эмиссии, и соответствующих кодов неисправности, большинство автопроизводителей стали использовать  разъем OBD-II для диагностики и перепрограммирования всех систем автомобиля. Диагностические коды неисправности OBD-II состоят из 4 символов, которые предваряет буква: P – для двигателя и трансмиссии, B для кузова, C для шасси и U для сети.

Диагностический разъем OBD-II

Стандарт OBD-II имеет стандартизированный интерфейс – 16-контактный (2×8) J1962 разъем. В отличие от разъема OBD-I , который иногда располагался под капотом автомобиля, разъем OBD-II должен находиться в 2 футах (0,61м) от рулевой колонки (за исключением отдельных случаев, но, тем не менее, в зоне досягаемости водителя).  SAE J1962 определяет следующую раскладку контактов разъема:
 1. На выбор автопроизводителя.
 Дженерал Моторс: J2411 GMLAN / SWC / Однопроводная CAN. Фольксваген / Ауди:  непостоянный +12В
 Информирует диагностический сканер о включении зажигания в автомобиле.
  9. —      
 2. Положительный сигнал шины  SAE-J1850 ШИМ и SAE-1850 пер.ШИМ 10. Отрицательный сигнал шины SAE-J1850 только ШИМ (не SAE-1850      пер.ШИМ)  
 3. DCL(+) Форд Аргентина, Бразилия  (до OBD-II) 1997-2000 г., США, Европа и т.д., Крайслер:  шина CCD  (+)                                                                           11. DCL(-) Форд Аргентина, Бразилия  (до OBD-II) 1997-2000 г., США, Европа и  др.,    Крайслер: шина CCD (-)
 4. Масса кузова 12. —
 5. Масса сигнала 13. — 
 6. Высокий уровень CAN (ISO 15765-4 и SAE-J2284) 14. Низкий уровень сигнала CAN (ISO 15765-4 и SAE-J2284)
 7. K-линия ISO 9141-2 и ISO 14230-4 15. L-линия ISO 9141-2 и ISO 14230-4
 8. – На выбор автопроизводителя.

Большинство автомобилей BMW: вторая K-линия для систем, которые не являются OBD-II (кузов/шасси/информационная система).

 16. Напряжение АКБ

EOBD

Стандарт EOBD (Европейская система бортовой диагностики) является европейским эквивалентом OBD-II и используется на всех пассажирских автомобилях категории M1 (до 8 пассажирских мест и полной массой 2500 кг и ниже), зарегистрированных на территории государств-членов ЕС, начиная с 01 января 2001 года для автомобилей с бензиновыми двигателями и с 01 января 2004 года для автомобилей с дизельными двигателями.

Для новых автомобилей стандарт вступил в силу годом ранее, то есть 01 января 2000 года для автомобилей с бензиновыми двигателями и 01 января 2003 года для автомобилей с дизельными двигателями.

Для пассажирских автомобилей полной массой свыше 2500 кг и легких коммерческих автомобилей стандарт начал действовать с 01 января  2002 г. для автомобилей с бензиновыми двигателями, 01 января 2007 г. для автомобилей с дизельными двигателями.

С технической точки зрения EOBD в основном аналогична системе OBD-II, имеет тот же самый диагностический разъем SAE J1962 и протокол передачи данных.

В соответствии с экологическими стандартами Евро V и Евро VI  пороговые значения включения оповещения в системе EOBD были снижены по сравнению с предыдущими стандартами Евро III и IV.

Коды неисправности EOBD

Каждый код неисправности EOBD состоит из пяти символов. Буква предшествует четырем цифрам. Она указывает на систему автомобиля, с которой связан данный код, например, трансмиссия. Далее следует цифра 0, если речь идет о стандарте EOBD. Поэтому данный код выглядит как P0xxx.

Следующий символ связан с подсистемой автомобиля.

P00xx – топливная и воздушная системы, дополнительные системы контроля токсичности

P01xx – топливная и воздушная системы

P02xx – топливная и воздушная системы (контур инжекторной подачи топлива)

P03xx – система зажигания, определение пропусков зажигания

P04xx – дополнительные системы контроля токсичности

P05xx – контроль скорости автомобиля и холостого хода двигателя

P06xx – бортовая компьютерная система

P07xx – управление трансмиссией

P08xx – управление трансмиссией

Следующие два символа характеризуют конкретную неисправность в каждой подсистеме.

EOBD2

Термин «EOBD2» является рыночным и используется некоторыми автопроизводителями для описания особенностей, которые отсутствуют в стандартах OBD или EOBD. В этом случае «E» означает расширенный.

JOBD

JOBD представляет собой версию OBD-II для автомобилей, проданных в Японии.

ADR 79/01 и 79/02 (Австралийский стандарт OBD)

ADR 79/01 (стандарт для автомобилей (Австралийский стандарт проектирования 79/01 – контроль токсичности легковых автомобилей) 2005) стандарт Австралии, эквивалентный OBD-II.

Он касается всех автомобилей категорий M1 и N1 с полной массой 3500 кг или ниже, зарегистрированных в Австралии и произведенных, начиная с 01 января 2006 года для автомобилей с бензиновыми двигателями и с 01 января 2007 года для автомобилей с дизельными двигателями.

Для новых автомобилей стандарт вступил в силу годом ранее – 01 января 2005 года для автомобилей с бензиновыми двигателями и 01 января 2006 года для автомобилей с дизельными двигателями.

Стандарт ADR 79/01 был дополнен стандартом ADR 79/02, который ввел более жесткие требования, ограничивающие выбросы автомобилей M1 и N1 с полным весом не более 3500 кг, с 01 июля 2008 года для новых моделей, с 01 июля 2010 года для всех моделей автомобилей .

Данный стандарт имеет аналогичное техническое исполнение как и система OBD-II, он имеет такой же диагностический разъем SAE J1962 и протоколы передачи данных.

OBD-II протоколы

Существует пять протоколов, которые поддерживает интерфейс OBD-II. На большинстве автомобилей использован только один протокол. Зачастую определить протокол, который был использован, можно по раскладке контактов в разъеме J1962:

SAE J1850 ШИМ (широтно-импульсная модуляция — 41,6 кБит/сек, стандарт для Форд Мотор Компании)

контакт 2: Bus+ (Шина +)

контакт 10: Bus– (Шина -)

Высокое напряжение +5 В

Длина сообщения ограничена 12 байтами, в том числе CRC. Используется арбитражная шина с несколькими ведущими, которая относится к «Вероятностным сетевым протоколам канального уровня» с неразрушающим арбитражем (CSMA/NDA)

SAE J1850 VPW (переменная ШИМ — 10,4/41,6 кБит/сек, стандарт Дженерал Моторс)

контакт 2: Bus+ (Шина+)

Шина с низким уровнем ожидания

Высокое напряжение +7В

Пороговое напряжение +3,5 В

Длина сообщения ограничена 12 байтами, в том числе CRC. Использует CSMA/NDA

Физический уровень идентичен ISO 9141-2

Скорость передачи данных 1,2 до 10,4 кбод

Сообщение может содержать до 255 байт в поле данных

ISO 15765 CAN (250 кБит/сек или 500 кБит/сек). Протокол CAN был разработан компанией Bosch для автомобильного и промышленного секторов экономики. В отличие от других OBD протоколов данный вариант широко распространен за пределами автомобильной промышленности. Он не соответствовал требованиям OBD-II для автомобилей в США до 2003 года. Автомобили, проданные в США в 2008 года, должны оснащаться шиной CAN с данным протоколом.

контакт 6: CAN Высокий уровень

контакт 14: CAN Низкий уровень

Все разъемы OBD-II одинаковы,  но отличаются расположением контактов, за исключением контакта 4 («масса») и контакта 16 (питание АКБ).

Диагностическая информация OBD-II

OBD-II обеспечивает доступ к данным ЭБУ (ECU) и представляет собой ценный источник информации для выполнения поиска и устранения неисправностей. Стандарт SAE J1979 определяет метод запроса диагностической информации и список стандартных параметров, который можно получить от ЭБУ. Каждый параметр  имеет адрес или «идентификационный номер параметра», то есть PID, как указано в J1979. Список основных PID, их описание, формулы для преобразования выходных сигналов OBD-II в диагностические единицы измерения, представлены в OBD-II PIDs. Автопроизводителям не требуется использовать все PID, перечисленные в J1979, они могут включить в список параметров собственные PID. PID и информационно-поисковая система (ИПС) предоставляет доступ к рабочим параметрам в режиме реального времени, а также к отмеченным кодам DTC. Список кодов OBD-II DTC, предложенный SAE, указан в таблице кодов OBD-II . Некоторые автопроизводители дополнили систему кодов OBD-II, добавив собственные DTC.

Режим работы

В этом разделе приведены общие сведения о протоколе обмена данными  OBD согласно ISO 15031:

Режим $01 используется для идентификации типа привода и вывод текущей информации сканера.

Режим $02 отображает данные статических кадров.

Режим $03 содержит списки «подтвержденных» диагностических кодов неисправности систем снижения токсичности. Он имеет цифровой вид, 4 цифры указывают на неисправность. 

Режим $04 используется для удаления диагностической информации. Операция включает в себя удаление подтвержденных/ожидаемых кодов DTC и данных статических кадров.

Режим $05 отображает результат проверки кислородных датчиков.

Предлагается десять кодов диагностики:

$01 пороговое напряжение датчика O2 (при переходе от обогащенной к обедненной смеси)

$02 пороговое напряжение датчика O2 (при переходе от обедненной к обогащенной смеси)

$03 низкое пороговое напряжение датчика при измерении времени переключения

$04 высокое пороговое напряжение датчика при измерении времени переключения

$05 время переключения в мс (при переходе от обогащенной к обедненной смеси)

$06 время переключения в мс (при переходе от обедненной к обогащенной смеси)

$07 минимальное напряжение для тестирования

$08 максимальное напряжение для тестирования

$09 время между сменами напряжения в мс

Режим $06 результаты тестирования систем постоянного и периодического контроля. Это минимальное, максимальное и текущее значение для каждого устройства периодического контроля.  

Режим $07 запрос кодов неисправности систем снижения токсичности после выполнения текущего или последнего ездового цикла. Он позволяет проводить тест «ожидаемых» диагностических кодов неисправности, обнаруженных в текущем или последнем ездовом циклах. Используется техническими специалистами для проверки качества выполненного ремонта или  после удаления диагностической информации. 

Режим $08 позволяет внешнему диагностическому устройству контролировать работу бортовой системы или компонента системы.

Режим $09 используется для получения информации об автомобиле. Среди прочего информация включает в себя:

VIN (идентификационный номер автомобиля): ID

CALID (калибровки): ID (идентификатор) программы ЭБУ

CVN (верификационный номер): используется для проверки целостности программного обеспечения.  Автопроизводитель несет ответственность за метод расчета CVN, например, с использованием контрольных сумм.

    Регистраторы параметров

Бензиновый двигатель: нейтрализатор, первичный кислородный датчик, система улавливания паров топлива, система рециркуляции отработанных газов, система изменения фаз газораспределения VVT, система вторичной подачи воздуха, вторичный кислородный датчик.

Дизельный двигатель: нейтрализатор NMHC, нейтрализатор NOx, абсорбер NOx, сажевый фильтр, датчик температуры отработавших газов, система рециркуляции отработанного газа, система изменения фаз газораспределения VVT, управление давлением турбонаддува, топливная система.

Режим $0A содержит список постоянных кодов неисправности. Согласно CARB все диагностические коды, которые включают MIL и сохраняются в ПЗУ, должны регистрироваться как постоянные коды неисправности.

Программные средства для работы с OBD

Существует большое множество разных приборов, которые подключаются к диагностическому разъему OBD для доступа к функциям бортовой диагностики, начиная от самых простых приборов для рядовых пользователей до высокотехнологичных диагностических средств, которые выпускают OEM и устройств телематики.

Мультимарочные сканеры

Автосканер MaxiDAS DS708                                                                                                
Автосканер Launch X-431 Master
Автосканер Scantronic 2

Предлагается следующий набор сканеров.

  • Простые сканеры для считывания/удаления кодов в основном ориентированные на простого потребителя.
  • Профессиональные переносные сканеры с расширенными функциональными возможностями, включая:
  • доступ к дополнительным функциям диагностики
  • выбор параметров определенного ЭБУ
  • доступ к другим системам управления, например, системе пассивной безопасности или АБС
  • мониторинг в режиме реального времени или графическая интерпретация параметров двигателя для диагностики или настройки

Переносные устройства

Программы для мобильных устройств, например, сотовых телефонов и планшетов позволяют отображать данные OBD-II, получаемые через кабели USB или адаптеры беспроводной связи, подключенные к автомобильному разъему OBD II.

Сканеры на базе ПК 

Простой диагностический интерфейс USB KKL, работающий без использования протоколов передачи данных. Интерфейс  применяется для настройки уровня     сигналов.Сканер на базе ПК преобразует сигналы OBD-II в последовательный набор данных (через USB или последовательный порт) для передачи в ПК и Макинтош. Программа расшифровывает полученные данные и выводит на экран. Наиболее популярные интерфейсы выполнены на базе ELM или STN1110[17] OBD Interpreter ICs, оба совместимы с пятью протоколами OBD-II. Некоторые адаптеры используют J2534 API, это позволяет получать доступ к протоколам данных OBD-II пассажирских и грузовых автомобилей.

Помимо функций сканирования устройства на базе ПК позволяют получить:

Регистраторы данных

Авторегистратор OBD LOG                               
Авторегистратор OBD MATRIX
Авторегистратор Launch CRecorder 2

Компактный регистратор с возможностью передачи данных на ПК через разъем USB.

Регистраторы позволяют записывать данные в момент исправной работы автомобиля для последующего анализа.

Процесс регистрации включает в себя

  • Мониторинг работы двигателя и автомобиля с целью диагностики и регулировки.
  • Некоторые страховые компании в США предлагают более низкую стоимость страховки, если установлены регистраторы OBD-II или камеры  — и водитель соблюдает правила дорожного движения. Это форма отбора риска
  • Контроль за поведением водителя со стороны оператора автопарка.
  • Анализ данных черного ящика автомобиля выполняется периодически, автоматически передается третьей стороне по беспроводной системе связи или для судебного разбирательства после происшествия, например, аварии, нарушения ПДД или механической поломки.
  • Контроль эмиссии

Большинство штатов США используют OBD-II вместо проверки состава отработавших газов на автомобилях, поддерживающих OBD-II (1996 г. и позднее). Так как система OBD-II хранит коды неисправности для систем снижения токсичности, сканер может направить запрос бортовой системе и проверить отсутствие кодов неисправностей, а также соответствие автомобиля требованиям экологического стандарта с учетом его модельного года. 

В Нидерландах автомобили, выпущенные в 2006 году и позднее, проходят ежегодную проверку токсичности с использованием EOBD.[21]

Дополнительные устройства в автомобиле

Дополнительные устройства в автомобиле установлены помимо заводских устройств и предназначены для информирования водителя о работе систем. В отличие от сканеров устройства используются для диагностики неисправностей, настройки и фоновой записи данных.

Автомобилисты-энтузиасты традиционно устанавливают дополнительные устройства для измерения разрежения во впускном коллекторе и тока АКБ. Интерфейс OBD расширяет возможности для изобретателей, поскольку предоставляет доступ к широкому набору диагностической информации, в том числе мгновенному расходу топлива. 

Устройства также выполнены в форме специализированных маршрутных компьютеров, автомобильных ПК,  интерфейсов для PDA, смартфонов или блоков навигации Гармин.

Компьютер – это ПК, аналогичное программное обеспечение можно загрузить в сканеры на базе ПК, все зависит от целей использования программы.

Эти системы могут иметь функциональные возможности, которые применяются в других сканерах.

Автомобильная телематика

OBD II предназначена не только для профессионалов и любителей, занимающихся ремонтом автомобиля. Информация OBD II также используется в устройствах телематики, которые осуществляют контроль за движением подвижного состава, топливной экономичности, соблюдения правил ПДД, а также удаленную диагностику и страховку  по схеме «Едешь-Платишь». Несмотря на то, что изначально эти цели не преследовались, данные OBD II, в том числе скорость автомобиля, частота вращения вала двигателя, уровень топлива в баке позволяют системам мониторинга (диспетчерским пунктам)  с помощью GPS (глобальной системы позиционирования) отслеживать скоростные режимы движения, стоянку с включенным двигателем или превышение оборотов двигателя. С помощью OBD II DTC компания моментально получает информацию о том, что в одном из автомобилей возникла проблема с двигателем. Интерпретация кода позволяет определить характер проблемы. OBD II также используется для блокирования мобильных телефонов при движении автомобиля и записи данных для страховых компаний.

Стандарты

    SAE по OBD-II

J1962 – описывает требования к разъему для интерфейса OBD-II

J1850 – описывает протокол последовательной передачи данных. Существует два варианта протокола – 10,4 кБит/с (однопроводная система, переменная ШИМ) и 41,6 кБит/с (двухпроводная система, ШИМ). В основном используется автопроизводителями США, также известен как PCI (Крайслер, 10,4K), класс 2 (Дженерал Моторс, 10,4K) и SCP (Форд, 41,6K)

J1978 – устанавливает минимальные требования к сканерам OBD-II

J1979 – определяет стандарты для режимов диагностики

J2012 – описывает стандартные коды неисправности с объяснением

J2178-1 – устанавливает стандарты для форматов пакетных сообщений и физическую адресацию

J2178-2 – выдает описание параметров

J2178-3 – определяет стандарты идентификаторов для кадров сообщений с однобайтовыми заголовками

J2178-4 – устанавливает стандарты для сообщений с трехбайтовыми заголовками*

J2284-3 — описывает 500K CAN физический уровень и уровень передачи данных

J2411 – описывает протокол GMLAN (однопроводный CAN), который применяется в новых автомобилях Дженерал Моторс. В разъеме OBD выводится на контакт 1 для новых автомобилей Дженерал Моторс

J1939 – описывает протокол передачи данных в системах автомобилей высокой грузоподъемности

Краткие сведения по протоколу OBD-II и по адаптеру ELM327

Краткие сведения по протоколу OBD-II и по адаптеру ELM327
Диагностика бортового оборудования OBD-II

Большинство современных автомобилей оснащено сейчас электронным блоком управления (ЭБУ) постоянно собирающим и анализирующим данные в реальном времени о режимax работы двигателя, системы подачи топлива, температуре охлаждающей жидкости и других компонентов автомобиля. OBD-II — On Board Diagnostic (диагностика бортового оборудования) автомобиля это технология диагностирования ЭБУ при помощи компьютера или специализированного диагностического тестера. Спецификация была разработана Society of Automotive Engineers (SAE) и принята как обязательная в США для всех автомобилей выпускающихся с 1996 года. Изначально OBD-II предназначалась для для контроля параметров имеющих отношение к эмиссии. Это ограничивает ее возможности для контроля и дигностирования всего спектра параметров современного автомобиля, но обусловило ее широкое распространение в виду «экологической ориентированности». OBD-II использует 5 протоколов обмена данными:

  • ISO 9141-2
  • ISO 14230-4
  • SAE PWM J1850 (Pulse-Width Modulation)
  • SAE VPW J1850 (Variable Pulse Width)
  • ISO 15765-4 Controlled Area Network (CAN)
На момент создания спецификации в начале 90-х годов уже существовало три широко используемых протокола: протокол General Motors (VPW), протокол корпорации Ford (PWM) и ISO 9141-2 используемый большинством европейских и японских автомобилей. В результате SAE решил включить в OBD-II стандарт все три. Несколько позже появился ISO 14230-4 протокол, известный также как Keyword 2000 (KWP2000) и являющийся усовершенсвованой версией ISO 9141-2. Controlled Area Network (CAN) изначально был предложен Bosh в 80 годах и начал появлятся в автомобилях с 2003 года. Евросоюз принял EOBD вариант автодиагностики основаный на OBD-II, который обязателен для всех автомобилей с января 2001 года. Существует также японский стандарт – JOBD. До OBD-II существовала версия OBD-I относящаяся к 1989 году и не имевшая широкого распространения. Новая версия автодиагностики OBD-III находится в состоянии доработки. Интересно, что все новые разработки автомобилей начиная с 2008 должны использовать только CAN, т.е все производители движутся к единому протоколу. SAE был также предложена и конструкция OBD-II разьема имеющего aббревиатурy SAE J1962

Назначение выводов разьема приведено в таблице. Использование контактов 1, 3, 8, 9, 11-13 стандартом SAE не определо и производили могут использовать их по своему усмотрению.

КонтактНазначение
1Не определен
2Положительня линия SAE J1850
3Не определен
4Корпус
5Общий
6CAN(H)ISO 15765
7K линия ISO 9141/14230
8Не определен
9Не определен
10Отрицательная линия SAE J1850
11Не определен
12Не определен
13Не определен
14CAN(L) ISO 15765
15L линия ISO9141/142300
16+12 вольт батареи

Что может дать OBD-II? Достаточно много, он позволяет определять и стирать коды неисправности, контролировать параметры работы двигателя в реальном времени, считывать информацию о серийном номере автомобиля и пр. Однако для чип-тюнинга производители используют собственные нестандартные проколы достула к ЭБУ, совместимые по электрических параметрам с ISO 9141/14230, например KW1281 (Audi, Volkswagen, Seat, Skoda), KW71 (BMW), KW82 (Opel). В новых автомобилях используется CAN протокол как для OBD-II так и для чип-тюнинга.

Выводы разъемы для Toyota/Lexus, источник pinoutsguide.com

PinSignalDescription
2J1850 Bus+ 
4CGNDChassis ground
5SGNDSignal ground
6CAN HighJ-2284
7K-LINE(ISO 9141-2 and ISO/DIS 14230-4)
10J1850 Bus- 
13TCTiming check — ignition advance angle adjustment or ABS slow codes out
14CAN LowJ-2284
15ISO 9141-2 L-LINE(ISO 9141-2 and ISO/DIS 14230-4)
16+12VBattery power

Использование протколов:
1999-2003: ISO 9141
2004-2006: ISO 9141 or CAN
с 2007: TBD

Поддерживает ли мой автомобиль OBD-II?

Как определить какой протокол поддерживает электронным блоком управления автомобиля? Первое – можно поискать информацию в Инернете, хотя там много неточной и непроверенной информации. К тому же, многие автомобили выпускаются для разных рынков с различными протоколами диагностики. Второе – найти разьем и посмотреть какие контакты в нем присуствуют. Разьем обычно находистя под приборной панелью со стороны водителя. Протокол ISO 914-2 или ISO 14230-4 определяется наличием контакта 7 и отсуствием контактов 2 и 10, как показано в таблице. Замечу, что контакта 15 скорее всего не будет, так как L линия сегодня почти не используется.

ПротоколPin 2Pin 6Pin 7Pin 10Pin 14
ISO 9141/14230  +  
J1850 PWM+  + 
J1850 VPW+    
ISO 15765 CAN +  +

EOBD стал стандартом в Европе начиная с 2001 года, а для дизельных двигателей начиная с 2004. Если ваш автомобиль выпущен до 2001 года то он может вообще не поддерживать OBD даже при наличии соответсвуещего разьема! Евросоюз даже оштрафовал Peugeot за не соответвие EOBD стандарту и после 2001 года. Например, Renault Kangoo 99 года не поддерживает EOBD, а Renault Twingo поддерживает! Те же самые автомобили сделанные для других рынков, например Турции, могут тоже не быть совместимыми с OBD протоколом. Вот далеко не полный список ЭБУ до 2001 года которые могут не поддерживать OBD:
  • Alfa Romeo
  • Citroen
  • Fiat
  • Peugeot
  • Renault
Таблицу поддерки OBD протокола различными моделями можно найти здесь. Замечу однако что эта таблица типа «если поддерживает — то какой…», как правильнно отмечено в комментарии «Если марка присутствует в таблице, то это не дает гарантии поддержки OBD-II».

OBD II Руководство пользователя

Задание на разработку стандарта OBD II было выдано в 1988 году, первые автомобили, отвечавшие его требованиям, появились в 1994-м, а с 1996 года он окончательно вступил в силу и стал обязательным для всех легковых и легких коммерческих автомобилей, продаваемых на американском рынке. Немного позже европейские законодатели приняли его за основу при разработке требований EURO 3, в числе которых есть и требования к системе бортовой диагностики – EOBD. В ЕЕС принятые нормы действуют с 2001 года.
Мы живем не в Европе и уж тем более не в Америке, но данные процессы начинают затрагивать и наш рынок. Количество подержанных автомобилей, удовлетворяющих требованиям OBD II/EOBD, быстро увеличивается. Свою лепту вносят и официальные дилеры, продающие новые автомобили, хотя как раз в этом сегменте многие модели адаптированы под более старые нормы EURO 2 (которые, кстати, до сих пор у нас не приняты). Как бы то ни было, очевидно, что процесс пошел. Что может дать нам проникновение новых стандартов? Речь не об окружающей среде и ее обитателях – сокращение токсичных выбросов автомобиля пока, увы, для наших стран не является приоритетом первого порядка. Вопрос лежит в профессиональной плоскости. Что может OBD II дать предприятию автосервиса? Насколько необходим данный стандарт в реальной практике, каковы его плюсы и минусы? Каким требованиям должны удовлетворять диагностические приборы? Прежде всего надо четко осознавать, что главное отличие данной системы самодиагностики от всех других – это жесткая ориентация на токсичность, являющуюся неотъемлемой составляющей эксплуатации любого автомобиля. В это понятие входят и вредные вещества, содержащиеся в выхлопных газах, и испарения топлива, и утечка хладагента из системы кондиционирования.
Такая ориентация определяет все сильные и слабые стороны стандартов OBD II и EOBD. Поскольку не все системы автомобиля и не все неисправности имеют прямое влияние на токсичность, это сужает сферу действия стандарта. Но, с другой стороны, самым сложным и самым важным устройством автомобиля был и остается силовой привод (т.е. двигатель и трансмиссия). И уже только этого вполне достаточно, чтобы констатировать важность данного применения. К тому же система управления силовым приводом все больше интегрируется с другими системами автомобиля, а вместе с этим расширяется сфера применения OBD II. И все же пока в подавляющем большинстве случаев можно говорить о том, что реальное воплощение и использование стандартов OBD II / EOBD лежит в нише диагностики двигателя (реже коробки передач). Вторым важным отличием этого стандарта является унификация. Пусть неполная, с массой оговорок, но все же очень полезная и важная. Именно в этом заключается главная притягательность OBD II. Стандартный диагностический разъем, унифицированные протоколы обмена, единая система обозначения кодов неисправностей, единая идеология самодиагностики и многое другое. Для производителей диагностического оборудования такая унификация позволяет создавать недорогие универсальные приборы, для специалистов – резко сократить затраты на приобретение оборудования и информации, отработать типовые процедуры диагностирования, универсальные в полном смысле этого слова.
Несколько замечаний по поводу унификации. У многих сложилась устойчивая ассоциация: OBD II – это разъем 16-pin (его так и называют – «о-би-дишный»). Если автомобиль из Америки, вопросов нет. А вот с Европой чуть сложнее. Ряд европейских производителей (Ford, VAG, Opel) применяют такой разъем начиная с 1995 года (напомним, что тогда в Европе не было протокола EOBD). Диагностика этих автомобилей осуществляется исключительно по заводским протоколам обмена. Почти так же обстоит дело с некоторыми «японцами» и «корейцами» (самый яркий пример – Mitsubishi). Но были и такие «европейцы», которые вполне реально поддерживали протокол OBD II уже начиная с 1996 года, например многие модели Volvo , SAAB , Jaguar , Porsche. А вот об унификации протокола связи, или, попросту говоря, языка, на котором «разговаривают» блок управления и сканер, можно говорить только на прикладном уровне. Коммуникационный стандарт единым делать не стали. Разрешено использовать любой из четырех распространенных протоколов – SAE J1850 PWM, SAE J 1850 VPW , ISO 9141-2, ISO 14230-4. В последнее время к этим протоколам добавился еще один – это ISO 15765-4, обеспечивающий обмен данными с использованием CAN-шины (этот протокол будет доминирующим на новых автомобилях). Собственно, диагносту совершенно не обязательно знать, в чем заключается отличие между этими протоколами. Гораздо важнее то, чтобы имеющийся в наличии сканер мог автоматически определять используемый протокол, и, соответственно, мог бы корректно «разговаривать» с блоком на языке этого протокола. Поэтому вполне естественно, что унификация затронула и требования к диагностическим приборам. Базовые требования к сканеру OBD-II изложены в стандарте J1978. Сканер, соответствующий этим требованиям принято называть GST (Generic Scan Tool). Такой сканер не обязательно должен быть специальным. Функции GST может выполнять любой универсальный (т.е. мультимарочный) и даже дилерский прибор, если он обладает соответствующим программным обеспечением. Очень важным достижением нового стандарта является разработка единой идеологии самодиагностики. На блок управления возлагается целый ряд специальных функций, обеспечивающих тщательный контроль функционирования всех систем силового агрегата. Количество и качество диагностических функций по сравнению с блоками предыдущего поколения выросло кардинально. Рамки данной статьи не позволяют подробно рассмотреть все аспекты функционирования блока управления. Нас больше интересует, как использовать его диагностические возможности в работе. Это и отражает документ J1979, определяющий диагностические режимы, которые должны поддерживаться как блоком управления двигателем/АКП, так и диагностическим оборудованием. Вот как выглядит список этих режимов:

  • $01 Вывод параметров в реальном времени (Real-time powertrain data)
  • $02 Вывод «сохраненного кадра параметров» (Freeze Frame)
  • $03 Считывание сохраненных кодов неисправностей (Read Stored DTC)
  • $04 Стирание кодов неисправностей, сброс статуса мониторов (Clear / Reset diagnostic related information )
  • $05 Вывод результатов мониторинга датчика кислорода (O2 monitoring test results)
  • $06 Вывод результатов мониторинга для непостояннотестируемых систем ( Monitiring test results for non — continuosly monitored systems )
  • $07 Вывод результатов мониторинга для постоянно тестируемых систем ( Monitiring test results for continuosly monitored systems )
  • $08 Управление исполнительными компонентами (Bidirectional controls)
  • $09 Вывод идентификационных параметров автомобиля (Vehicle information)
Рассмотрим эти режимы более подробно, поскольку именно четкое понимание назначения и особенностей каждого режима, является ключом к пониманию функционирования системы OBD II в целом.

Начнем с режима $01 – Real-time powertrain data.

В этом режиме на дисплей сканера выводятся текущие параметры блока управления. Эти параметры можно разделить на три группы. Первая группа – это статусы мониторов. Что такое монитор и зачем ему статус? В данном случае мониторами называются специальные подпрограммы блока управления, которые отвечают за выполнение весьма изощренных диагностических тестов. Существует два типа мониторов. Постоянные мониторы осуществляются блоком постоянно, сразу после пуска двигателя. Непостоянные активируются только при строго определенных условиях и режимах работы двигателя (см. также режимы$06 и $07). Именно работа подпрограмм-мониторов во многом обуславливает мощные диагностические возможности контроллеров нового поколения. Если перефразировать известную поговорку, можно сказать так: «Диагност спит – мониторы работают». Правда, наличие тех или иных мониторов сильно зависит от конкретной модели автомобиля, то есть некоторые мониторы в данной модели могут отсутствовать. Теперь несколько слов о статусе. Статус монитора может принимать только один из четырех вариантов – «поддерживается», «не поддерживается», «завершен» или «незавершен». Таким образом, статус монитора – это просто признак его состояния. Вот эти статусы и выводятся на дисплей сканера. Если в строках «статусы мониторов» высвечиваются символы «завершен», и при этом коды неисправностей отсутствуют, можете не сомневаться, проблем нет. Если же какой-либо из мониторов не завершен, нельзя с уверенностью говорить о том, что система функционирует нормально, необходимо либо отправляться на тест-драйв, либо попросить владельца автомобиля приехать еще раз через какое-то время (более подробно об этом – см. режим $06). Вторая группа – это PIDs, parameter identification data. Что это такое? Это основные параметры, характеризующие работу датчиков, а также величины, характеризующие управляющие сигналы. Анализируя значения этих параметров, квалифицированный диагност может не только ускорить процесс поиска неисправности, но и прогнозировать появление тех или иных отклонений в работе системы. Стандарт OBD II регламентирует обязательный минимум параметров, вывод которых должен поддерживаться блоком управления.

Перечислим их:

Температура охлаждающей жидкости
Температура всасываемого воздуха
Расход воздуха и/или Абсолютное давление во впускном коллекторе
Относительное положение дроссельной заслонки
Угол опережения зажигания
Значение рассчитанной нагрузки
Частота вращения коленчатого вала
Скорость автомобиля
Напряжение датчика (датчиков) кислорода до катализатора
Напряжение датчика (датчиков) кислорода после катализатора
Показатель (показатели) топливной коррекции
Показатель (показатели) топливной адаптации
Статус (статусы) контура (контуров) лямбда

Если сравнить этот список с тем, что можно «вытащить» из того же самого блока, обратившись к нему на его родном языке, то есть по заводскому (ОЕМ) протоколу, выглядит он не очень впечатляюще. Малое количество «живых» параметров – один из минусов стандарта OBD II. Однако в подавляющем большинстве случаев этого минимума вполне достаточно. Есть еще одна тонкость: выводимые параметры уже интерпретированы блоком управления (исключением являются сигналы датчиков кислорода), то есть в списке нет параметров, характеризующих физические величины сигналов. Например, нет параметров, отображающих значения напряжения на выходе датчика расхода воздуха, напряжения бортсети, напряжения с датчика положения дроссельной заслонки и т.п. – выводятся только интерпретированные значения (см. список выше). С одной стороны, это не всегда удобно. С другой – работа по «заводским» протоколам часто также вызывает разочарование именно потому, что производители увлекаются выводом физических величин, забывая про такие важные параметры, как массовый расход воздуха, расчетная нагрузка и т.п. Показатели топливной коррекции/адаптации (если вообще выводятся) в заводских протоколах часто представлены в очень неудобной и малоинформативной форме. Во всех этих случаях использование протокола OBD II позволяет получить дополнительные преимущества. К особенностям OBD-протоколов относится также сравнительно медленная передача данных. Наибольшая скорость обновления информации, доступная для этого протокола – не более десяти раз в секунду. Поэтому не стоит выводить на дисплей большое количество параметров. При одновременном выводе четырех параметров частота обновления каждого параметра составит 2,5 раза в секунду, что вполне адекватно регистрируется нашим зрением. Примерно такая же частота обновления характерна для многих заводских протоколов 90-х годов. Если количество одновременно выводимых параметров увеличить до десяти, эта величина составит всего один раз в секунду, что во многих случаях просто не позволяет нормально анализировать работу системы. Третья группа – это всего один параметр, к тому же не цифровой, а параметр состояния. Имеется в виду информация о текущей команде блока на включение лампы Check Engine (включена или выключена). Догадываетесь зачем? Очевидно, что и в Америке есть «специалисты» по подключению этой лампы параллельно аварийной лампочке давления масла. По крайней мере, такие факты уже были известны разработчикам OBD-II. Напомним, что лампа Check Engine (американские диагносты любовно называют эту лампу Check Money Light) загорается при обнаружении блоком отклонений или неисправностей, приводящих к увеличению вредных выбросов более чем в 1,5 раза по сравнению с допустимыми на момент выпуска данного автомобиля. При этом происходит запись соответствующего кода (или кодов) неисправности в память блока управления (см. режим $03). Если блок фиксирует пропуски воспламенения смеси, опасные для катализатора, лампочка начинает моргать.

$02 (Freeze Frame)

Обращение к этому пункту меню имеет смысл только в том случае, если в памяти блока управления имеются коды неисправностей (режим $03). В этом случае на дисплей выводится сохраненный блоком кадр тех значений параметров, которые были зафиксированы в момент принятия решения о записи кода. Иными словами, это «моментальный снимок» совокупности PIDs (см. режим $01). Зачем это нужно? Во-первых, знание условий, при которых возникла неисправность, уже само по себе облегчает дальнейший ее поиск. Но все же не это главное. Гораздо в большей степени данные из «замороженного» кадра нужны для того, чтобы как можно точнее воспроизвести эти условия при проведении тестовой поездки, когда всю диагностическую работу выполняет сам блок управления, активируя уже упомянутые выше мониторы. И еще один момент. Кодов неисправности в памяти контроллера может быть много, а вот «замороженный кадр» – как правило, только один (по крайней мере, так поступает большинство производителей). Номер кода неисправности, которому соответствует сохраненный кадр можно найти в том же самом же кадре, обычно он высвечивается в самом начале списка параметров.

$03 (Read Stored DTC)

Сканер производит запрос на считывание кодов неисправностей из памяти блока управления, а блок соответственно эти коды либо выдает, либо пишет, что их нет. Вполне традиционная и наиболее употребляемая диагностами всего мира процедура. Для кодов стандарта OBD II была разработана удобная и информативная система обозначений – буква и четыре цифры (см. рис 1). Эту систему безоговорочно приняло большинство автопроизводителей, причем не только для OBD II, но и для ОЕМ-протоколов. Первая позиция (то есть буква) обозначает тип системы – P (Powertrain), C (Chassis), B (Body) и U (Network). На рынке пока не так много автомобилей, у которых токсичность зависит от работы, например кузовных систем (хотя это абсолютно реально!). Как уже говорилось выше, практическое использование протокола OBD II пока в большей степени ориентировано на силовой агрегат, поэтому речь пойдет о кодах группы Р. Вторая позиция отвечает за степень «крутизны» кода. Все коды с нулевым расширением (Р0) являются базовыми (их еще называют Generic). Один и тот же базовый код описывает одинаковую неисправность, вне зависимости, с какого автомобиля производится считывание. Например, код Р0102 означает одну и ту же проблему для любого автомобиля, поддерживающего требования OBD II / EOBD – низкий уровень сигнала датчика расхода воздуха. Сканер уровня GST может считывать и расшифровывать только коды группы P0. Расширенные коды (Р1ххх, Р2ххх и т.п.), даже если имеют одинаковый номер, имеют разную расшифровку для разных производителей. Например, для Mazda код P1101 означает отклонения от нормы уровня сигнала датчика расхода воздуха, а аналогичный код для Mitsubishi – наличие проблем в цепи вакуумного соленоида противо-буксовочной системы. Пока такие коды являются привилегией производителей автомобилей и это, конечно, создает проблемы для независимых СТО. Расшифровка ОЕМ-кодов под силу только весьма продвинутым OBD-II приборам, хотя следует признать, что даже хорошие универсальные сканеры, работающие по заводским протоколам с этой задачей справляются далеко не всегда (дилерские приборы естественно не в счет). Однако постепенно ситуация меняется в лучшую сторону. Третья позиция (или вторая цифра) в обозначении кода призвана идентифицировать определенную функцию, выполняемую блоком управления, либо подсистему блока, а именно: 1 – измерение нагрузки и дозирование топлива; 2 – подача топлива, система наддува; 3 – система зажигания и регистрация пропусков воспламенения смеси; 4 – системы уменьшения токсичности; 5 – система холостого хода, круиз-контроль, система кондиционирования; 6 – внутренние цепи и выходные каскады блока управления; 7 и 8 – трансмиссия (АКП, сцепление и т.п.) Ну и, наконец, четвертая и пятая позиции – это собственно номер кода, идентифицирующий цепь или компонент.

$04 (Clear/information)

Выбрав этот режим можно стереть коды неисправностей из памяти блока управления. Казалось бы, чего проще. Тем более что стирает сканер все коды, даже те, которые расшифровать не может. Кстати, самый часто задаваемый вопрос при выборе сканера такой: «А он может стирать ошибки?» Была бы функция стирания – остальное не важно! Тем более что до сих пор не перевелись «особо продвинутые» клиенты, которые просят стереть ошибки (или погасить лампочку Check Engine) и, подумать только, на полном серьезе платят за это деньги! Ну а если без шуток, применять режим $04 нужно вдумчиво и уж, конечно, не по всякому поводу. С одной стороны, существует целый ряд кодов неисправностей, наличие которых в памяти блока управления, просто блокирует активацию некоторых мониторов. То есть, если не провести ремонт и/или не стереть коды, эти мониторы не включатся и не завершатся никогда. С другой стороны, при выполнении процедуры стирания, вместе с кодами, из памяти блока управления исчезает кадр frezee frame, а также вся информация, накопленная при работе мониторов. Проще говоря, происходит обнуление и новая инициализация мониторов. А для того, чтобы все мониторы вновь обрели статус «завершенных», требуется провести достаточно сложный ездовой цикл, а иногда и не один. В общем, чтобы действительно профессионально пользоваться этой функцией, нужно хорошо знать устройство и работу системы управления двигателем. Впрочем, этот постулат в равной степени относится ко всем описываемым режимам, да и вообще к процессу диагностики в целом.

$05 (O 2 monitoring test results)

Вывод результатов мониторинга датчика кислорода. Этот режим можно смело занести в актив стандарта OBD II. Функции данного режима некоторые производители с удовольствием переняли и в том или ином виде используют в своих заводских протоколах. Выбрав этот режим, можно узнать о работе кислородного датчика (датчиков) если не все, то очень многое. Например, время переключения с низкого уровня на высокий и наоборот, максимальное, минимальное и среднее значение значения напряжения за период тестирования, заданные уровни напряжений перехода и т.п. Правда, такая информация недоступна для датчиков с линейной характеристикой (AFR-sensor), просто в силу того, что работают они совершенно по-другому. Само собой разумеется, что результаты теста будут доступны только в том случае, если данный монитор полностью отработал свой цикл, или, другими словами, монитор будет иметь статус «Завершен». Жаль только, что далеко не все производители выводят информацию в полном объеме. Пользуясь предоставленной им лазейкой, они предпочитают выводить результаты этого монитора в режиме $06, а это, как говорят в Одессе, «две большие разницы».

$06 (Monitoring test results for noncontinuously monitored systems)

Вывод результатов мониторинга для непостоянно тестируемых систем (или непостоянных мониторингов, как кому больше нравится). Подчеркнем, выводятся не статусы мониторов (см. режим $01), а именно результаты, это далеко не одно и то же! К этой группе относятся следующие мониторы: Монитор катализатора, Монитор системы поглощения топливных испарений, Монитор системы инжектирования вторичного воздуха, Монитор датчика (датчиков) кислорода, Монитор подогрева датчика (датчиков) кислорода, Монитор системы кондиционирования воздуха, Монитор системы рециркуляции ОГ. Совсем недавно к этому списку добавились мониторы термостата системы охлаждения и клапана системы вентиляции картера. Как следует из их определения, работают эти мониторы не всегда, а только тогда, когда выполняются определенные условия. Поэтому, для того чтобы все мониторы обрели статус «завершенных» требуется провести достаточно сложный ездовой цикл, а иногда и не один. Параметры ездовых циклов (читай требования к активации мониторов) различаются не только у разных производителей, но даже для разных моделей одной марки. Тем не менее существует диаграмма «типового» ездового цикла, проведение которого в большинстве случаев позволяет активировать если не все, то большинство мониторов. Опытный диагност в состоянии активировать и завершить все мониторы в течение 15-20 минутной поездки, длиной всего 3–5 километров. Но для этого нужно иметь под боком незагруженную трассу. Так что в крупных городах проведение такого рода тест-драйва может оказаться делом весьма затруднительным. А посему задачу по активации мониторов часто приходится решать владельцу автомобиля, в рамках его реальной эксплуатации. Это проще, но требует больше времени. Для ускорения процесса есть смысл проинформировать владельца о том, в каких режимах ему необходимо ездить, поскольку в противном случае, часть мониторов может просто не активироваться в течение многих недель и даже месяцев. Если нужно убедиться в правильности проведенного ремонта по факту наличия кода неисправности, есть смысл «погонять» автомобиль в режиме, зафиксированном в кадре Frezee Frame – это существенно сокращает время проверки. Вернемся к режиму $06. В целом на сегодняшний день он используется достаточно редко. Такая ситуация объясняется тем, что для интерпретации полученных результатов необходима документация производителя автомобиля. Чтобы объяснить, как именно пользоваться данным режимом, нужна еще одна журнальная статья, причем не самого маленького объема. Возможно, такая статья когда-нибудь и появится. Пока же ограничимся тем, что данные результаты производители выводят, используя специальные идентификаторы – TID и CID. Идентификатор TID соответствует определенному тесту, а идентификатор CID – определенному компоненту, подверженному процедуре тестирования. Даже если результаты теста вам непонятны, огорчаться не стоит. Все, что нужно, мониторы рано или поздно доведут до логического завершения: если в работе какой-либо из контролируемых систем существуют отклонения, в памяти контроллера обязательно появятся коды неисправностей, которые и надо рассматривать в качестве окончательных результатов. Следует обратить внимание на то, что количество реально задействованных мониторов очень сильно зависит от марки автомобиля, а также от рынка его сбыта. Автомобили, продаваемые на европейском рынке, в этом плане пока здорово отстают от аналогов, продаваемых за океаном. Еще более «кастрированы» автомобили, официально поставляемые в Россию.

$07 (Monitoring test results for continuously monitored systems)

Вывод результатов мониторинга для постоянно тестируемых систем. Здесь речь тоже идет о мониторах, но эти мониторы осуществляются непрерывно, т.е. сразу (или с определенной паузой) после пуска двигателя и до момента его остановки. Таких мониторов всего три: монитор компонентов (фактически дальнейшее развитие давно существующей системы самоконтроля входного и выходного интерфейса блока управления), монитор системы топливной коррекции / адаптации и монитор обнаружения пропусков воспламенения смеси. Очень важные и очень полезные мониторы, особенно последний из упомянутых. В отличие от сложной и запутанной формы выдачи информации, принятой в режиме $06, с этим режимом все намного проще. Результаты постоянных мониторов выводятся в виде привычных нам кодов неисправностей, но только в том случае, если эти коды зарегистрированы только в течение одного ездового цикла (или цикла прогрева). Поэтому такие коды называются «незавершенными», а сам режим $07 имеет альтернативное название – Read Pending DTC. Если в течение примерно 40–60 ездовых циклов код не подтверждается, он удаляется из памяти блока управления. Если же происходит повторная регистрация кода, он перестает быть «незавершенным» и переходит в разряд «сохраненных»; в этом случае этот код можно прочитать, используя режим $03.

$08 (Bidirectional controls)

Управление исполнительными компонентами. При активации данного режима сканер получает возможность прямого управления некоторыми исполнительными компонентами. Аналогичные функции поддерживаются практически всеми заводскими протоколами. Разница состоит в том, что в протоколе OBD II эта функция ориентирована прежде всего на исполнительные компоненты систем уменьшения токсичности, такие, как клапаны систем рециркуляции ОГ, продувки адсорбера и т.п. Сделано это для того, чтобы можно было оперативно проверить функционирование той или иной системы, не затрачивая время на тестовые поездки и мониторинг. Но такие проверки во многих случаях требуют наличия дополнительного оборудования и специальной информации. Поэтому пока режим $08 широкого распространения не получил. Возможно, ситуация изменится в лучшую сторону в ближайшие два-три года.

$09 (Vehicle information)

И, наконец, последний режим – вывод идентификационных параметров автомобиля. Такими параметрами являются VIN-код автомобиля, код калибровки, загруженной в ПЗУ, а также контрольная сумма этой калибровки. Вывод такой информации необходим по двум причинам. Во-первых, для оперативного отслеживания устаревших или проблемных версий программного обеспечения и замены их на более совершенные. Во-вторых, такая информация необходима для контроля на предмет возможного вмешательства в калибровки блока управления. Подсчет контрольной суммы осуществляется блоком каждый раз, после включения зажигания и занимает определенное время, поэтому торопиться не стоит. С выводом идентификационной информации производители пока не спешат. Даже на достаточно свежих автомобилях, поступающих с американского рынка, данная информация может поддерживаться не в полном объеме. Как уже говорилось, все описанные выше режимы должны поддерживаться сканером уровня GST. В принципе существующие на рынке сканеры в той или иной степени соответствуют данным требованиям. Однако во многих случаях производители сканеров используют для обозначения тех или иных режимов свои собственные названия. Кроме этого, они могут выводить отдельные функции за рамки конкретного режима и предлагать эти функции под отдельным пунктом меню. Так, например, часто можно увидеть в меню строку «Статус готовности мониторов». В стандартном протоколе OBD II / OBD этот пункт является просто одной из функций режима $01. Но многие производители сканеров считают, что проще и удобнее доступ к этой функции сделать в виде отдельного пункта меню. Недорогие модели сканеров OBD-II, а также многие универсальные сканеры, как правило, вообще не поддерживают режим $06. В одной статье невозможно рассмотреть все вопросы, связанные с практическим применением стандарта OBD II. Но очевидно, что данная система все больше будет проникать в практику сервиса. Недорогие сканеры уровня GST могут с успехом использоваться сразу на нескольких постах, например для входного и выходного контроля. Возможно, в недалеком будущем компактный GST – сканер станет чем-то вроде таких постоянных атрибутов диагноста, как электрический пробник или цифровой мультиметр. Использование OBD-протоколов во многих случаях может оказаться не только оправданным, но и весьма полезным. В первую очередь имеются в виду случаи, когда связь по заводскому протоколу по каким-либо причинам не может быть установлена, либо установлена некорректно. В этом случае использование протокола OBD II является единственно возможной альтернативой. Но даже в том случае, когда заводской протокол отрабатывается сканером абсолютно корректно, есть смысл дополнительно обратиться к блоку на языке OBD II. Практика показывает, что во многих случаях диагност может рассчитывать на получение дополнительной информации, недоступной в заводском протоколе. Диагностика, в сущности, является не чем иным, как процессом анализа информации. Чем шире и разностороннее собранная информация, тем больше вероятность принятия правильного решения. Это и есть главный результат.

Описание интерфейса универсального сканера ELM327.
Схема подключения сканера ELM327.
PID’ы Toyota/Lexus.

Оригиналы статей: obddiag.net и autoboss.at.tut.by
OBD-II на сайте Wikipedia.

февраль 1, 2011
На главную


О совместимости и стандарте OBD-II — Car Scanner ELM OBD2

Довольно часто возникает вопрос – совместим ли мой автомобиль с Car Scanner?

Этот вопрос не такой простой, как кажется.

Car Scanner совместим со всеми автомобилями, которые совместимы со стандартом SAE J1979 и ISO 15031-5, также известным как стандарт OBDII.

Что вообще такое этот стандарт OBDII?

Если по существу – это набор правил и требований, которым должен соответствовать автомобиль для того, чтобы можно было диагностировать неисправности, связанные с возможным вредом экологии у любого автомобиля, который соответствует этому стандарту. Да, стандарт OBDII в первую очередь предназначен для предотвращения вреда экологии, а уже потом для диагностики всех прочих неисправностей.

Стандарт OBDII включает в себя требования к аппаратной и программной части автомобиля.

Для нас важно, что в требованиях к аппаратной части есть обязательное наличие стандартного диагностического разъема в форме трапеции с 16 контактами. Именно к этому разъему мы подключаем адаптер ELM327.

Требования к программной части включают в себя обязательную поддержку автомобилем одного из протоколов:

  • SAE J1850 VPM
  • SAE J1850 PWM
  • ISO 9141-2 / ISO 14230-4 KWP
  • ISO 15765-4 CAN
  • SAE J1939 CAN

Кроме того, стандарт регламентирует перечень возможных запросов и порядок расшифровки их ответов. Например, для того, чтобы узнать текущие обороты двигателя, надо выполнить запрос 010C. Каждый бит в ответе будет означать 0.25 об/мин. Запрос и ответ будут одинаковыми у любого автомобиля, соответствующего стандарту.

Какие автомобили поддерживают стандарт OBDII?

Довольно распространенным заблуждением является то, что этот стандарт поддерживают все автомобили, начиная с 1996 года выпуска. Нет, это не так. За время разработки Car Scanner я протестировал много автомобилей. Еще больше автомобилей было протестировано тысячами пользователей программы, которые писали мне. И сейчас я расскажу вам, как в действительности обстоят дела с поддержкой стандарта OBDII.

Стандарт OBDII был введен в качестве обязательного в США для всех автомобилей, начиная с 1996 года выпуска.

Но это касается только автомобилей, выпущенных для рынка США.

А что же в Европе? В Евросоюзе стандарт был введен в качестве обязательного для всех бензиновых автомобилей только с 2001 года. С 2003 года он стал обязательным для всех дизельных автомобилей, продаваемых в ЕС. Т.е. поддержки стандарта OBDII у автомобилей, выпущенных для Европейского рынка до 2001 года (для дизелей – до 2003) может и не быть.

В 2008 году стандарт стал обязательным для всех автомобилей, произведенных для Китайского рынка.

Обратите внимание – речь идет не об автомобилях, произведенных в США, ЕС, Китае. Речь идет об автомобилях, произведенных для США, ЕС, Китая.

А как же Японский автопром? В Японии этот стандарт тоже не является обязательным. Поэтому праворульные автомобили, произведенные для японского рынка в большинстве своем не поддерживают стандарт OBDII. Если же японцы делают автомобиль для рынка США, ЕС или Китая, то они добавляют поддержку OBDII.

А что же остальные страны? У меня нет информации по всем странам, но вот, что я знаю точно – в России, Украине, Белоруссии, Казахстане и прочих странах бывшего СССР, этот стандарт не является обязательным. То есть поддержка OBDII автомобилями, произведенными для продажи в России, Украине, Белоруссии, Казахстане и т.д. – это просто добрая воля производителя автомобиля.

Хотите простой пример? Автомобили производства  автомобильного завода АвтоВАЗ долгое время не поддерживали стандарт OBDII. Только в последние несколько лет ситуация стала меняться.

Почему же большинство автомобилей, продаваемых в России, Украине, Белоруссии, Казахстане и т.д. по факту поддерживают стандарт OBDII, если такой обязанности у них нет? Все дело в глобализации. Производитель делает модель для рынка Евросоюза с поддержкой OBDII и ту же самую модель отправляет в Россию, Казахстан, Белоруссию, Украину. Для того, чтобы “убрать” поддержку OBDII (которая в автомобиле уже есть) производителю придется затратить некоторые ресурсы. А зачем ему лишние затраты.

По этой же причине, некоторые автомобили, произведенные для европейского рынка до 2001 года поддерживают стандарт OBDII – производитель решил сделать один раз для всех рынков.

Но истории известны и обратные случаи – когда производитель в европейскую модификацию автомобиля встроил диагностический разъем OBDII из американской версии, но электронный блок управления (ЭБУ) установил другой. Разъем есть, но программная часть стандарт OBDII не поддерживает.

Есть и другие курьезные примеры “формального” соблюдения стандарта. Тут больше всех отличился концерн Renault-Nissan. Автомобили Nissan, Datsun, Infinity и некоторые Renault (которым достались мозги от японской части автоконцерна) имеют частичную поддержку стандарта OBDII: разъем есть, протокол известен, но на запрос поддерживаемых параметров и датчиков автомобиль выдает корректный ответ: поддерживаемых датчиков нет. Обратите внимание – ответ автомобиля является корректным и соответствует стандарту, это не ошибка, это нормальный и правильный ответ. Просто Nissan решил, что будет достаточно только чтения ошибок. Такая ситуация характерна для автомобилей Nissan/Infinity/Datsun и некоторых Renault, произведенных для европейского рынка до 2008 года.

Важно отличать диагностику по стандарту OBDII от диагностики по закрытым протоколам производителя автомобиля.

Диагностика по стандарту OBDII является универсальной – программе, чипу ELM327 абсолютно все равно, к какому автомобилю она подключена. Протоколы обмена данными – стандартные, адреса параметров и датчиков – стандартные. Перечень поддерживаемых параметров сообщает сам автомобиль.

Но в дополнение к стандартной диагностике большинство автомобилей поддерживают и расширенную диагностику в “дилерском” режиме.

В большинстве случаев для работы в “дилерском” режиме вам не подойдет ELM327. Хотя сейчас многие автопроизводители встраивают расширенный диагностический функционал в OBDII протоколы, и, чисто теоретически, вы можете использовать ELM327 для доступа к этим функциям.

Главная проблема, в данном случае, вы не знаете, где эти функции расположены и что именно они вам сообщают или делают. Вы ведь не хотите случайно отключить третью форсунку? Все дилерские протоколы являются закрытыми. Доступ к документации по этим протоколам стоит от $10 000 до $100 000 в зависимости от производителя автомобиля.

Иногда народные умельцы самостоятельно, путем проб и ошибок расшифровывают дилерские протоколы. Как результат – в Car Scanner встроена поддержка Nissan Consult II и наборы дополнительных датчиков для различных автомобилей.

Итог

Большинство автомобилей, произведенных для европейского и американского рынка после 2003 года поддерживают стандарт OBDII. Все, что произведено до – под вопросом, но с высокой долей вероятности поддерживает.

С автомобилями ВАЗ, ГАЗ, УАЗ – рулетка. Часть из них поддерживает стандарт OBDII, другая часть – нет.

Диагностический коннектор OBD II. | Автотема

Диагностический коннектор OBD II.

Основные коды ошибок OBD-II.

Следует отметить, что наличие аналогичного разъема не является 100% признаком совместимости с OBD-II. Автомобили оборудованные этой системой обязательно должны иметь отметку на одной из табличек в подкапотном пространстве и/или в сопроводительной документации. Чаще всего используемый протокол можно идентифицировать по наличию/отсутствию определенных контактов на диагностическом разъеме. Если на этом разъеме присутствуют все контакты, следует обратиться к технической документации на конкретный автомобиль.

Диагностический коннектор OBD II.

Обозначение контактов.

Pin №Описание
1OEM
2J1850 Шина+ (Bus + Line, SAE)    
3OEM
4Заземление кузова
5Сигнальное заземление
6Верхний контакт CAN (J-2284)
7K Line ISO 9141-2
8OEM
9OEM
10Bus – Line, Sae J1850 Шина
11OEM
12OEM
13OEM
14Нижний контакт CAN (J-2284)
15L Line ISO 9141-2
16Напряжение АКБ

Контакты диагностического разъема для используемых протоколов.

Контакты  4, 5, 7, 15, 16 – ISO 9141-2.

Контакты  2, 4, 5, 10, 16 – J1850 PWM.

Контакты  2, 4, 5, 16 (без 10) – J1850 VPW.

Протокол ISO 9141-2 идентифицируется наличием контакта 7 и отсутствием 2 и/или 10 контактов на диагностическом разъеме. Если отсутствует контакт 7, в системе используется протокол SAE J1850 VPW (Variable Pulse Width Modulation) или SAE J1850 PWM (Pulse Width Modulation). Все три протокола обмена данных работают через стандартный кабель OBD-II J1962 connector.

Описания кодов DTC.

Код DTC состоит из 5 цифр. На рисунке внизу показана структура кода DTC. При помощи данной информации вы можете удалить код DTC даже в том случае, если у вас нет описания данного кода.

Пятизначный код ошибки.

Первая позиция:

P – is for powertrain codes.

B – is for body codes.

C – is for chassis codes.

Вторая позиция:

0 – общий для OBD-II код.

1 – код производителя.

Третья позиция – тип неисправности:

1 – топливная система или воздухоподача.

2 – топливная система или воздухоподача.

3 – система зажигания.

4 – вспомогательный контроль.

5 – холостой ход.

6 – ECU или его цепи.

7 – трансмиссия.

8 – трансмиссия.

Четвертая и пятая позиции – Порядковый номер ошибки.

Список наиболее употребительных сокращений по OBDII.

AFC – Расходомер воздуха.

ALDL – Диагностический коннектор. Так раньше назывался диагностический коннектор для автомобилей GM, а также разъем для подключения сканнера; также может использоваться как название любых сигналов OBD II.

CAN – Контроллер.

CARB – Калифорнийский совет по атмосферным ресурсам.

CFI – центральный впрыск топлива (TBI).

CFI – непрерывный впрыск топлива.

CO – монооксид углерода.

DLC – Диагностический коннектор.

Driving Cycle – Последовательность пуска, прогрева и движения автомобиля, в ходе этого цикла происходит тестирование всех функций OBD II.

DTC – Код неисправности.

ECM – Блок управления двигателем.

EEC – Электронное управление двигателем.

EEPROM or E2PROM – Программируемая память, доступная только для чтения.

EFI – электронный впрыск топлива.

EGR –  рециркуляция выхлопных газов.

EMR – электронный блок уменьшения угла зажигания.

EPA – Совет по охране окружающей среды.

ESC – Электронная регулировка зажигания.

EST – Электронная регулировка момента зажигания.

Fuel Trim – балансировка состава смеси.

HC – углеводород.

HEI – зажигание.

HO2S – подогрев датчика кислорода.

ISO 9141 – международный стандарт для разъема OBDII.

J1850PWM – протокол для разъема OBD II, установленный по стандарту SAE.

J1850VPW – протокол для разъема OBD II, установленный по стандарту SAE.

J1962 – стандарт для диагностического коннектора OBD II, установленный по стандарту SAE.

J1978 – стандарт SAE для сканнеров OBD II.

J1979 – стандарт SAE для режимов диагностики.

J2012 – стандарт SAE, одобренный EPA, для сообщений при тестировании системы выхлопных газов.

MAF – расход воздуха.

MAP – абсолютное давление во впускном коллекторе.

MAT – температура воздуха во впускном коллекторе.

MIL – индикаторная лампа неисправностей. Лампа “Check Engine Light” на панели приборов.

NOx – оксид азота.

O2 – кислород.

OBD – диагностика.

OBDII or OBD II – усовершенствованный стандарт для диагностики автомобилей в США после 1-1-96.

Parameters – Параметры по диагностике OBD II.

PCM – Блок управления трансмиссией.

PCV – Картер.

Proprietary Readings – Параметры бортового компьютера, которые не требуются для диагностики OBD II, но могут использоваться для диагностики неисправностей различных типов автомобилей.

PTC – Код неисправности.

RPM – об/мин.

Scan Tool – сканнер.

SES – лампа сервисного обслуживания двигателя на панели приборов.

SFI – последовательный впрыск топлива.

Stoichiometric ( Stoy’-kee-o-metric) Ratio – Коэффициент сгорания топлива.

TPS – Датчик положения дроссельной заслонки.

VAC – вакуум.

VCM – центральный блок управления автомобиля.

VIN – идентификационный номер автомобиля.

VSS – датчик скорости.

WOT – открытая дроссельная заслонка.

Поделиться ссылкой:

Похожие статьи

Информация по протоколам, схемы и порядок подключения

Бортовые компьютеры Multitronics с поддержкой протокола «Cons1» работают на автомобилях Nissan, выпущенных до 2000 года и имеющих 14-контактную колодку диагностики Consult-1.

Автомобили, выпущенные после 2000 года и имеющие 16-контактную колодку диагностики, при наличии контакта №7, работают с бортовыми компьютерами Multitronics по протоколу «Nissan», перекоммутация проводов не требуется.


Вариант 1. Схема подключения к диагностическому разъему Consult-1 (для автомобилей без контакта CLK)

Описание подключения:

1. Контакт RX диагностического разъема автомобиля соединяется с контактом №2 колодки переходника бортового компьютера.

2. Контакт TX диагностического разъема автомобиля соединяется с контактом №2 вилки диагностики бортового компьютера. Необходимо установить дополнительный резистор R1=5.1 кОм между получившейся цепью и «+12В». Внимание: без резистора R1 бортовой компьютер работать не будет!

3. «масса» бортового компьютера подключается к диагностическому разъему автомобиля через переходник согласно схеме.

4. «+12В» подключается через переходник к цепи автомобиля, на которой постоянно присутствует напряжение.

5. При необходимости производятся подключения цепей «ДУТ» (датчик уровня топлива), «Зажигание» и «Габариты». На некоторых автомобилях возможно чтение данных об уровне топлива в баке через диагностический разъем в режиме «БАК ДУТ ЭБУ», в этом случае подключение цепи «ДУТ» не производится.

Схема подключения с новыми разъемами.


Вариант 2. Схема подключения к диагностическому разъему Consult-1 (для автомобилей с контактом CLK)

Описание подключения:

1. Контакт RX диагностического разъема автомобиля соединяется с контактом №2 колодки переходника бортового компьютера.

2. Контакт TX диагностического разъема автомобиля соединяется с контактом №2 вилки диагностики бортового компьютера. Необходимо установить дополнительный резистор R1=5.1 кОм между получившейся цепью и «+12В». Внимание: без резистора R1 бортовой компьютер работать не будет!

3. Контакт CLK диагностического разъема автомобиля соединяется с контактом №15 вилки диагностики бортового компьютера. В некоторых случаях необходимо установить дополнительный резистор R2=1.0 кОм между получившейся цепью и «+12В».

4. «масса» бортового компьютера подключается к диагностическому разъему автомобиля через переходник согласно схеме.

5. «+12В» подключается через переходник к цепи автомобиля, на которой постоянно присутствует напряжение.

6. При необходимости производятся подключения цепей «ДУТ» (датчик уровня топлива), «Зажигание» и «Габариты». На некоторых автомобилях возможно чтение данных об уровне топлива в баке через диагностический разъем в режиме «БАК ДУТ ЭБУ», в этом случае подключение цепи «ДУТ» не производится.

Схема подключения с новыми разъемами.


Вариант3. Схема подключения к 16-контактному диагностическому разъему OBD-2 (контакт №7 отсутствует).

Пример: Nissan Patrol (дизель).

Способ №1. Подключение с помощью переходника бортового компьютера

Описание подключения:

1. Контакт №13 диагностического разъема автомобиля соединяется с контактом №2 колодки переходника бортового компьютера.

2. Контакт №12 диагностического разъема автомобиля соединяется с контактом №2 вилки диагностики бортового компьютера. Необходимо установить дополнительный резистор R1=5.1 кОм между получившейся цепью и «+12В». Внимание: без резистора R1 бортовой компьютер работать не будет!

3. «масса» бортового компьютера подключается к диагностическому разъему автомобиля через переходник согласно схеме (к контакту №4).

4. «+12В» подключается через переходник к цепи автомобиля, на которой постоянно присутствует напряжение (к контакту №16).

5. При необходимости производятся подключения цепей «ДУТ» (датчик уровня топлива), «Зажигание» и «Габариты». На некоторых автомобилях возможно чтение данных об уровне топлива в баке через диагностический разъем в режиме «БАК ДУТ ЭБУ», в этом случае подключение цепи «ДУТ» не производится.

Способ №2. Подключение с помощью вилки бортового компьютера путем перестановки контактов местами

Описание подключения:

1. Контакт №7 вилки диагностики бортового компьютера переставляется на место контакта №13.

2. Контакт №2 вилки диагностики бортового компьютера переставляется на место контакта №12. Необходимо установить дополнительный резистор R1=5.1 кОм между получившейся цепью и «+12В». Внимание: без резистора R1 бортовой компьютер работать не будет!

3. Контакты №4 и №16 переставлять не нужно.

4. При необходимости производятся подключения цепей «ДУТ» (датчик уровня топлива), «Зажигание» и «Габариты». На некоторых автомобилях возможно чтение данных об уровне топлива в баке через диагностический разъем в режиме «БАК ДУТ ЭБУ», в этом случае подключение цепи «ДУТ» не производится.

Схема подключения с новыми разъемами.

Если автомобиль поддерживает протокол Consult-2 (в колодке диагностики присутствует контакт №7), бортовой компьютер Multitronics подключается без перекоммутации проводов по протоколу «Nissan» — легкое подключение.


Вариант4. Схема подключения к 16-контактному диагностическому разъему OBD-2 (контакт №7 отсутствует, присутствует контакт №14 — CLK).

Пример: Nissan Terrano

Способ №1. Подключение с помощью переходника бортового компьютера

Описание подключения:

1. Контакт №13 диагностического разъема автомобиля соединяется с контактом №2 колодки переходника бортового компьютера.

2. Контакт №12 диагностического разъема автомобиля соединяется с контактом №2 вилки диагностики бортового компьютера. Необходимо установить дополнительный резистор R1=5.1 кОм между получившейся цепью и «+12В». Внимание: без резистора R1 бортовой компьютер работать не будет!

3. Контакт №14 диагностического разъема автомобиля соединяется с контактом №15 вилки диагностики бортового компьютера. В некоторых случаях необходимо установить дополнительный резистор R2=1.0 кОм между получившейся цепью и «+12В».

4. «масса» бортового компьютера подключается к диагностическому разъему автомобиля через переходник согласно схеме (к контакту №4).

5. «+12В» подключается через переходник к цепи автомобиля, на которой постоянно присутствует напряжение (к контакту №16).

5. При необходимости производятся подключения цепей «ДУТ» (датчик уровня топлива), «Зажигание» и «Габариты». На некоторых автомобилях возможно чтение данных об уровне топлива в баке через диагностический разъем в режиме «БАК ДУТ ЭБУ», в этом случае подключение цепи «ДУТ» не производится.

Способ №2. Подключение с помощью вилки бортового компьютера путем перестановки контактов местами

Описание подключения:

1. Контакт №7 вилки диагностики бортового компьютера переставляется на место контакта №13.

2. Контакт №2 вилки диагностики бортового компьютера переставляется на место контакта №12. Необходимо установить дополнительный резистор R1=5.1 кОм между получившейся цепью и «+12В». Внимание: без резистора R1 бортовой компьютер работать не будет!

3. Контакт №15 вилки диагностики бортового компьютера переставляется на место контакта №14. В некоторых случаях необходимо установить дополнительный резистор R2=1.0 кОм между получившейся цепью и «+12В».

4. Контакты №4 и №16 переставлять не нужно.

5. При необходимости производятся подключения цепей «ДУТ» (датчик уровня топлива), «Зажигание» и «Габариты». На некоторых автомобилях возможно чтение данных об уровне топлива в баке через диагностический разъем в режиме «БАК ДУТ ЭБУ», в этом случае подключение цепи «ДУТ» не производится.

Схема подключения с новыми разъемами.

Если автомобиль поддерживает протокол Consult-2 (в колодке диагностики присутствует контакт №7), бортовой компьютер Multitronics подключается без перекоммутации проводов по протоколу «Nissan» — легкое подключение.


Внимание! Чтение ошибок в протоколах «Cons1» и «ConsD1» производится только в ручном режиме.

Важно! Если бортовой компьютер Multitronics работал на автомобиле по протоколу «Cons1» или «ConsD1», при переустановке на другой автомобиль с таким же протоколом необходимо заново переопределить данный протокол, в противном случае бортовой компьютер работать не будет.

 

Хочу всё знать: что такое компьютерная диагностика, и как её проводят

Что такое OBD?

Начнём с самого начала. Чтобы подключить к машине диагностическое оборудование, нужен специальный разъём, который сейчас есть у всех автомобилей, и который иногда называют просто OBD-II. На самом деле, OBD-II – это не разъём, а целая система бортовой диагностики. И несмотря на то, что прочно она вошла в нашу жизнь всего-то лет 20 назад, её история начинается ещё в 50-х годах прошлого века.

В середине ХХ века американское правительство внезапно пришло к мысли, что стремительно растущее количество автомобилей как-то не лучшим образом влияет на экологию. Правительство стало делать вид, что оно хочет на законодательном уровне эту ситуацию улучшить. Автопроизводители в свою очередь стали делать вид, что они выполняют придуманные законы.

Появлялись крайне разнообразные системы диагностики, задача которых была ограничена контролем за выбросами в атмосферу (а так как сложной техники не было, то максимум, за чем могли более менее адекватно наблюдать, это за расходом топлива). Никто (иногда даже сами производители) нормально пользоваться такими системами не мог. И когда к середине 70-х департамент по контролю за воздушной средой (Air Resources Board, ARB) и агентство по защите окружающей среды (Environment Protection Agency, EPA) стали понимать, что ничего хорошего добиться не получается, они стали усиленно рекомендовать внедрять новые системы.

Они не просто мигали бы лампочкой, «если что-то пошло не так», а позволяли бы быстро проверить автомобиль на выполнение им экологических норм. Первым откликнувшимся производителем стал General Motors, разработавший свой интерфейс ALDL. Разумеется, ни о каком мировом стандарте речь ещё не заходила, да и об американском тоже. В 1986 году ALDL был модернизирован, но до нужных масштабов дело никак не доходило. И только в 1991 году California Air Resources Board (калифорнийский департамент по контролю за воздушной средой) обязал всех американских автопроизводителей оборудовать свои автомобили диагностической системой OBD-I (On-Board Diagnostic), разработанной в 1989 году.

Что можно было проконтролировать с помощью OBD-I? Само собой, первоочередной задачей было следить за составом отработавших газов. Можно было проследить за работой электронной системы зажигания, кислородных датчиков и системы рециркуляции EGR. В случае появления неисправности загоралась лампа MIL (malfunction indicator lamp – лампа индикации неисправности). Никакой более точной информации получить было нельзя, хотя со временем лампочку научили мигать с определённой последовательностью, которая позволяла выявить хотя бы неисправную систему. Но и этого скоро стало мало.

В январе 1996 года наличие новой версии OBD-II стало обязательным для всех автомобилей, проданных в Америке. Основным отличием этой диагностической системы от OBD-I стала возможность контролировать систему питания, а также её можно было проверить на автомобиле с помощью подключаемого сканера. Этим занимались полицейские. Им было абсолютно плевать на всё, кроме токсичности – ведь вся эта система изначально и разрабатывалась для контроля за ОГ. Полагалось, что система диагностики на новом автомобиле должна была работать пять лет или сто тысяч километров пробега. Но на этом история OBD-II ещё не заканчивается.

В 2001 году все автомобили, проданные в Европе, должны были иметь систему EOBD (European Union On-Board Diagnostic), теперь уже – с CAN-шиной (о которой подробно как-нибудь в другой раз). В 2003 году японцы ввели обязательный JOBD (Japan On-Board Diagnostic), а в 2004 год наличие EOBD становится обязательным для всех дизельных автомобилей в Европе.

Это – очень (даже слишком) краткая история OBD-II. Я её специально не стал усложнять, вам же вряд ли интересно читать про рецессивные и доминантные биты спецификации Controller Area Network? Вот и я думаю, что для начала хватит. Давайте лучше посмотрим на разъём OBD-II «живьем».

Место встречи изменить нельзя

Я уже говорил, что через диагностический разъём калифорнийские копы при желании должны были легко подключиться к самой системе. Чтобы упростить задачу, разъём было решено ставить не далее 60 см от рулевого колеса (хотя, скажем, китайцы это требование часто игнорируют, а иногда этим же балуются инженеры Рено). И если раньше разъём можно было встретить даже под капотом, то сейчас он всегда в зоне досягаемости водителя. Что из себя представляет разъем?

Вообще, он называется DLC – Diagnostic Link Connector. Вполне очевидно, что сама колодка тоже стала соответствовать одному стандарту. Разъём имеет 16 контактов, по восемь в два ряда. Стандарт определяет и назначение выводов в колодке. Например, контакт №16 (самый правый в нижнем ряду) должен быть подключенным к «плюсу» АКБ, а четвёртый – быть заземлением. И всё же шесть контактов отданы в распоряжение производителю – там может располагаться что-то по его желанию.

Часто от диагностов можно услышать слово «протокол». В данном случае – это стандарт передачи данных между отдельными блоками системы диагностики. Тут мы уже опасно сближаемся с информатикой, но ничего не поделаешь: диагностика-то компьютерная. Придётся ещё немного потерпеть.

Разработчиками OBD-II предусмотрены пять разных протоколов. Если говорить очень-очень упрощённо, то это пять различных способов передачи данных. Например, протокол SAE J 1850 используется преимущественно американцами, скорость передачи данных по нему – 41,6 Кб/с. А вот ISO 9141-2 в США не распространён, скорость передачи тут – 10,4 Кб/с. Впрочем, нам всё это знать не обязательно.

Пока просто запомним:

диагностическая колодка OBD-II везде одинаковая, распиновка – тоже, а какие разъёмы будут использоваться для подключения сканера, зависит от протокола, применяемого производителем.

Ну а теперь попробуем продиагностировать автомобиль – в этом нам помогут специалисты из компании «Лаборатория Скорости». Попутно посмотрим, что такое настоящая диагностика.

Что может диагностика?

Начнём с того, что подключить дешёвый мультимарочный сканер и считать одну-две ошибки – это даже близко не диагностика. И было бы большой ошибкой полагать, что диагностику делает сканер, а не человек. На самом деле они работают в паре, и если один из них значительно глупее другого, ничего хорошего из этого не выходит. Терпеть не могу пронумерованные списки, но использую один, чтобы более наглядно показать, что должна в себя включать правильная компьютерная диагностика:

  1. Сбор анамнеза.
  2. Чтение имеющихся и сохранённых ошибок.
  3. Просмотр потока данных (Live Data).
  4. Логирование данных «в движении».
  5. Опрос и сопоставление.
  6. Тесты исполнительных механизмов.
  7. Использование инструментальных методов диагностики.

Много непонятного? Спокойно дойдем до каждого из пунктов.

Есть еще постдиагностические работы: адаптация, активация дополнительных функций… Но про это в одной из следующих публикаций. Пока что сосредоточимся на диагностике неисправностей и рассмотрим все этапы.

Сбор анамнеза

Хороший диагност перед началом работы обязательно спросит у владельца, что с автомобилем не так, как неисправность проявляется, при каких условиях, с какой периодичностью, что предшествовало появлению неисправности… Одним словом, будет вести себя как опытный врач, причём не из бесплатной поликлиники, а из хорошего медицинского центра.

Наш подопытный MINI абсолютно здоров, поэтому в данном случае спрашивать нечего. Впрочем, иногда диагностику есть смысл проводить в качестве превентивной меры, не дожидаясь, когда Check Engine начнёт светить постоянно или периодически подмигивать с панели приборов.

Чтение имеющихся и сохранённых ошибок

Итак, подключаем к нашему «Минику» сканер и ноутбук с программным обеспечением от BMW (о том, как связаны BMW и MINI, напоминать не будем, тут все грамотные). Разумеется, через диагностический разъём. Кстати, Мини не хочет нормально проходить диагностику на одном аккумуляторе, поэтому подключаем внешний источник питания. Но это – особенность автомобиля, исключение, а не правило. Теперь ждём установления связи с автомобилем. Смотрим на картинку на экране ноутбука.

Первым делом мы можем увидеть общую информацию об автомобиле – от текущего пробега до номера двигателя и КПП. Кстати, если покупаете автомобиль с пробегом, то зачастую диагностика поможет определить его истинный пробег, который в том числе будет виден, например, в АКПП.

Или ещё интереснее: если открыть ремонтную историю, там будет видно, при каком пробеге было осуществлено последнее вмешательство (может, кто-то скидывал ошибки, проводил адаптацию какого-то механизма или делал что-то ещё). И если там стоит пробег тысяч 100, а на одометре – всего 70, то кое-кто хочет вас обмануть. Далеко не всегда такая возможность есть на 100%, да и «скрутчики» пробегов часто бывают изобретательны и не ленивы – иногда подчищают пробеги везде, хотя это и редкость.

Но мы отвлеклись. Мы быстренько сканируем на предмет ошибок и в разделе «Накопитель ошибок» все-таки находим такие записи, говорящие об ошибках в электроусилителе рулевого управления!

Еще раз подчеркну: если на машине не горит «чек» и не проявляется каких-либо явных неисправностей, это не значит, что их нет. Электроника может работать некорректно, не оповещая об этом без подключения сканера.

Поэтому компьютерную диагностику, особенно если у вас дорогая машина со сложной электроникой, нужно проводить регулярно, чтобы многие поломки устранить превентивно, пока они не вылились во что-то серьезное.

Но вернемся к нашему MINI. Открываем запись об ошибке ЭУР и смотрим так называемый Freeze Frame (замороженный кадр) – тут описано, при каких условиях эта ошибка проявилась. В нашем случае это произошло один раз при пробеге 120 тысяч километров, при скорости 117,5 км/ч, напряжение аккумулятора составляло 16,86 В.

Данные во Freeze Frame помогают понять, отчего произошла ошибка. Не всегда, конечно, но важной может оказаться любая сопутствующая информация о скорости, пробеге, напряжении и т.п. Это все при условии, что специалист умеет думать.

Бывает ведь, что доморощенные «диагносты» просто видят, какая деталь в машине «глючит», и тут же предлагают ее поменять в сборе «методом тыка», потому что, дескать, причину ошибки знает только Святой Дух, разгадать ее невозможно. Это все от большой жадности и недостатка профессионализма. А мы движемся дальше…

Просмотр потока данных (Live Data)

Live Data – это те данные, которые можно получить в режиме реального времени. Есть простые данные – например, обороты двигателя или температура охлаждающей жидкости.

А есть такие, которые без сканера выяснить вообще невозможно. Например, напряжение датчиков положения педали (речь идёт об электронной педали газа). Их два, смотрим показания: 2,91 В на одном и 1,37 В на втором. Теперь нажимаем на педаль и смотрим на значения: 3,59 В и 1,58 В. Собственно, это и есть Live Data – то, что происходит с механизмом в реальном времени.

Поток данных можно смотреть в том числе и на ходу. Бывает очень полезно посмотреть, как реагирует бортовая электроника машины на различные манипуляции, и что при этом показывает Live Data.

Опрос и сопоставление

Это работа диагноста, а не оборудования. После того, как машина протестирована всеми доступными способами, снятые показания предстоит осмыслить и сопоставить. А было ли напряжение штатным? А сопротивление? А температура? Ну и так далее.

Тест исполнительных механизмов

Его проводят для проверки их работоспособности. Обычно – чтобы просто убедиться, что узел работает как положено. Заходим в раздел меню «Активация детали» (да, русификация тут несколько странная) и запускаем, например, электровентилятор системы охлаждения. Работает. Для чего это может быть полезно? А вот, скажем, перегрев мотора. Если бы вентилятор не включился принудительно, вскрылась бы причина перегрева.

Использование дополнительных измерительных приборов

Бывает, что диагностика не может показать, какой именно из элементов системы вышел из строя. Возьмём, к примеру, ту же «электронную педаль газа». Допустим, напряжение окажется нештатным. Сканер это покажет, мы в этом уже убедились. Но в чём причина падения напряжения?

Тут уже поможет только измерение сопротивления реостата омметром и визуальный осмотр дорожек на предмет выявления повреждений или истертых контактов. Или еще пример. Диагностика показывает ошибки по датчикам положения коленвала и распредвалов. Скорее всего, это говорит о смещении фаз ГРМ, то есть – о растяжении цепи. А насколько смещены фазы? С этим поможет только осциллограф. Все-таки замена цепи ГРМ – работа крайне дорогостоящая, особенно на каком-нибудь V8. Тут лучше знать наверняка.

Одним осциллографом тоже, бывает, не обойтись. Например, сюда же можно отнести и опрессовку впуска с дыммашиной, и тест производительности форсунок «с обраткой», и контроль тех же дизельных форсунок на специальном форсуночном стенде, и многое другое…

Ещё можно применить диагностические замеры на диностенде, хотя это мало кто применяет в виду отсутствия оборудования. Ведь замер на стенде позволяет не только видеть цифры мощности и момента, но и смотреть характер кривой того и другого и параллельно снимать данные по давлению наддува, AFR, температуре выхлопных газов, распределению момента по осям и колесам и многое другое. Но это в России – экзотика.

Поэтому этот пункт отмечаем отдельно: настоящий диагност не брезгует запачкать одежду, ибо на этапе инструментальной диагностики придется открыть капот, залезть в проводку, демонтировать проблемные датчики или узлы и проверить их состояние визуально и на предмет правильности функционирования, прозвонить проводку, подключить осциллограф, мультиметр и другие необходимые приборы. Компьютерная диагностика предполагает использование не только одного сканера (а в реальной жизни сканеров должно быть больше – об этом в отдельном материале), но и других средств диагностики.

Логирование

Оно применяется в случае, который меня бы точно поставил в тупик: если ошибка имеет плавающий характер. Как раз та ситуация, когда в сервисе обычно говорят: «ну, сейчас же всё работает, вот как только опять случится – приезжайте». Действительно, такую неисправность определить бывает сложно. Но выход есть.

К диагностическому разъёму подключают специальный сканер (как правило, мини-сканер, который просто вставляется в разъем OBDII и не висит, не болтается, работает автономно, не мешает водителю. В общем, не требует никакого участия обычного пользователя – клиента автосервиса) и отправляют клиента кататься по своим нуждам.

Сканер тем временем усиленно работает, записывая лог, а в момент проявления проблемы дополнительно регистрирует саму ошибку и условия её проявления. Метод удобный, а главное – практически незаменимый при наличии сложных «плавающих» ошибок. И ещё одно его преимущество заключается в том, что специалисту не приходится в режиме реального времени сидеть и отслеживать всё, что творится в автомобиле. Иногда это просто невозможно, да если и возможно – то очень сложно. Гораздо удобнее потом просто забрать все записи и вдумчиво посидеть над логами.

А напоследок я скажу…

Всё вышесказанное – лишь вершина айсберга. Всю глыбу мы будем постепенно приподнимать, но не сразу.

Например, мы ничего не сказали о кодах, хотя тема эта очень интересная. Многие, наверное, слышали что-нибудь вроде такого: «У меня ошибка P0123. Это что значит?». Да, можно посмотреть. Это – высокий уровень выходного сигнала датчика положения дроссельной заслонки «А». Если коротко, то все ошибки делятся на группы. P – двигатель и трансмиссия, В – кузов, С – шасси.

Внутри тоже есть деления. Перечислять все долго и не нужно, но хотя бы для примера: P01ХХ – контроль системы смесеобразования, P03ХХ – система зажигания и система контроля пропусков воспламенения, а вот с P07ХХ до P09ХХ – трансмиссия. Вместо ХХ указываются подсистемы. Например, P0112 – низкий уровень датчика температуры всасываемого воздуха, а P0749 – ошибка электромагнитного клапана регулировки давления. Кодов – сотни, но несведущий человек ничего толкового из этой информации не вынесет.

Вообще, конечно, вопрос важный: предположим, где-то сделал диагностику, а что делать дальше? В этом случае ещё раз можно проверить квалификацию специалистов. Разобраться в истоках появления той или иной ошибки почти всегда возможно. Так что если слышите совет менять детали одну за другой, пока машина не поедет нормально, уносите ноги из такого сервиса. Их-то понять можно: менять детали, проданные с наценкой – куда проще, чем учиться на диагноста и ковыряться в мелочах, которые не принесут больших денег.

Особенно циничны в этих вопросах официальные дилеры, которых хлебом не корми, дай поменять полмашины в сборе. И если работа выполняется по гарантии, то путь так и будет. Но если вам придётся менять заслонку за свой счёт, то это может быть ой, как дорого. Хотя у дилера всё же есть преимущество – доступ к базе знаний. Так называют накопленную статистику по поломкам конкретной модели определенного года (а может, и месяца, и даты выпуска), определённой комплектации и даже цвета (если речь идёт, например, о кузове) по всем дилерам, где эти машины реализуются. Иногда использование базы знаний может существенно помочь в выяснении неисправности.

В будущих публикациях мы подробно разберемся в кодах ошибок, проведем практические замеры и даже сравним дилерский сканер с мультимарочными нескольких ценовых категорий! Оставайтесь на связи.

За помощь в подготовке материала благодарим компанию «Лаборатория Скорости» (СПб, ул. Химиков, д. 2, (812) 385-50-70)

Опрос

Вы когда-нибудь делали компьютерную диагностику?

Всего голосов:

Какие протоколы используются и применяются для диагностики на OBD-II?

Какие протоколы используются и применяются для диагностики на OBD-II?

OBD-II использует пять следующих протоколов обмена данными ISO 9141, ISO 14230 (также именуется KWP2000), PWM, VPW и CAN.

Ко всему прочему у каждого из перечисленных протоколов есть несколько разновидностей, которые могут отличаться, например, скоростью обмена информацией. В Интернете вы можете найти «таблицы применимости», где вы легко сможете, отыскав свою марку и модель машины, узнать какой именно OBD-II-протокол поддерживает ваш автомобиль. Но не стоит забывать и о том, что одна и та же модель, созданная в один и тот же год и с идентичным двигателем может быть выпущена для разных рынков, и поддерживать разные протоколы диагностики. А сами протоколы могут различаться по моделям двигателей и по годам выпуска.

Но все же главное, на что стоит в первую очередь обратить внимание и что может свидетельствовать о поддержке автомобилем OBD-II диагностики, это наличие 16-контактного диагностического разъема (DLC — Diagnostic Link Connector) трапециевидной формы. Подавляющее большинство OBD-II автомобилей оснащено таким разъемом, который находится под приборной панелью со стороны водителя. Такой разъем может быть, как открыт, так и закрыт. Если все же разъем закрыт, то нужно просто снять крышку, на которой может быть написано «OBD-II», «Diagnose» и т.п. Также разъем OBD-II иногда можно установить на автомобиль, который не поддерживает ни один OBD-II-протокол.

Для того чтобы оценить применимость того или иного сканера для диагностики конкретного автомобиля, нужно определить: какой именно OBD-II-протокол используется на вашем автомобиле и поддерживается ли он вообще.

Алгоритм действий таков.

Сначала нужно отыскать техническую документацию на автомобиль и заглянув в нее, а не в общее руководство по данной марке, узнать какой OBD-II протокол поддерживается вашей маркой автомобиля. Также немаловажно провести осмотр всех идентификационных табличек на самой машине, на которой Вы можете встретить надпись: «OBD-II compliant», что означает «поддерживает OBD-II» или «OBD-II certified», то есть «сертифицировано на поддержку OBD-II».

Следующий способ – открыть информационную базу данных и посмотреть в ней. Но при условии, что база может иметь неточности, и содержать информацию, относящуюся к маркам автомобилей, выпущенных для другого рынка, такой способ теряет свою значимость. Лишь дилерские базы по отдельной марке способны вселять уверенность в точности данных.

Также можно применить сканер, с помощью него можно легко определить какой из OBD-II протоколов используется на машине. Если же сканер отказывается предлагать протокол, то перебор можно настроить вручную, а начать следует с протокола ISO. Он является самым популярным и распространенным. Также можно узнать по таблице предположительный протокол для своей марки машины и попробовать применить его.

Ну и, наконец, можно просто исследовать самостоятельно диагностический разъем и определить есть ли в нем выводы. Выводы должны подсказать Вам какой протокол следует использовать. Так, для Pin 2 должны применяться протоколы PWM (J1850) и VPW (J1850). Для Pin 7 ISO-9141 и ISO-14230. Для pin 10 только один протокол PWM (J1850), а для Pin 15 два: ISO-9141 и ISO-14230. Но в случае с последним, при условии, что автомобиль использует L-линию диагностики.

Большинство автомобилей пользуются протоколами ISO. Но, как и в любом правиле, здесь тоже есть свои исключения: большинство легковых автомобилей и грузовиков крупной американской автомобильной корпорации General Motors пользуются протоколом SAE J1850 VPW, а также большая часть автомобилей марки Ford применяют протокол J1850 PWM.

Наш Интернет-магазин предлагает различные адаптеры, поддерживающие сразу несколько перечисленных протоколов, а также их модификации. Весь ассортимент Вы можете посмотреть у нас на сайте нашего Интернет-магазина «НПП ОРИОН». Заходите, мы ждем Вас!



Какой протокол OBD-II поддерживает мой автомобиль?

Эта запись была опубликована 26 января 2004 г. командой ScanTool.net.

Все автомобили и малые грузовики, построенные для продажи в Соединенных Штатах после 1996 года, должны соответствовать требованиям OBD-II. Законодательство Европейского Союза о OBD несколько сложнее .

Автомобиль, совместимый с OBD-II, может использовать любой из пяти протоколов связи: J1850 PWM , J1850 VPW , ISO9141-2 , ISO14230-4 (также известный как Keyword Protocol 2000), а с недавних пор, ISO15765-4 / SAE J2480 («аромат» CAN).Производителям автомобилей в США не разрешалось использовать CAN до 2003 модельного года, но с 2008 модельного года и в будущем все автомобили будут использовать протокол CAN.

Существует два типа диагностических соединителей ( DLC ), определенных SAE J1962 — тип A и тип B , показанные на рисунках 2 и 3 соответственно. Основное различие между двумя соединителями заключается в форме выступа для выравнивания.

Расположение — Согласно J1962, DLC типа A должен располагаться в пассажирском или водительском отделении в зоне, ограниченной стороной приборной панели со стороны водителя на расстоянии 300 мм (~ 1 фут) за осевой линией транспортного средства, прикрепленный к панель приборов и удобный доступ с места водителя.Предпочтительное расположение — между рулевой колонкой и осевой линией автомобиля ».

Рис.1 — Автомобильный разъем J1962, тип A

Тип B DLC «должен располагаться в пассажирском отделении или отделении водителя в зоне, ограниченной водительской стороной приборной панели, включая внешнюю сторону, и воображаемой линией на 750 мм (~ 2,5 фута) за осевой линией транспортного средства. крепиться к приборной панели и иметь легкий доступ с сиденья водителя или с сиденья второго водителя или снаружи.Разъем транспортного средства должен быть установлен для облегчения стыковки и отсоединения «.

Рис.2 — Автомобильный разъем J1962, тип B

Как правило, вы можете определить, какой протокол использует ваш автомобиль, посмотрев на распиновку DLC:

Фиг.3

В следующей таблице объясняется, как определить протокол:

Штифт 2 Штифт 6 Штифт 7 Штифт 10 Штифт 14 Штифт 15 Стандартный
должен иметь должно быть J1850 ШИМ
должен иметь J1850 VPW
должно быть может иметь * ISO9141 / 14230
должно быть должно быть ISO15765 (CAN)

* Контакт 15 (также называемый «L-линией») является необязательным для новых автомобилей, использующих протоколы ISO9141-2 или ISO14230-4.

Помимо контактов 2, 7, 10 и 15, разъем должен иметь контакты 4 (заземление корпуса), 5 (сигнальное заземление) и 16 (положительный полюс батареи). Это означает, что:

ШИМ Разъем должен иметь контакты 2, 4, 5, 10 и 16.
VPW Разъем должен иметь контакты 2, 4, 5 и 16, , но не 10.
ISO Разъем должен иметь контакты 4, 5, 7 и 16.Контакт 15 может присутствовать или отсутствовать.
CAN Разъем должен иметь контакты 4, 5, 6, 14 и 16

И, наконец, вы можете найти эту страницу полезной:
Общие протоколы связи OBDII от производителя

Какой протокол OBD2 поддерживает мой автомобиль?

OBD2 — это термин, который используется в автомобильной промышленности для обозначения бортовой системы диагностики. Это обновленная версия OBD1 и имеет более продвинутые функции, чем ее предшественник.

Что такое OBD2?

OBDII или OBD2, сокращенно бортовая диагностика 2, представляет собой систему, которая диагностирует двигатель транспортного средства и отображает коды ошибок вместе с другой информацией, такой как трансмиссия и производительность системы.

С 1996 года системы OBD2 являются обязательными для каждого автомобиля, ездящего в США, однако некоторые старые модели, выпущенные в 1996 году или старше, не поддерживают OBD2.

Система OBD2 диагностирует двигатель автомобиля и проверяет, все ли в порядке.В случае неисправности будет отображаться код неисправности, например, значок контрольной лампы двигателя.

Свет нельзя отключить, пока проблема не будет устранена. Эта функция помогает информировать водителя о том, что системе требуется техническое обслуживание.

Есть ли в моем автомобиле OBD2?

Каждый автомобиль, проданный в США за последние 20+ лет, содержит систему OBD2. Однако, если вы хотите проверить, есть ли он в вашей машине, вы легко можете сделать это самостоятельно.

Все, что вам нужно сделать, это найти под капотом белую наклейку с надписью «OBD2-совместимый».

Еще лучший вариант — поискать порт OBD2 под приборной панелью, к которому подключается сканер OBD2.

Где находится разъем?

Порт OBD2 обычно находится в том же месте, что и Hum System. Поскольку это помогает сети напрямую общаться с вашим автомобилем.

Вы можете найти разъем в одном из этих мест в зависимости от модели автомобиля:

  • Под перчаточный отдел.
  • Под приборной панелью, прямо под рулевой колонкой.
  • В нескольких футах от центральной линии автомобиля.

Вы также можете найти расположение автомобильного разъема, перейдя сюда и введя данные.

Что такое протоколы OBD2?

Обычно система OBD2 имеет 5 протоколов. В разных моделях используются разные протоколы. В вашем автомобиле может быть протокол типа A или типа B. Оба они имеют физическое различие в своих портах (разъемах).

Разъемы

типа A имеют 16 зубцов, расположенных в два противоположных ряда.В каждом ряду 8 соединителей, на которых расположен один «язычок».

Разъемы

типа B также имеют 16 зубцов, однако язычок состоит из двух частей.

Типы протоколов OBD2

Существует 5 типов протоколов OBD2:

  1. SAE J1850 VPW: Этот протокол OBD2 используется компанией Ford.
  2. SAE J1850 PWM: Common Motors используют этот протокол.
  3. ISO 9141-2: Вы найдете этот протокол на азиатских, Chrysler и европейских автомобилях.
  4. ISO 14230 KWP2000: Этот протокол используется в азиатских транспортных средствах.
  5. ISO 15765-4 / SAE J2480 (CAN): Вы найдете этот протокол во многих новых автомобилях, поскольку он был изобретен для автомобилей, которые не подпадали под действие стандартов OBD2 по закону. Поскольку он не может удовлетворить требования OBD2 для автомобилей США, выпущенных до 2003 года. Вы найдете этот протокол на многих автомобилях, выпущенных после 2008 года.

Какой протокол OBD2 поддерживает мой автомобиль?

Глядя на распиновку DLC, вы можете определить, какой протокол OBD2 поддерживает ваша модель автомобиля.Это важно, потому что не все протоколы одинаково связаны со сканирующим прибором. Это связано с разными протоколами OBD2 в разных моделях автомобилей.

Посмотрите на внутренние зубья на последовательной шине и определите, какие контакты используются, а какие пусты.

В верхнем ряду 8 контактов, а в нижнем — 8 контактов. Вот назначение каждого булавки:

Штифты сверху

  • Контакт 1: Используется для OEM COMM.
  • Вывод 2: шина J1850 + находится на этом выводе.
  • Контакт 3: OEM зарезервирован.
  • Контакт 4: заземление рамы / шасси автомобиля.
  • Контакт 5: заземление сигнала датчика удерживается этим контактом.
  • Контакт 6: OEM COMM. Все современные автомобили могут иметь этот значок вместе с номерами 4, 5, 6, 15 и 16.
  • Контакт 7: это K-линия.
  • Контакт 8: OEM зарезервирован.

Контакты снизу

  • Контакт 9: OEM COMM
  • Контакт 10: шина J1850 (минус)
  • Контакты 11, 12, 13, 14: OEM зарезервировано
  • Штифт 15: ISO 9141-2 L-образный.
  • Контакт 16: Контакт, отвечающий за питание адаптера сканирования.

Теперь, когда вы знаете, сколько контактов имеется и для чего предназначены отдельные контакты, вы можете посмотреть протокол в своей машине и определить распиновку сканера OBD2, которая подойдет.

Бонус: Обзор и сравнение лучших профессиональных сканеров OBD2 2021

Как проверить протокол OBD2 на моем автомобиле?

Например, для протокола J1850 PWM в разъеме должны быть контакты 2 и 10 (разъем должен иметь металлические контакты внутри контактов 2, 4, 5, 10 и 16.)

J1850 VPW должен иметь контакт 2 (разъем должен иметь материальные контакты внутри контактов 2, 4, 5 и 16, но не 10.)

ISO9141 и 14230 (KWP2000) должны иметь контакт 7, в то время как контакт 15 является дополнительным (разъем должен иметь металлические контакты внутри контактов 4, 5, 7, 15, плюс 16.)

ISO 15765 (CAN) должен иметь оба контакта, 6 и 14 (разъем должен иметь материальные контакты внутри контактов 4, 5, 6, 14 и 16.)

Совмещение и наличие контактов в разъеме будет определять конкретный протокол вашего автомобиля.

Итог

Если ваш автомобиль младше 1996 года, то он, скорее всего, будет иметь систему OBD2. Все еще не уверены? Тогда вы можете передать свою машину профессионалу.

OBD2 Объяснение — Простое введение (2021)

Требуется простое и практичное введение в OBD2?

В этом руководстве мы представляем протокол бортовой диагностики (OBD2), в т.ч. разъем OBD2, идентификаторы параметров OBD2 (PID) и связь с шиной CAN.

Примечание. Это практическое введение , поэтому вы также узнаете, как запрашивать и декодировать данные OBD2, использовать ключевые журналы и практические советы.

См. Ниже, почему он стал # 1 OBD2 tutorial .

Вы также можете посмотреть наше вступительное видео OBD2 выше (150K + просмотров на YouTube)

Что такое OBD2?

Короче говоря, OBD2 — это встроенная система самодиагностики вашего автомобиля.

Вы, наверное, уже сталкивались с OBD2:

Вы когда-нибудь замечали световой индикатор неисправности на приборной панели?

Это ваша машина сообщает вам о проблеме. Если вы посетите механика, он будет использовать сканер OBD2 для диагностики проблемы.

Для этого он подключит считыватель OBD2 к 16-контактному разъему OBD2 рядом с руль.

Это позволяет ему читать коды OBD2, также известные как диагностические коды неисправностей (DTC), для просмотра и устранения проблемы.

Разъем OBD2

Разъем OBD2 позволяет легко получить доступ к данным из вашего автомобиля. Стандарт SAE J1962 определяет два типа 16-контактных разъемов OBD2 (A и B).

На иллюстрации показан пример контактного разъема OBD2 типа A (также иногда называемого разъемом канала передачи данных, DLC).

Несколько замечаний:

  • Разъем OBD2 находится рядом с рулем, но может быть спрятан за крышки / панели
  • Не все штекерные разъемы подходят ко всем гнездовым разъемам OBD2 — проверьте тип и распиновку порта OBD
  • Контакт 16 обеспечивает питание от автомобильного аккумулятора — часто даже при выключенном зажигании
  • Контакты 6 (CAN-H) и 14 (CAN-L) наиболее актуальны, поскольку CAN (ISO 15765-4) является стандартом для большинства современных автомобилей (в т.ч.Электромобили)

Есть ли в моей машине OBD2?

Короче: Наверное!

Почти все новые автомобили поддерживают OBD2 и большинство работают на CAN (ISO 15765). Для старых автомобилей имейте в виду, что даже если присутствует 16-контактный разъем OBD2, он все равно может не поддерживать OBD2. Один из способов определить соответствие — определить где и когда был куплен новый :



Связь между OBD2 и CAN-шиной

Бортовая диагностика, OBD2, является «протоколом более высокого уровня» (воспринимайте его как язык), в то время как шина CAN — это метод для связь (как по телефону).

В частности, стандарт OBD2 определяет разъем OBD2, в т.ч. набор из пяти протоколов, на которых он может работать. Кроме того, с 2008 года шина CAN (ISO 15765) была обязательным протоколом для OBD2 во всех автомобилях, продаваемых в США, что в основном со временем устраняет остальные 4 протокола.

Обратите внимание, что ISO 15765 относится к набору ограничений, применяемых к стандарту CAN, который определен через ISO 11898 — можно сказать, что ISO 15765 подобен «CAN для автомобилей».

Кроме того, OBD2 можно сравнить с другими протоколами более высокого уровня, такими как J1939 и CANopen.

Обзор основных стандартов OBD2

Ниже мы перечисляем некоторые из наиболее актуальных стандартов SAE / ISO, относящихся к OBD2:

SAE J1962: Этот стандарт определяет физический разъем, используемый для интерфейса OBD2, то есть разъем OBD2. Стандарт описывает как разъем OBD2 транспортного средства, так и разъем, используемый внешним испытательным оборудованием (например, сканером OBD2 или регистратором данных OBD2). В частности, стандарт диктует расположение и доступ к разъему OBD2.

SAE J1979: Стандарт SAE J1979 описывает методы запроса диагностической информации через протокол OBD2. Он также включает список стандартизированных общедоступных идентификаторов параметров OBD2 (OBD2 PID), которые автомобильные OEM-производители могут внедрить в автомобили (хотя они не обязаны это делать). Производители транспортных средств могут также принять решение о внедрении дополнительных проприетарных PID OBD2 помимо тех, которые указаны в стандарте SAE J1979.

SAE J1939: Стандарт J1939 описывает протокол данных, используемый для связи с транспортными средствами большой грузоподъемности.В то время как информация OBD2 PID доступна только по запросу с помощью испытательного оборудования OBD2, протокол J1939 используется в большинстве тяжелых транспортных средств в качестве основного средства для передачи трафика CAN, то есть данные передаются непрерывно.

ISO 11898: Этот стандарт описывает уровень канала передачи данных CAN-шины и физический уровень, служащий основой для связи OBD2 в большинстве современных автомобилей

ISO 15765-2: Стандарт ISO-TP описывает «Транспортный уровень», т.е.как отправлять пакеты данных размером более 8 байт по CAN-шине. Этот стандарт важен, так как он формирует основу для связи Unified Diagnostic Services (UDS), которая основана на отправке многокадровых пакетов данных CAN.

ISO 14229-1: Подробно описывает связь UDS, частично заимствованную из устаревшего стандарта ISO 15765-3.



История OBD2

OBD2 происходит из Калифорнии , где Калифорнийский совет по воздушным ресурсам (CARB) Требуется OBD во всех новых автомобилях с 1991+ для целей контроля выбросов.

Стандарт OBD2 был рекомендован Обществом автомобильных инженеров (SAE) и стандартизированными кодами неисправности и Разъем OBD различных производителей (SAE J1962).

Оттуда стандарт OBD2 выкатывали пошагово :

  • 1996: OBD2 сделана обязательной в США для автомобилей / light грузовики
  • 2001: Требуется в ЕС для бензиновых автомобилей
  • 2003: Требуется в ЕС также для дизельных автомобилей (EOBD)
  • 2005: OBD2 требовалось в США для автомобилей средней грузоподъемности
  • 2008: Автомобили в США должны использовать ISO 15765-4 (CAN) в качестве основы OBD2
  • 2010: Наконец, OBD2 требовался в транспортных средствах большой грузоподъемности в США

OBD2 будущее

OBD2 никуда не денется — но в каком виде?

Два потенциальных маршрута могут радикально изменить OBD2:


OBD3 / OBD-III — беспроводное тестирование выбросов

В современном мире подключенных автомобилей тесты OBD2 могут показаться обременительными: выполнение проверок контроля выбросов вручную занимает много времени и дорого.

Решение? OBD3 — добавление телематики во все автомобили .

По сути, OBD3 добавляет небольшой радиотранслятор (например, в случае взимания платы за проезд по мосту) для всех автомобилей. Используя это, автомобиль , идентификационный номер автомобиля (VIN) и коды неисправности могут быть отправлены через Wi-Fi на центральный сервер для проверок.

Многие устройства сегодня уже обеспечивают передачу данных CAN или OBD2 через Wi-Fi / сотовую связь — например, регистратор CANedge2 WiFi CAN.

Это экономит средства и удобно, но также представляет собой политическую проблему из-за проблем с наблюдением.Для получения дополнительной информации см. Этот обзор AutoTap.

Устранение сторонних сервисов OBD2

Протокол OBD2 был первоначально разработан для стационарного контроля выбросов.

Тем не менее, сегодня OBD2 широко используется для генерации данных в реальном времени третьими сторонами — через ключи OBD2, регистраторы CAN и т. Д. Однако немецкая автомобильная промышленность стремится изменить это:

OBD предназначен для обслуживания автомобилей в ремонтных мастерских. Это никоим образом не предназначалось для того, чтобы позволить третьим сторонам создавать форму экономия на данных при доступе через этот интерфейс

— Кристоф Гроте, старший вице-президент по электронике, BMW (2017)

Предлагается «отключить» функциональность OBD2 во время вождения — и вместо этого собирать данные на центральном сервере.Это эффективно поставило бы производителей в контроль автомобильных «больших данных».

Аргументация основана на безопасности (например, устранение риска, связанного с автомобилем. взлом), хотя многие видят в этом коммерческий ход. Станет ли это реальной тенденцией? можно увидеть — но это может действительно подорвать рынок услуг сторонних производителей OBD2.



Идентификаторы параметров OBD2 (PID)

Зачем вам нужны данные OBD2?

Механики, очевидно, заботятся о диагностических кодах неисправности OBD2 (возможно, вы тоже), в то время как регулирующим органам требуется OBD2 для контроля выбросов.

Но протокол OBD2 также поддерживает широкий диапазон стандартных идентификаторов параметров (PID), которые могут быть зарегистрированы в большинстве автомобилей.

Это означает, что вы можете легко получить удобочитаемые данные OBD2 из вашего автомобиля на скорость, обороты, положение дроссельной заслонки и многое другое.

Другими словами, OBD2 позволяет вам легко анализировать данные от вашего автомобиля — в отличие от оригинальных оригинальных необработанных данных CAN.

Расшифровка данных шины OBD2 и CAN

В принципе, просто записать необработанные кадры CAN с вашего автомобиля.Если вы, например, подключить CAN-логгер к разъему OBD2, вы сразу же начнете регистрировать транслируемые данные CAN-шины. Однако необработанные сообщения CAN необходимо декодировать с помощью базы данных правил преобразования (DBC) и подходящего программного обеспечения CAN, которое поддерживает декодирование DBC (например, asammdf). Проблема в том, что эти файлы CAN DBC обычно проприетарный, что делает необработанные данные CAN нечитаемыми, если вы не являетесь производителем автомобильного оборудования.

Автомобильные хакеры могут попытаться реконструировать правила, однако это может быть сложно.CAN, однако, по-прежнему является единственным способом получить «полный доступ» к данным вашего автомобиля, в то время как OBD2 обеспечивает доступ только к ограниченному набору данных. данные.


Как записать данные OBD2?

Регистрация данных OBD2 работает следующим образом:

  • Вы подключаете регистратор OBD2 к разъему OBD2
  • Используя инструмент, вы отправляете «кадры запроса» через CAN
  • Соответствующие ЭБУ отправляют «кадры ответа» через CAN

Другими словами, регистратор CAN, который может передавать пользовательские кадры CAN, также может использоваться как регистратор OBD2.

Обратите внимание, что автомобили различаются в зависимости от модели / года тем, какие идентификаторы OBD2 PID они поддерживают. Для получения дополнительной информации см. Наше руководство по регистратору данных OBD2.

Регистратор данных CANedge OBD2

CANedge позволяет легко записывать данные OBD2 на SD-карту емкостью 8-32 ГБ. Просто укажите какие OBD2 PID вы хотите запросить, а затем подключите его к автомобилю через адаптер OBD2, чтобы начать регистрацию. Обработайте данные с помощью бесплатного программного обеспечения / API и нашего OBD2 DBC.

выучить больше

Детали рамы Raw OBD2

Чтобы начать запись данных OBD2, полезно понять основы необработанной структуры сообщения OBD2.Говоря упрощенно, сообщение OBD2 состоит из идентификатор и данные . Кроме того, данные разделяются на режим, PID и байты данных (A, B, C, D), как показано ниже.

Пример сообщения CAN запроса / ответа для PID «Скорость автомобиля» со значением 50 км / ч может выглядеть следующим образом:

Запрос: 7DF 02 01 0D 55 55 55 55 55

Ответ: 7E8 03 41 0D 32 AA AA AA AA

Объяснение полей сообщения OBD2

Идентификатор: Для сообщений OBD2 стандартный 11-битный идентификатор используется для различения «сообщений запроса» (ID 7DF) и «сообщений ответа» (ID 7E8). до 7EF).Обратите внимание, что 7E8 обычно находится там, где реагирует главный двигатель или ECU.

Длина: Просто отражает длину в байтах оставшихся данных (с 03 по 06). В примере со скоростью транспортного средства это 02 для запроса (поскольку следуют только 01 и 0D), а для ответа — 03, так как следуют 41, 0D и 32.

Режим: Для запросов это будет между 01-0A. В ответах 0 заменяется на 4 (т.е. 41, 42,…, 4A). Есть 10 режимов, как описано в SAE. Стандарт J1979 OBD2.Режим 1 показывает текущие данные и, например, используется для просмотра скорости автомобиля в реальном времени, оборотов в минуту и ​​т. д. Другие режимы используются, например, для показать или очистить сохраненную диагностику коды неисправностей и показать данные о стоп-кадре.

PID: Для каждого режима существует список стандартных OBD2 PID — например, в режиме 01 PID 0D — это скорость автомобиля. Полный список можно найти в обзоре Wikipedia OBD2 PID. У каждого PID есть описание, а у некоторых есть заданные мин. / Макс. И преобразование. формула.

Формула скорости e.г. просто A, что означает, что байт данных A (который находится в HEX) преобразуется в десятичное, чтобы получить преобразованное значение км / ч (т.е. 32 становится 50 км / ч выше). Например, RPM (PID 0C), формула (256 * A + B) / 4.

A, B, C, D: Это байты данных в HEX, которые необходимо преобразовать в десятичную форму, прежде чем они будут использоваться в вычислениях формулы PID. Обратите внимание, что последний байт данных (после Dh) не используется.



Регистрация данных OBD2 — примеры использования

Данные OBD2 от легковых и легких грузовиков могут использоваться в различных сценариях использования:

Запись данных с автомобилей

OBD2 данные от автомобилей могут e.г. использоваться для снижения затрат на топливо, улучшения вождения, тестирования деталей прототипа и страхования

Выучить больше
Диагностика автомобиля в режиме реального времени
Интерфейсы

OBD2 могут использоваться для потоковой передачи данных OBD2 в реальном времени, например для диагностики проблем с автомобилем

Выучить больше
Профилактическое обслуживание

Легковые и легкие грузовики можно отслеживать с помощью регистраторов IoT OBD2 в облаке, чтобы прогнозировать и предотвращать поломки

Выучить больше
Автомобильный регистратор черного ящика

Регистратор OBD2 может служить «черным ящиком» для транспортных средств или оборудования, предоставляя данные для e.г. споры или диагностика

Выучить больше

У вас есть вариант использования регистрации данных OBD2? Получите бесплатный спарринг!

Свяжитесь с нами

Какой тип регистратора OBD2 вам нужен?


Ниже описаны наиболее распространенные категории анализаторов OBD2:

Сканеры OBD2: Используются в качестве диагностических инструментов автомобиля при статическом считывании / очистке кодов неисправности, например, механика. Обычно используется диагностический прибор OBD2. в диагностике проблем с автомобилем, напримеробозначается активированной контрольной лампой MIL. Различные виды существуют, и некоторые частные лица используют недорогие варианты в качестве простых считывателей автомобильных кодов для самодиагностики состояния своего автомобиля.

Ключи Bluetooth OBD2: Существует множество ключей Bluetooth OBD2, которые позволяют просматривать данные об автомобиле прямо на смартфоне через приложение. Как правило, ключи Bluetooth OBDII дешевы и просты в использовании, хотя также ограничены с точки зрения их использования за пределами цели визуализации подключения Bluetooth к приложению. В Назначение ключа OBD2 bluetooth обычно заключается в мониторинге личного поведения при вождении и состояния автомобиля.

Интерфейсы OBD2: Предоставляют данные OBD2 в реальном времени на ПК через потоковую передачу по USB. Интерфейсы OBD2 обычно используются в расширенной диагностике автомобилей. и разработка автомобилей OEM. Кроме того, интерфейсы CAN, поддерживающие запросы OBD2, могут быть полезны как часть проприетарных параметров шины CAN при обратном проектировании.

Регистраторы OBD2: Используется для регистрации данных OBD2 от автомобиль на SD-карту — идеально подходит, например, для Варианты использования «черного ящика» или полевые испытания прототипов производителями автомобильных комплектующих.Например, CANedge1 позволяет вам регистрировать данные шины CAN, а также запрашивать данные OBD2, отправляя пользовательские запросы кадров на шину CAN.

Регистратор WiFi OBD2: регистраторы WiFi OBD2 и ключи WiFi OBD2 позволяют автоматически передавать данные OBD2 через WiFi (включая 3G / 4G) на сервер / облако. Регистраторы WiFi OBD2 обычно используются для OBD2 случаи использования телематики, когда данные о парке автомобилей должны собираться автоматически и визуализироваться с помощью панелей данных OBD2. Например, CANedge2 позволяет вам регистрировать данные CAN / OBD2 и автоматически отправлять их через точку доступа Wi-Fi на ваш собственный сервер.Данные могут обрабатываться с помощью бесплатных программных средств и, например, визуализируется в дашбордах Grafana.

CANedge2 упрощает регистрацию OBD2 данные на SD-карту — и загрузить их через Wi-Fi на свой сервер.

Необходимо регистрировать / передавать данные OBD2?

Получите регистратор данных OBD2 сегодня!



Рекомендовано для вас


ЭБУ к ПК

ЭБУ к ПК

Информационная надежность

Как производители ЭБУ, так и интеграторы не могут предоставить согласованные технические данные, поэтому что большая часть информации, собранной на этой странице, собрана из различных источники.Из-за отсутствия точности и достоверности некоторой информации я решили принять систему ранжирования от «Конечно» до «Не уверен».

Dsiclamer : Информация с этого сайта предоставляется как есть, без каких-либо гарантий со стороны автора. Информация подлежит изменить без предварительного уведомления. Нет поддержки и материалов от автора.

ЭБУ [S]

Современные автомобили оснащены различными окружающая среда, безопасность и другие функции, требующие некоторой формы компьютерного управления.Все Автомобили EFI имеют как минимум один электронный модуль (включая компьютер), который управляет топливные форсунки и обычно момент зажигания; эти модули называется ЭБУ (система управления двигателем Блок) или ECM (система управления двигателем Модуль). Другие функции, такие как электронная трансмиссии, антиблокировочные системы и подушки безопасности требуют дополнительных электронных модулей для мониторинга и контроля. Модули передают информацию в электронном виде между сами через автобус. Шина — это компьютерный термин для обозначения провода (или набора проводов), который переносит электронные сообщения из одной части компьютерной системы в другую.В шина в большинстве автомобилей EFI состоит из одного провода, по которому передаются 5-вольтовые последовательные данные. ручей. Каждый модуль, подключенный к шине, может передавать и принимать дискретные пакеты информации через шину.

Список BOSCH ECU

OBD [S]

OBD — это бортовая диагностика. автомобили с 1981 года. Первое поколение OBD (или OBD I) изначально проектировалось как средства для мониторинга различных систем на транспортном средстве (т.е. система впрыска топлива, зажигание системы, выхлопной системы и т. д.) и обнаруживать любые обнаруженные сбои. Пока автомобиль при работающем компьютере загорится контрольная лампа MIL (контрольная лампа неисправности: либо Световой индикатор «Проверьте двигатель» или «Скоро обслуживание двигателя») на приборной панели, чтобы предупредить водителя об обнаружении неисправности. В этот момент компьютер запрограммирован на создание и сохранение числового кода неисправности (двух- или трехзначного кода), который связанный с неудачей. Вот тогда-то и пригодится Code Reader.OBD I покрывает годы с 1981 по 1993. OBD I не был назван до появления OBD II. Эта вторая поколение OBD было введено повсеместно в 1996 году в рамках правительственного поручения по снизить выбросы загрязняющих веществ транспортными средствами. Эти системы OBD II используются в автомобилях, построенных из 1996 по настоящее время. Эта последняя система является гораздо более продвинутой и точной версией первое поколение но концепция все та же. Компьютер по-прежнему следит за автомобилем системы для поиска неисправностей, компьютер автомобиля по-прежнему использует индикатор MIL для предупреждения драйвер проблем, и коды все еще могут быть извлечены для идентификации систем или цепей где была обнаружена проблема.

История диагностики

  • 1987: Внедрение диагностики, одна линия K-Line для всех ЭБУ, ISO 9141-1, RB-KW71, мигающий код
  • 1989: Ключевое слово Opel 81
  • 1992: Ключевое слово Opel 82
  • 1994: 4 отдельных K-линии SAE J 1962-Диагностический разъем (ISO 15031-3)
  • 1996: KWP 2000, Flash-программирование
  • 1997: OBD II: ISO 9141-2, US-Cadillac Catera
  • 2000: EOBD: ISO 14230-4 Диагностика через KWP 2000
  • 2002: Диагностика CAN, вкл.EOBD

Протоколы

  • ISO 8092-2: 2000 — Транспорт дорожный. Соединения для бортовых жгуты электропроводки. Часть 2: Определения, методы испытаний и общие положения. требования к производительности
  • ISO 9141 — Транспорт дорожный — Диагностические системы — Требования к обмену цифровой информацией, erschienen 1989
  • ISO 9141-2 — Требования CARB для обмена цифровыми информация, 1994 и Ergnzung von 1996
  • ISO 9141-3 — Транспорт дорожный. связь между автомобилем и диагностическим прибором OBDII
  • ISO 11519-2 — Транспорт дорожный — Низкоскоростные серийные данные связь — Сеть низкоскоростных контроллеров (CAN), 1994
  • ISO 11519-3 — Транспорт дорожный — Низкоскоростные серийные данные связь — Автомобильная сеть (VAN), 1994
  • ISO 11898 — Транспорт дорожный — Обмен цифровыми информация — Контроллерная сеть (CAN) для высокоскоростной связи, 1993 г.
  • ISO / DIS 11898-1 — Транспорт дорожный — Сеть контроллеров (CAN) — Часть 1: Уровень канала передачи данных и физическая сигнализация (пересмотр ISO 11519-2: 1994, ISO 11898: 1993 / Amd 1: 1995)
  • ISO / DIS 11898-2 — Транспорт дорожный — Сеть контроллеров (CAN) — Часть 2: Устройство доступа к высокоскоростной среде (редакция ISO 11519-2: 1994, ISO 11898: 1993 / Amd 1: 1995)
  • ISO / DIS 14229 — Дорожные транспортные средства — Диагностическая система — Диагностика Спецификация услуг
  • ISO / DIS 14230-1 — Дорожные транспортные средства — диагностическая система — ключевое слово Протокол 2000, физический уровень
  • ISO / DIS 14230-2 — Дорожные транспортные средства — диагностическая система — ключевое слово Протокол 2000, уровень канала передачи данных
  • ISO / DIS 14230-3 — Дорожные транспортные средства — диагностическая система — ключевое слово Протокол 2000, прикладной уровень
  • ISO / DIS 14230-4 — Дорожные транспортные средства — диагностическая система — ключевое слово Протокол 2000 г., Требования к системам, связанным с выбросами
  • ISO / DIS 15031-1 — Транспорт дорожный. Автомобиль и внешнее испытательное оборудование для диагностики выбросов, Часть 1: Общие сведения, 2001
  • ISO / DIS 15031-3.2 — Дорожные транспортные средства — Связь между Автомобиль и внешнее испытательное оборудование для диагностики выбросов, Часть 3: Диагностический разъем и соответствующие электрические цепи, спецификация и использование, 2002
  • ISO / DIS 15031-4.2 — Транспорт дорожный. Связь между Автомобиль и внешнее испытательное оборудование для диагностики выбросов, Часть 4: Внешнее испытательное оборудование, 2002 г.
  • ISO / DIS 15031-5.2 — Транспорт дорожный. Автомобиль и внешнее испытательное оборудование для диагностики выбросов, Часть 5: Диагностические услуги, 2000
  • ISO / DIS 15031-6.2 — Дорожные транспортные средства — Связь между Автомобиль и внешнее испытательное оборудование для диагностики выбросов, Часть 6: Определения кодов неисправностей, 2000
  • ISO / DIS 15031-7 — Транспорт дорожный. Автомобиль и внешнее испытательное оборудование для диагностики выбросов, Часть 7: Безопасность канала передачи данных, 2001
  • ISO / TR 15497: 2000 — Транспорт дорожный. Руководство по разработке. для программного обеспечения на базе автомобиля
  • ISO / DIS 15764 — Транспорт дорожный — Расширенная безопасность канала передачи данных
  • ISO / DIS 15765-1 — Транспорт дорожный — Диагностика на контроллере Зонная сеть (CAN) — Часть 1: Общая информация
  • ISO / DIS 15765-2 — Транспорт дорожный — Диагностика на контроллере Зонная сеть (CAN) — Часть 2: Услуги сетевого уровня
  • ISO / DIS 15765-3 — Транспорт дорожный — Диагностика на контроллере Зонная сеть (CAN) — Часть 3: Службы прикладного уровня
  • ISO / DIS 15765-4 — Транспорт дорожный — Диагностика на контроллере Зональная сеть (CAN) — Часть 4: Требования к системам, связанным с выбросами
  • ISO / DIS 16845.2 — Дорожные транспортные средства — Сеть контроллеров (CAN) — План проверки соответствия
  • SAE J1850 — сетевой интерфейс передачи данных класса B, 2001
  • SAE J1930 — Условия диагностики электрических / электронных систем, Определения, сокращения и акронимы, Entspricht ISO / TR 15031-2, апрель 2002 г.
  • SAE J1939 — Рекомендуемая практика для контроля и Сеть связи (класс C) для грузовых автомобилей и автобусов
  • SAE J1939 / 01 — Рекомендуемая практика для контроля и Сеть связи для грузовых автомобилей и автобусов
  • SAE J1939 / 11 — физический уровень, 250 кбит / с, экранированный Витая пара
  • SAE J1939 / 21 — Уровень канала передачи данных
  • SAE J1939 / 31 — сетевой уровень
  • SAE J1939 / 71 — Уровень приложения транспортного средства
  • SAE J1939 / 73 — Уровень приложения — Диагностика
  • SAE J1939 / 81 — протокол управления сетью
  • SAE J1962 — Диагностический разъем, entspricht ISO / DIS 15031-3, Dez.2001
  • SAE J1978 — Сканирующий прибор OBD II, entspricht ISO / DIS 15031-4, Dez. 2001
  • SAE J1979 — Режимы диагностического тестирования, entspricht ISO / DIS 15031-5, апрель 2002
  • SAE J2012 — Определения диагностических кодов неисправности, entspricht ISO / DIS 15031-6, апрель 2002 г.
  • SAE J2190 — Режимы расширенного диагностического тестирования
  • SAE J2178 — Сетевые сообщения для передачи данных класса B

ALDL [M]

ALDL (сборка Line Diagnostic Line) — это собственный протокол связи GM, который позволяет разговор между ЭБУ и внешним устройством.Из протокола ALDL различные сообщаются форматы данных и скорость передачи данных: по всей видимости, много GM US автомобили, оснащенные ранними ЭБУ ODB, придерживаются скорости ALDL 160 бод или ALDL 8192 бод (для типов P4, P6 и P66 ЭБУ) . Различный можно найти типы разъемов ALDL.

Насколько нам известно, существовало как минимум четыре различных ALDL. разъемы используются во всем мире (и, вероятно, существует еще больше!).

6-контактный разъем для Австралии

В Австралии модели VN и VP использовали 6-контактный разъем.В диагностическая ссылка, скрепка (красная пунктирная линия), используется для включения «мигания» диагностический режим », и здесь не описывается. Данные с этого разъема находятся на 160 бод, когда диагностическая связь представляет собой резистор 10 кОм. Ты найдешь это разъем под бардачок на ВН / ВП.

12-контактный разъем американского типа

Вот вид 12-контактного разъема ALDL в американском стиле, и где для подключения вышеуказанной схемы. Схема нумерации контактов такая же, как и используется на VN / VP Holden Commodores (но эти автомобили использовали 6-контактный разъем показано выше).Эта диаграмма любезно предоставлена ​​Карстеном Мейером.

16-контактный разъем OBD-II, австралийский

Более поздние модели австралийских Commodore (VR, VS и т. Д.) Используют 16-контактный Разъем в стиле OBD-II, но распиновка уникальна для Австралии. Этот разъем находится под рулем.

10-контактный разъем для Европы (Opel)

Режимы ALDL [M]

Есть три класса автомобилей, которые были произведены GM с 1982 года.

Резистивное регулирование

Первый набор транспортных средств — это те, чьи потоки данных контролируется помещением значения сопротивления от контакта B разъема ALDL к контакту A разъема ALDL. Транспортные средства, называемые резистивным управлением (RC), представляют собой самая большая часть произведенных на сегодняшний день автомобилей GM. Эти автомобили имеют следующие режимы:

  • Нормальный режим (R> = 20 кОм)
  • Режим ALDL (R = 10 кОм)
  • Резервный режим (R = 3,9 кОм)
  • Сервисное обслуживание на месте (R <= 500 Ом)

Широтно-импульсная модуляция

Второй класс транспортных средств — это те, которые контролируется замыканием контакта B с контактом A.Этот класс автомобилей контролируется время, в течение которого контакт B закорочен на контакт A и называется широтно-импульсной модуляцией. (ШИМ) автомобили. Для управления модуляцией автомобиль устанавливает 0,500 секундный интервал. временной интервал, в течение которого вычисляется время на земле. В следующем списке показаны отношение времени заземления к выбранному режиму.

мсек. Режим
0 — 35,7 Нормальное состояние
35.8 — 107,1 Режим ALDL 1
107,2 — 178,6 Режим ALDL 2
178,7 — 250,0 Режим ALDL 3
250,1 — 321,4 Режим ALDL 4
321,5 — 392,9 Режим ALDL 5
393,0 — 464,3 Режим ALDL 6
464,3 — 499,9 Режим диагностики

GM30

Третий класс автомобилей называется GM30. Описание этих автомобилей можно найти в документе GM XDE-5024

.

ISO 9141 [S]

ISO 9141 — это международный стандарт для связи между автомобилями и диагностическими тестерами. Он указывает серийный номер шина передачи данных между электронными блоками управления (ЭБУ) автомобиля и диагностический тест SAE OBDII Scan Tool (SAE J 1978). ISO 9141 был принят Советом по воздушным ресурсам Калифорнии для всех автомобилей, проданных в Калифорнии с системы контроля топлива с обратной связью.Подобные правила принимаются в Нью-Йорке, штат Нью-Йорк. Джерси, Массачусетс и Мэриленд, и ожидается, что они повлияют на дизайн большинство автомобилей продано в США.

ISO 9141 определяет разные логические уровни для приемника и Передатчик.

Уровни логики приемника:

  • Логический 0 <= 30% Vbat
  • Логика 1> = 70% Vbat

Логика эмиттера Уровни:

  • Логический 0 <= 20% Vbat
  • Логика 1> = 80% Vbat

Где Vbat напряжение аккумулятора

Сопротивление нагрузкам

К-линия L-образный
Логика 0 / Прием Земля от 50 кОм до 110 кОм
Логика 1 Земля 50 к Ом

К-линия [S]

Основная форма связи — односторонняя линия K-Line.K-Line передает данные в двух направлениях, а также передает всю адресную информацию во время инициализации. K-линия подтягивается до Vbat резистором смещения 510 Ом и смещается на заземление через резистор, значение которого может варьироваться от 50 кОм до 110 кОм [M] .

L-линия [S]

Дополнительная L-линия является однонаправленной и используется только для прохода адресовать информацию от диагностического тестера к ЭБУ во время инициализация. L-линия находится в состоянии 1 во время всех остальных событий.K-Line будет имитировать инициализацию адреса L-Lines.

Компьютер [S]

Подойдет любой настольный компьютер или ноутбук. Его производительность должна быть совместима с Windows 98 (и выше), NT4 (и выше) операционные системы.

Интерфейс [M]

Простейшие интерфейсы подключаются напрямую к разъему ALDL и к ПК. Некоторые используют микроконтроллер (микропроцессор) Таким образом, относящийся к классу «интеллектуальных» интерфейсов.Все больше и больше IC теперь доступен, который объединяет все или часть интерфейсных функций.

Ссылки

ISO: Международная организация по стандартизации
http://www.iso.org

SAE: Общество Автомобильные инженеры
http://www.sae.org

ODBII
http://www.obdii.com/

Нормативные публикации ISO
http://www.softing.com/de/ae/normen.htm

RS232C стр.
rs232.htm

Наконец-то настоящая вещь…
http://www.carlton24v.co.uk/aldl.htm

рупий

Cette page est destine mettre en commun un maximum d’information qui seront ncessaires pour l’laboration du projet ECU2PC, lequel comprend la concept lectronique et informatique d’une interface spcialise.

Важно : Les информация Contenues dans cette page sont mises votre disposition en l’tat. L’auteur de ce site ne saurait en aucun cas tre tenu responsable des consquences d’une информация errone ou использовать de manire inapproprie.Aucun support ni aucun matriel ne sera Fourni par l’auteur.

Диагностика OBD

GM OBD1 Кабели

Недорогие кабели ALDL OBD1 — 59,95 долл. США

12-контактная версия


Версия с 16 выводами


3 необходимых вещи
Есть в основном 3 вещи, которые вам нужны для записи диагностических данных от бортовой диагностической системы 1 (OBD1) GM на вашем автомобиле эпохи 1982–1995 годов.
1 — ПК, предпочтительно портативный компьютер, для сбора, регистрации и анализа данных БД.
2 — Кабель ALDL для подключения компьютера к диагностическому порту ALDL OBDI в автомобиле.
3 — Программа, работающая на вашем ПК, для сбора данных OBD.

Почему эта установка?
По какой причине использовал вышеуказанную настройку для себя? В основном, теперь у вас есть мощный инструмент для самостоятельного анализа данных бортовой диагностики автомобилей, даже лучше, чем специализированные инструменты сканирования, которые были только у дилеров и крупных магазинов в далеком прошлом.С вашей собственной настройкой, если загорится индикатор Service Engine Soon (SES), вы можете самостоятельно просмотреть подробные данные OBD, чтобы увидеть, какие коды неисправностей были установлены и условия, при которых они были установлены, что, возможно, сэкономит ваши деньги на затратах на ремонт, зная что не так с вашей машиной. Для многих довольно интересно иметь возможность видеть, как сенсорные системы вашего автомобиля работают в режиме реального времени, и даже иметь возможность повысить производительность за счет перепрограммирования PROM ваших автомобилей ECM / PCM (не для новичков).

Кабель ALDL
Давайте сначала посмотрим на интерфейсный кабель OBD1 ALDL (сборочная линия диагностики), поскольку мы продаем недорогие интерфейсные кабели ALDL OBD1. Возможно, это единственное, что вам нужно будет купить, чтобы провести собственную диагностику. Вы можете сделать свой собственный кабель, но гораздо быстрее и легче купить уже собранный и протестированный.

Под приборной панелью вашего автомобиля вы, скорее всего, увидите этот тип разъема:

Существует разъемов других типов , но показанный выше 12-контактный разъем OBD1 является наиболее распространенным.Некоторые автомобили 1994-95 годов имеют 16-контактный разъем OBD2 (показан ниже), среди них автомобили Corvette, Camaro и LT1, а также более новые австралийские Holden и Commodore. Несмотря на то, что это разъем OBD2, на этих автомобилях 94-95 за ним стоит система OBD1. Если у вас есть автомобиль 94 или 95 с 16-контактным разъемом , мы продаем для него 16-контактные кабели с разъемом USB ALDL здесь.
Вы также можете запрограммировать комбинацию приборов на Pontiac GTO 2004, 2005 и 2006 годов с помощью нашего 16-контактного USB-кабеля ALDL, как показано здесь с программным обеспечением для программирования комбинации приборов . Другие новые легковые и грузовые автомобили могут работать так же.

Убедитесь, что вы покупаете правильный кабель ALDL для вашего автомобиля. Вы можете купить кабель ALDL с 12-контактным корпусом разъема OBD1, или 16-контактный разъем в стиле OBD2, или кабель только с оголенным штекером, чтобы подключить его к гнезду разъема автомобиля, где расположены контакты последовательных данных (контакт M или E или 9 на схемах выше). Кабель ALDL с корпусом штекера OBD1 позволит вам просто нащупать приборную панель и подключить кабель.Кабель с голым контактом требует, чтобы вы заглянули под приборную панель и вставили правильный контакт на автомобильной стороне разъема. Если у вас есть как 12-контактные, так и 16-контактные автомобили для диагностики и регистрации данных, вы можете купить только USB-кабель с голым контактом, но он менее удобен в использовании.

Быстрый тест с помощью скрепки
Поскольку мы смотрим на контакты разъема, здесь следует упомянуть, что быстрый способ узнать, какой код неисправности или коды устанавливаются в ECM вашего автомобиля, — это перемыть контакты A и B 12-контактного разъема ALDL OBD1 со скрепкой.Когда автомобиль выключен, сидя на месте, поверните ключ зажигания вперед, пока эта перемычка находится на месте. Не заводите машину. Индикатор Service Engine Soon (SES) будет мигать в повторяющейся последовательности, показывая, какие коды неисправностей были установлены в ECM. В руководстве по обслуживанию для вашего годового автомобиля будет таблица с указанием того, что означает каждый код неисправности, или этот веб-сайт с кодом неисправности может помочь. Этот метод скрепки сообщит вам код неисправности или коды, установленные в вашем ECM, но он не скажет вам, при каких условиях установлен код неисправности, и не позволит вам очистить коды неисправностей на лету, как кабель ALDL и ПК настройка будет.

Какой компьютер работает
Вам понадобится компьютер для запуска программного обеспечения для сканирования или диагностики, предпочтительно портативный компьютер. Требования к оборудованию для ПК во многом определяются тем, какое программное обеспечение для сканирования или диагностики вы планируете использовать. Некоторые из программ сканирования являются очень простыми программами на основе DOS, другие более графически насыщены. Просмотрите ссылки на программное обеспечение , которые мы разместили, и ознакомьтесь с требованиями к оборудованию для программы, которую вы собираетесь использовать.По большей части, простые программы DOS можно запускать на очень старых ноутбуках на базе 486-го процессора с очень небольшим объемом памяти (какой бы компьютер вы ни использовали, он должен быть оснащен интерфейсом USB или последовательным интерфейсом (RS-232). Все новые портативные компьютеры имеют только интерфейс USB, как показано здесь:

Почти все старые ноутбуки и ПК поставляются с последовательным интерфейсом, встроенным в сам компьютер. Это будет 9-контактный штекер, который выглядит как разъем слева. Разъем справа — это 15-контактный видеоразъем, а не последовательный порт.

Если у вас есть старый ноутбук, у которого нет интерфейса USB, купите наш последовательный кабель ALDL.

Диагностическое программное обеспечение
Последний необходимый элемент — это диагностическое программное обеспечение , которое будет работать на вашем ноутбуке для сбора и записи данных из вашей системы OBD1. Доступен ряд отличных программных пакетов, некоторые из которых бесплатны, а другие предоставляют пробный период для полнофункционального использования. Ниже приведены снимки экрана и ссылки на каждый веб-сайт для каждого из пакетов программного обеспечения, которые я нашел и загрузил для себя.Я не одобряю один пакет сканирования по сравнению с другим, поскольку все они имеют свое место и предоставляют важные данные. Я могу сказать, что чаще всего использовал Tunerpro RT , и это отличный пакет с точки зрения его структуры и предоставляемых данных. Я также использовал TTS Datamaster , и это также отличный пакет по своей структуре и предоставляемым данным. Вы можете использовать его 20 раз при записи данных перед покупкой ключа, и вы можете просматривать ранее записанные данные любое количество раз во время пробного использования, прежде чем покупать ключ.Для машин со скоростью 160 бод WinALDL кажется наиболее широко используемым пакетом, и Йонас Байлунд проделал большую работу с ним.

Ниже приведены снимки экрана некоторых программных пакетов. Для всех этих пакетов есть еще много экранов, я только что включил несколько для просмотра здесь. Вы можете щелкнуть изображение, чтобы увеличить его, а ссылка на заголовок под изображением приведет вас на веб-сайт пакетов.


TTS Datamaster


WinALDL


EFILive V4


FreeScan


Без моутов GMECM


CarBytes и ALDL_LOG

Для каждого из этих пакетов при сборе данных должна использоваться соответствующая версия или файл данных для ECM / PCM вашего автомобиля.Некоторые из этих программ имеют разные файлы данных, которые необходимо загрузить для вашего автомобиля, в других есть раскрывающиеся меню, в которых вы можете выбрать свой ECM / PCM. Прочтите документацию к конкретному программному пакету, который вы используете. Чтобы определить, какой блок ECM / PCM установлен в вашем конкретном автомобиле, можно использовать эту страницу перекрестной ссылки ECM / PCM .

Работа в автомобиле
Работа в машине довольно проста. В идеале это занимает всего несколько шагов: подключите разъем кабеля ALDL к порту OBD под приборной панелью и к компьютеру (см. Инструкции здесь).Включите свой ноутбук и запустите любое программное обеспечение для сбора данных или настройки, которое вы используете, и поверните ключ автомобиля вперед, чтобы запустить поток данных. Нажмите кнопку записи в программном пакете и начните регистрацию данных. Просмотрите данные позже, чтобы увидеть и просмотреть результаты.

Если у вас есть кабель с оголенными контактами, вам придется заглянуть под приборную панель, чтобы вставить штекер кабеля ALDL в соответствующий гнездовой контакт автомобильного разъема. На стандартном 12-контактном разъеме OBDI это обычно будет контакт M на автомобилях со скоростью передачи 8192 бод или контакт E на внутренних автомобилях США со скоростью 160 бод.Если у вас есть старый карбюраторный автомобиль середины 1980-х годов с 12-контактным ALDL, у вас есть 12-контактная система ALDL, которая работает от контакта D, и вам нужно будет построить свой собственный кабель, см. Эту страницу WinALDL, страница . Различные другие марки имеют немного другое назначение контактов и форму разъемов, поэтому найдите правильное расположение контактов разъема на вашем автомобиле для контакта последовательного порта данных. Эта страница с макетами разъемов должна помочь . Например, владельцы Lotus, у которых есть разъемы другой формы, будут подключаться к контакту G — см. http: // turboesprit.tripod.com/ALDL_Cable/

Более старые автомобили ALDL со скоростью 160 бод (например, ранние модели TPI, такие как GM 1227165 ECM, 1986-89 5,0 и 5,7 V8) потребуют подключения резистора 10 кОм между контактами A и B на 12-контактном разъеме ALDL для установки автомобиля. в «режим ALDL» и начать передачу последовательных данных. В наш кабель встроен резистор 10 кОм, который активируется простой установкой перемычки.

Мы пришли к выводу, что работа в автомобиле более надежна за счет использования преобразователя постоянного тока в переменный для питания нашего ноутбука во время сбора данных.Мы купили небольшой инвертор Coleman на 400 Вт в клубном магазине Costco или Sam’s за 20 долларов, и он отлично работал. Нам не нужно было беспокоиться о разрядке аккумулятора ноутбука, и мы могли оставлять ноутбук работающим на несколько часов, даже если машина была выключена, пока мы отдыхали. Хорошо, что вы можете просто приостановить сеанс записи данных на это время и запустить его снова, когда будете готовы.

Помимо сканирования — обновления ECM, запись PROM
После того, как вы увидели, как выглядят данные вашего автомобиля, некоторые люди захотят обновить или изменить свои параметры ECM / PCM, купив обновленный PROM или калибровку PCM, или записав свои собственные пользовательские калибровки PROM.

Самый простой путь — это купить специальный чип или калибровку, которая уже запрограммирована для вашего автомобиля, будь то модифицированная или штатная. Мы очень рекомендуем эти очень опытные источники:

http://www.tbichips.com/
http://www.pcmforless.com/
http://www.madtuner.com/

Для записи собственного PROM требуется больше аппаратного и программного обеспечения, а также гораздо больше знаний. Хорошие сайты, чтобы научиться сжигать PROM-чипы, находятся по адресу:

http: // www.thirdgen.org/promintro
http://www.tunerpro.net/
http://www.tunercat.com/
http://www.carputing.com/

Имейте в виду, что вы можете серьезно повредить свою машину, записав или загрузив неверные параметры в свой выпускной. Очень внимательно изучите сжигание стружки, прежде чем даже подумать о том, чтобы сделать это для себя.

Другие настройки и полезные ссылки
Объем доступной информации о системах OBD ​​и их работе довольно велик, и ее можно найти в Интернете.Мы производим простые и недорогие кабели ALDL, и у нас нет парка легковых и грузовых автомобилей, на которых мы тестируем все сценарии. Для получения поддержки различные интернет-форумы и сайты производителей могут стать отличным местом для поиска информации о вашем конкретном автомобиле или настройке. Ниже приведены ссылки на различные материалы, которые мы сочли полезными.

Программное обеспечение для сканирования и настройки:

TunerPro — http://www.tunerpro.net/
WinALDL — http://winaldl.joby.se/
TTS Datamaster — http: // www.ttspowersystems.com/DataMaster_downloads2.html
FreeScan — http://www.andywhittaker.com/en-gb/ecu/freescan.aspx
EFILive — http://www.efilive.com/additional-downloads
TunerCat — http: //www.tunercat.com/
CarBytes — http://www.efilive.com/additional-downloads
Moates Free GMECM — http://www.moates.net/gmecm/software.html
ALDL_LOG — http: / /www.techedge.com.au/vehicle/aldl160/aldl_sw.htm
Pontiac-interface.de — http://www.pontiac-interface.de/
ALDMON для 1227727 и 1227730 — pweb.de.uu.net/pr-meyer.h/aldl.htm
Diacom Plus — http://www.rinda.com/auto/auto.htm
PCMComm 16188051 — http://carputing.tripod.com/9495LT1Edit. htm
ElanScan — http://www.alanmcnicol.dsl.pipex.com/M100_ALDL.html
LT1-Edit — http://www.carputing.com/
GM 6.5 Turbo Diesel Scan — http://www.enghmotors .com / basic / default.aspx

Другие настройки кабеля и интересные ссылки:

Перекрестная ссылка на

ECM / PCM — http://www.exatorq.com/ludis_obd1/
LT1 PCM Tuning — http: // www.lt1pcmtuning.com/
Большой ресурс GM EFI — http://www.gearhead-efi.com
Таблица кодов неисправностей GM — http://www.troublecodes.net/GM/
GM 8192/160 ALDL — http: // www.techedge.com.au/vehicle/aldl8192/8192hw.htm
Custom TBI / TPI Chips — http://www.tbichips.com/
Custom PCM / ECM Chips — http://www.pcmforless.com/
Пользовательское программирование PCM / ECM — http://www.madtuner.com/
GM ECM, diy_efi — http://www.diy-efi.org/ Учебное пособие по настройке
GM EFI — http://home.comcast.net/ ~ khiester200035 /
Стили разъемов OBD — http: // www.makinterface.de/aldl_e.php3
Схема расположения выводов OBD1 ALDL — http://www.gmtips.com/3rd-degree/dox/tips/ecm/aldl.htm

Начало работы с OBD-II — learn.sparkfun.com

Добавлено в избранное Любимый 24

Введение

В конце концов, в вашем путешествии в мир встроенной электроники вам захочется «взломать» автомобиль для передачи данных. Как и во многих других интегрированных системах, существует особый «язык» для общения с транспортными средствами.В этом учебном пособии дается базовое введение в спецификацию бортовой диагностики (OBD) , которую транспортные средства и другие промышленные машины используют для связи с внешним миром.

Хотите познакомиться с OBD-II?

Мы вас прикрыли!

SparkFun OBD-II UART

В наличии WIG-09555

Эта плата позволяет взаимодействовать с шиной OBD-II вашего автомобиля.Он предоставляет вам последовательный интерфейс с использованием команды ELM327 se…

10

Разъем OBD-II

Распродано DEV-09911

OBD-II обеспечивает доступ к многочисленным данным из блока управления двигателем и предлагает ценный источник информации при поиске и устранении неисправностей.

3 Предупреждение! Изменение вашей системы OBD-II до несертифицированного состояния считается федеральным правонарушением .Предоставленная информация предназначена только для чтения из спецификации OBD-II. Взламывайте на свой страх и риск!

Определение

Итак, что именно — это по спецификации OBD, и почему нас это волнует? По данным сайта Агентства по охране окружающей среды:

Бортовая диагностика, или «OBD», — это компьютерная система, встроенная во все малотоннажные автомобили и грузовики 1996 г. и более поздних моделей, как того требуют поправки к Закону о чистом воздухе от 1990 г. Системы OBD предназначены для контроля работы некоторые из основных компонентов двигателя, включая те, которые отвечают за контроль выбросов.

Другими словами, OBD — это язык блока управления двигателем (ECU) , и он был разработан для борьбы с выбросами и отказами двигателя.

Спасти планету — это здорово (привет, граждане, ученые!), Но это также означает, что мы можем получить доступ к другим функциям автомобиля и собирать информацию с этих частей и о них. Изучение того, как работать с этими протоколами, также означает, что вы можете определить, что означает индикатор неисправности (MIL) (также известный как индикатор проверки двигателя) на приборной панели, когда он сообщает вам о проблеме с двигателем.Если вы или ваш механик когда-либо читали DTC (диагностические коды неисправностей) на вашем автомобиле, они используют OBD-II.

К сожалению, сами протоколы не доступны публично (если бы только у них был открытый исходный код!), Но мы попытались собрать и прояснить как можно больше.

Оборудование

Любой автомобиль, произведенный в 1996 году или позже, по закону должен иметь компьютерную систему OBD-II. Вы можете получить доступ к этой системе через соединитель канала передачи данных (DLC) .Это 16-контактный разъем, который может сказать вам, с каким протоколом взаимодействует ваш автомобиль, в зависимости от того, какие контакты в нем установлены.

Разъем передачи данных в Jeep Cherokee 1998 года, с маркированными контактами.

В автомобилях он будет расположен под приборной панелью, рядом с сиденьем водителя или рядом с пепельницей — в любом месте, доступном с водительского сиденья без использования инструментов для доступа к нему (т. Е. Вам не понадобится отверткой, чтобы снять панель, чтобы добраться до нее).

Терминология

Прежде чем мы зайдем слишком далеко, давайте удостоверимся, что мы понимаем все ключевые слова, используемые в этих протоколах.

Двигатель / Электронный блок управления (ЭБУ)

ЭБУ может относиться к отдельному модулю или к набору модулей. Это мозги автомобиля. Они контролируют и контролируют многие функции автомобиля. Они могут быть стандартными от производителя, перепрограммируемыми или иметь возможность последовательного подключения нескольких функций.Функции настройки на блоке управления двигателем могут позволить пользователю заставить двигатель работать на различных уровнях производительности и различных уровнях экономии. На новых автомобилях обычно используются микроконтроллеры.

Некоторые из наиболее распространенных типов ЭБУ включают:

  • Модуль управления двигателем (ЕСМ) — управляет исполнительными механизмами двигателя, влияя на такие вещи, как угол опережения зажигания, соотношение воздух-топливо и обороты холостого хода.
  • Модуль управления автомобилем (VCM) — Другое имя модуля, который контролирует работу двигателя и транспортного средства.
  • Модуль управления трансмиссией (TCM) — управляет трансмиссией, включая такие параметры, как температура трансмиссионной жидкости, положение дроссельной заслонки и скорость вращения колес.
  • Модуль управления трансмиссией (PCM) — Обычно комбинация ECM и TCM. Это контролирует вашу трансмиссию.
  • Электронный модуль управления тормозом (EBCM) — Он контролирует и считывает данные из антиблокировочной тормозной системы (ABS).
  • Body Control Module (BCM) — Модуль, который управляет функциями кузова автомобиля, такими как электрические стеклоподъемники, сиденья с электроприводом и т. Д.

Диагностический код неисправности (DTC)

Эти коды используются для описания того, где возникает проблема с автомобилем, и определены SAE (вы можете найти здесь полную спецификацию за плату). Эти коды могут быть общими или уникальными для производителя транспортного средства.

Эти коды имеют следующий формат:

XXXXX

Вы можете найти неполные списки кодов неисправности здесь и здесь.

Идентификация параметра (PID)

Это реальная часть информации, которую вы можете извлечь из системы OBD-II.PID — это определения различных параметров, которые могут быть вам интересны. Они похожи на третью цифру в кодах неисправности.

Не все PID поддерживаются всеми протоколами, и для каждого производителя может быть несколько уникальных пользовательских PID. К сожалению, они также обычно не публикуются, поэтому вам может потребоваться много поисков и / или обратного проектирования, чтобы определить, к какой системе относится каждый PID.

Доступны разные режимы, и каждый режим имеет несколько вариантов PID, доступных в этом режиме.Для получения более общей информации по этому поводу посетите вики-страницу PID.

Контрольная лампа неисправности (MIL)

MIL — это тот ужасный маленький свет на приборной панели, который указывает на проблему с автомобилем. Есть несколько вариантов, но все они указывают на ошибку, обнаруженную протоколом OBD-II.

«Check-Engine-Light» от IFCAR — Собственная работа. Под лицензией Public Domain через Commons

Другая возможность, которую вы можете найти на своей приборной панели, включает эту опцию:

«Motorkontrollleuchte» от Benutzer: chris828 — собственная работа автора, загрузившего оригинал.Под лицензией Public Domain через Commons

Неважно, какой именно, это обычно не лучший свет, чтобы увидеть, если вы не хотите взломать!

Протоколы OBD-II

В соответствии со спецификацией OBD-II доступно пять различных протоколов связи. Как и многие другие вещи, производители склонны иметь свои предпочтения и думать, что их протокол является лучшим, отсюда и различия. Вот краткий обзор каждого и описание контактов, используемых в DLC для каждого.

SAE J1850 ШИМ

Это сигнал широтно-импульсной модуляции, который работает со скоростью 41,6 кбит / с. Этот протокол обычно используется на автомобилях Ford.

SAE J1850 PWM Контакты 4, 5
Характеристика Описание
BUS + Pin 2
BUS — Pin 10
12V Pin 16
GND GND
Состояние шины: Активно, когда шина + подтягивается ВЫСОКИЙ, ШИНА — НИЗКАЯ
Максимальное напряжение сигнала: 5 В
Минимальное напряжение сигнала: 0 В
Количество байтов: 12
Битовая синхронизация: ‘1 бит — 8 мкс,’ 0 бит — 16 мкс, начало кадра — 48 мкс

SAE J1850 VPW

Это протокол переменной ширины импульса, который работает на 10.4 кбит / с. Автомобили GM обычно используют эту версию.

SAE J1850 VPW
Характеристика Описание
Шина + Контакт 2
12V Контакт 16
GND Контакты 4, 5
Состояние шины : Низкий уровень простоя шины
Максимальное напряжение сигнала: + 7 В
Напряжение сигнала принятия решения: +3.5V
Минимальное напряжение сигнала: 0V
Количество байтов: 12
Битовая синхронизация: ‘1’ бит-ВЫСОКИЙ 64 мкс, ‘0’ бит-ВЫСОКИЙ 128 мкс, начало Рама — ВЫСОКАЯ 200 мкс

ISO 9141-2

Если у вас автомобиль Chrysler, европейский или азиатский автомобиль, это ваш протокол. Он работает на скорости 10,4 кбит / с и имеет асинхронную последовательную связь.

ISO 9141-2
Характеристика Описание
K Line (двунаправленная) Pin 7
L Line (однонаправленная, опция) Pin 15
12V Контакт 16
GND Контакты 4, 5
Состояние шины: K Линия простаивает ВЫСОКИЙ.Шина активна при движении на НИЗКОМ.
Максимальное напряжение сигнала: + 12 В
Минимальное напряжение сигнала: 0 В
Количество байтов: Сообщение: 260, Данные: 255
Битовая синхронизация: UART : 10400 бит / с, 8-N-1

ISO 14230 KWP2000

Это протокол ключевых слов 2000, еще один метод асинхронной последовательной связи, который также работает на скорости до 10,4 кбит / с.Это также используется на автомобилях Chrsyler, европейских или азиатских автомобилях.

ISO 14230 KWP2000
Элемент Описание
K Line (двунаправленный) Pin 7
L Line (однонаправленный, опционально) Pin 15
Pin 16
GND Контакты 4, 5
Состояние шины: Активен при низком уровне.
Максимальное напряжение сигнала: + 12 В
Минимальное напряжение сигнала: 0 В
Количество байтов: Данные: 255
Битовая синхронизация: UART: 10400 бит / с, 8 -N-1

ISO 15765 CAN

Этот протокол обязателен для всех автомобилей, продаваемых в США с 2008 года и позже. Однако, если у вас есть европейский автомобиль 2003 года выпуска или позже, он может иметь CAN.Это двухпроводной метод связи и скорость передачи до 1 Мбит / с.

ISO 15765 CAN
Характеристика Описание
CAN HIGH (CAN H) Pin 6
CAN LOW (CAN L) Pin 14
12V Pin 16
GND Контакты 4, 5
Состояние шины: Активно, когда CANH установил ВЫСОКИЙ уровень, CANL установил низкий уровень.Холостой ход при плавающих сигналах.
Напряжение сигнала CANH: + 3,5 В
Напряжение сигнала CANL: + 1,5 В
Максимальное напряжение сигнала: CANH = + 4,5 В, CANL = + 2,25 В
Минимальное напряжение сигнала: CANH = + 2,75 В, CANL = + 0,5 В
Количество байтов: L
Битовая синхронизация: 250 кбит / с или 500 кбит / с

Использование симулятора

Хотя эти протоколы отлично подходят для сбора данных с вашего автомобиля, при создании прототипа может быть настоящей проблемой, когда вам придется сидеть с компьютером, различной электроникой и кабелями, проложенными повсюду в передней части вашего автомобиля.К счастью, существует множество симуляторов, которые позволяют создавать прототипы и тестировать системы OBD-II.

У нас есть несколько различных симуляторов, которые полезны для работы с этими протоколами. Мы обновим этот раздел, если / когда мы получим какие-либо дополнительные.

ЭБУsim 2000

Этот симулятор ECU разработан и изготовлен замечательными людьми из ScanTool. Вы можете просмотреть всю информацию о продукте на их странице продукта здесь.

Чтобы начать использовать этот симулятор, необходимо выполнить следующие подключения:

  1. Подключите кабель USB к симулятору и компьютеру. Установите необходимые драйверы.
  2. Подключите кабель OBD-II к симулятору.
  3. Отключите симулятор от входящего в комплект блока питания 12 В.
  4. Откройте последовательный терминал со скоростью 115200 бит / с, 8, N, 1 , подключившись к последовательному порту, на который настроен симулятор.
  5. Настройте симулятор на протокол, который вы хотите протестировать.
  6. Подключитесь к устройству ECU (плата OBD-II, щит CAN-Bus, Raspberry Pi и т. Д.)

Теперь вы можете использовать возможности симулятора, убедившись, что данные, передаваемые по шине, соответствуют тому, что получает ваш считыватель ECU, и наоборот.

Для настройки симулятора доступно несколько различных вариантов программирования. Ознакомьтесь с руководством по программированию для получения дополнительной информации. Текущая версия имеет прошивку, совместимую с несколькими различными протоколами OBD-II, которые будут различаться в зависимости от того, что вы заказываете.

Руководство по программированию также включает все команды, которые вы можете использовать для симулятора.

Например, если нам нужно определить, какой протокол в настоящее время установлен в нашем симуляторе, мы должны использовать команду SPI . В нашем терминале это будет выглядеть так:

Чтение настроек протокола ECUsim 2000.

Это показывает, что симулятор в настоящее время настроен на протокол ISO 15765-4 (также известный как CAN) с типом идентификатора 11 бит и работает со скоростью 500 кбит / с.

Если затем вам нужно отправить данные из симулятора на устройство, такое как SparkFun OBD-II UART Board или CAN-Bus Shield для тестирования, вы можете использовать команду передачи SOMT

, . Например, если мы хотим отправить команду о том, что давление топлива в двигателе составляет 100 кПа, мы должны отправить SOMT , за которым следует идентификатор параметра (PID) для давления топлива, который равен 0A , и следовать ему с шестнадцатеричным значением для 100 ( 64 ) в данном случае.

Передача давления топлива через ECUsim 2000.

Если мы изначально оставим соединение «плавающим» (забыв затянуть анкерные винты на разъеме DB9) для имитации проблемы с подключением, мы получим сообщение CAN ERROR при первой отправке команды. В этом симуляторе это означает, что есть проблема между симулятором и нашим считывателем CAN. Однако, как только мы исправим соединение, симулятор сможет отправить данные и точно сказать нам, что он передал.Довольно аккуратно!

Ресурсы и дальнейшее развитие

Идем дальше

Теперь, когда у вас есть базовое представление о протоколах OBD-II и о том, как работать с различными доступными средствами связи, пришло время создать свой собственный проект!

Если у вас есть отзывы, перейдите в раздел комментариев или свяжитесь с нашей группой технической поддержки по адресу [email protected].

Дополнительные ресурсы

Ознакомьтесь с этими продуктами и проектами, чтобы получить больше вдохновения от OBD-II!

Распиновка разъема

OBD2, детали и техническое описание

Конфигурация контактов

Номер контакта

Имя контакта

Описание

1,3,8,9,11,12,13

Пустой

Эти контакты не являются стандартными и зависят от производителя.Это также не требуется для нормальной связи / взаимодействия

2

Автобус SAE J1850 +

Этот протокол использует переменную ширину импульса и обычно используется автомобилями GM. Это положительный вывод шины протокола.

10

SAE J1850 Автобус-

Этот протокол использует переменную ширину импульса и обычно используется автомобилями GM.Это отрицательный вывод шины протокола.

4,5

Земля

Земля комплектной системы Автомобиля, включая шасси

6

ISO15765-4 CAN High

Работает по 2-проводному протоколу CAN со скоростью 1 Мбит / с.Это контакт высокого уровня CAN

.

14

ISO15765-4 CAN Низкий

Работает по 2-проводному протоколу CAN со скоростью 1 Мбит / с. Это низкий вывод CAN

.

7

ISO 9141 — K Line

Он следует асинхронному протоколу последовательной связи, этот вывод является линией K

8

ISO 9141 — L Line

Он следует асинхронному протоколу последовательной связи, этот вывод является L-линией

Что такое разъем OBD-II?

OBD означает встроенной диагностики .Как следует из названия, это система диагностики, которая встроена во все современные автомобили (после 1996 года), в которой есть компьютерное приложение, которое контролирует производительность вашего автомобиля по скорости, пробегу, данным о выбросах топлива и т. Д. измеряет некоторые важные жизненно важные параметры двигателя. Эта полная система называется ECU ( Engine Control Unit ).

Этот разъем OBD предназначен для использования только специалистами по обслуживанию для контроля состояния вашего автомобиля и диагностики.Помимо этого, он также управляет сигнальными лампами на приборной панели вашего автомобиля.

Как использовать разъем OBD-II с Arduino / Raspberry Pi?

Федеральным законом является изменение или вмешательство в систему OBD вашего автомобиля, но если в вашем автомобиле загорелся индикатор неисправности двигателя, и вы хотите диагностировать проблему самостоятельно, то использовать разъемы, такие как ODB, довольно просто. -II для подключения вашего автомобиля к микроконтроллеру или микропроцессору.Как только вы поместите все жизненно важные детали вашего автомобиля на платформу разработки, такую ​​как Arduino или Raspberry Pi, приложение станет безграничным.

Порт OBD можно найти на приборной панели рядом с рулевым колесом каждого автомобиля. Положение порта варьируется в зависимости от производителя и обычно скрыто в слепой зоне по эстетическим причинам. Как только вы найдете порт, подключите разъем и подключите другой конец к плате STN1110 OBD UART. Затем плата UART подключается к компьютеру, где связь осуществляется через контакты Tx, Rx и Ground, и нормальный тип данных будет со скоростью 9600 бод, в которой будет 8 бит данных и 1 стоповый бит без четности.Затем мы можем использовать любое программное обеспечение для последовательной связи, такое как putty или даже Arduino, чтобы разговаривать с автомобилем с помощью AT-команд. Каждая AT-команда имеет определенную задачу для выполнения или возвращает определенное значение. Вы можете узнать больше о взаимодействии с помощью учебника по подключению sparkfun, в котором объясняется, как должно быть установлено и инициировано подключение.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *