По сути ремонт любой радиоэлектронной аппаратуры сводится к поиску и замене неисправных деталей. И, возможно, вы удивитесь тому, насколько часто выходят из строя такие, казалось бы, простые компоненты как конденсаторы. В то время как нежные диоды, чувствительные транзисторы и сложные микросхемы остаются целыми и невредимыми.
Типичные неисправности конденсаторов:
Существует масса способов как проверить конденсатор мультиметром на работоспособность. Пойдем по-порядку.
Содержание статьи:
Иногда достаточно одного взгляда, чтобы определить неисправный конденсатор на плате. В таких случаях нет смысла проверять его какими-либо приборами.Конденсатор подлежит замене, если визуальный осмотр показал наличие:
Конденсаторы, имеющие любой из указанных признаков, эксплуатировать НЕЛЬЗЯ.
Некоторые мультиметры имеют функцию измерения емкости. Взять хотя бы эти распространенные модели: M890D, AM-1083, DT9205A, UT139C и т.д.Также в продаже есть цифровые измерители емкости, например, XC6013L или A6013L.
С помощью любого из этих приборов можно не только узнать точную емкость конденсатора, но и убедиться в отсутствии короткого замыкания между обкладками или внутреннего обрыва одного из выводов.
Некоторые производители даже уверяют, что их мультиметры способны проверить емкость конденсатора не выпаивая его с платы. Что, конечно же, противоречит здравому смыслу.
К сожалению, проверка конденсатора мультиметром не поможет определить такие наиважнейшие параметры, как ток утечки и эквивалентное последовательное сопротивление (ESR). Их измерить только с помощью специализированных тестеров. Например, с помощью весьма недорогого LC-метра.
Как прозванивать конденсаторы мультиметром? Нужно включить мультиметр в режим прозвонки или измерения сопротивления и приложить щупы к выводам конденсатора.
В зависимости от емкости мультиметр либо сразу же покажет бесконечное сопротивление, либо через какое-то время (от нескольких секунд до десятков секунд).
Если же прибор постоянно пищит в режиме прозвонки (или показывает очень низкое сопротивление в режиме измерения сопротивления), то конденсатор можно смело выкидывать.
Если нет мультиметра (и даже старой советской «цешки» нету), то можно попробовать подключить светодиод или лампочку к батарейке через исследуемый конденсатор.
Т.к. исправный конденсатор имеет ооочень большое сопротивление постоянному току, лампочка гореть не должна. Хотя, если емкость конденсатора достаточно большая, лампочка может вспыхнуть на короткое время (пока конденсатор не зарядится).
Если же светодиод горит постоянно, конденсатор 100% неисправен.
Если при проверке конденсатора наблюдается эффект постепенного роста сопротивления вплоть до бесконечности (ну или светодиод на какое-то время вспыхивает и гаснет) то конденсатор совершенно точно имеет какую-то емкость. Следовательно, проверку на обрыв можно не делать.Подходит для высоковольтных неполярных конденсаторов (например, пусковые конденсаторы из стиральных машин, насосов, различных станков и т.п.).
Все что нужно сделать — просто подключить лампу накаливания небольшой мощности (25-40 Вт) через конденсатор. Полярность конденсатора не имеет значения:
Способ позволяет одним выстрелом убить двух зайцев: обнаружить КЗ, если оно есть, и убедиться в том, что конденсатор имеет ненулевую емкость (не находится в обрыве).
При исправном конденсаторе лампочка будет гореть в полнакала. Чем меньше емкость — тем тусклее будет гореть лампочка.
Если лампа горит в полную мощность (точно также как и без конденсатора), значит конденсатор «пробит» и подлежит замене. Если лампочка совсем не светится — внутри конденсатора обрыв.
Способ №3 очень наглядно продемонстрирован в этом видео:
Обрыв — распространенный дефект конденсатора, при котором один из его электродов теряет электрическое соединение с обкладкой и фактически превращается в короткий, ни с чем не соединенный (висящий в воздухе), проводник.
Чаще всего обрыв происходит из-за превышения рабочего напряжения конденсатора. Этим грешат не только электролитические конденсаторы, но и специальные помехоподавляющие конденсаторы типа Y (они, кстати говоря, специально так спроектированы, чтобы уходить в отрыв, а не в КЗ).
Конденсатор с внутренним обрывом внешне ничем не отличается от исправного, кроме случаев, когда ножку физически оторвали от корпуса 🙂
Разумеется, в случае отрыва одного из выводов от обкладки конденсатора, емкость такого конденсатора становится равной нулю. Поэтому суть проверки на обрыв состоит в том, чтобы уловить хоть малейшие признаки наличия емкости у проверяемого конденсатора.
Как это сделать? Есть три способа.
Включить мультиметр в режим прозвонки, прикоснуться щупами к выводам конденсатора и в этот момент мультиметр должен издать непродолжительный писк. Иногда звук настолько короткий (зависит от емкости конденсатора), что больше похож на щелчок и нужно очень постараться, чтобы его услышать.
Небольшой лайфхак: чтобы увеличить продолжительность звукового сигнала при прозвонке совсем маленьких конденсаторов, нужно предварительно зарядить их отрицательным напряжением, приложив щупы мультиметра в обратном порядке. Тогда при последующей прозвонке мультиметру сначала придется перезарядить конденсатор от какого-то отрицательного напряжения до нуля, и только потом — от нуля до момента отключения пищалки. На все это уйдет значительно больше времени, а значит сигнал будет звучать дольше и его проще будет расслышать.
Вот какой-то чувак, сам того не подозревая, применяет этот лайфхак на видео:
Из своей практике могу сказать, что с помощью уловки, описанной выше, мне удавалось уловить реакцию мультиметра на конденсатор емкостью всего лишь 0.1 мкФ (или 100 нФ)!
Если предыдущий способ не помог и вообще не понятно, как проверить конденсатор тестером, то вот вам более чувствительный метод проверки.
Необходимо переключить мультиметр в режим измерения сопротивления. Выбрать максимально доступный предел измерения (20 или лучше 200 МОм). Приложить щупы к выводам конденсатора и наблюдать за показаниями мультиметра.
По мере заряда конденсатора от внутреннего источника мультиметра, его сопротивление будет постоянно расти до тех пор, пока не выйдет за пределы диапазона измерения. Если такой эффект наблюдается, значит обрыва нет.
Кстати говоря, может так оказаться, что рост сопротивления остановится на значении от единиц до пары десятков МОм — для конденсаторов с жидким электролитом (кроме танталовых) это абсолютно нормально. Для остальных конденсаторов сопротивление утечки должно быть больше, как минимум, на порядок.
При измерении таких высоких сопротивлений необходимо следить за тем, чтобы не касаться пальцами сразу обоих измерительных щупов. Иначе сопротивление кожи внесет свои коррективы и исказит все результаты.
С помощью измерения сопротивления на пределе 200 МОм мне удавалось однозначно определить отсутствие обрыва в конденсаторах емкостью всего 0.001 мкФ (или 1000 пФ).
Вот видео для наглядности:
Это самый чувствительный способ, позволяющий убедиться в отсутствии обрыва конденсатора даже тогда, когда все предыдущие способы не помогли.
Берется мультиметр в режиме прозвонки или в режиме измерения сопротивления (не важно в каком диапазоне) и на пару секунд прикладываем щупы к выводам испытуемого конденсатора. В этот момент конденсатор зарядится от мультиметра до какого-то небольшого напряжения (обычно 2.8 В).
Затем мы быстро переключаем мультиметр в режим измерения постоянного напряжения на самом чувствительном диапазоне и, не мешкая слишком долго, снова прикладываем щупы к конденсатору, чтобы измерить на нем напряжение. Если у кондера есть хоть какая-нибудь вразумительная емкость, то мультиметр успеет показать напряжение, до которого был заряжен конденсатор.
Этим способом мне удавалось с помощью обычного цифрового мультиметра M890D отловить емкость вплоть до 470 пФ (0.00047 мкФ)! А это очень маленькая емкость.
Вообще говоря, это наиболее эффективный метод прозвонки конденсаторов. Таким способ можно проверять кондеры любой емкости — от малюсеньких до самых больших, а также любого типа — полярные, неполярные, электролитические, пленочные, керамические, оксидные, воздушные, металло-бумажные и т.д.
Правда, если конденсатор имеет совсем маленькую емкость, до 470 пФ, то, увы, проверить его на обрыв без специального прибора, вроде упомянутого ранее LC-метра, никак не получится.
Строго говоря, если на конденсаторе нет маркировки и не известна схема, в которой он стоял, то узнать его рабочее напряжение неразрушающими методами НЕВОЗМОЖНО.
Однако, имея некоторый опыт, можно оооочень приблизительно прикинуть «на глазок» рабочее напряжение исходя из габаритов конденсатора. Естественно, чем больше размеры конденсатора и чем меньше при этом его емкость, тем на большее напряжение он расчитан.
Если имеется несколько одинаковых конденсаторов и одним из них не жалко пожертвовать, то можно определить напряжение пробоя, которое обычно раза в 2-3 выше рабочего напряжения.
Напряжение пробоя конденсатора измеряется следующим образом. Конденсатор подключается через токоограничительный резистор к регулируемому источнику напряжения, способного выдавать заведомо больше, чем напряжение пробоя. Напряжение на конденсаторе контроллируется вольтметром.
Затем напряжение плавно повышают до тех пор, пока не произойдет пробой (момент, когда напряжение на конденсаторе резко упадет до нуля).
За рабочее напряжение можно принять значение, в 2-3 раза меньше, чем напряжение пробоя. Но это такое… Вы можете иметь свое мнение на этот счет.
Внимание! Обязательно соблюдайте все меры предосторожности! При проверке конденсатора на пробой необходимо использовать защищенный стенд, а также индивидуальные средства защиты зрения.
Энергии заряженного конденсатора бывает достаточно, чтобы устроить небольшой ядерный взрыв прямо на рабочем столе. Вот, можно посмотреть, как это бывает:
А некоторые типы керамических конденсаторов при электрическом пробое способны разлетаться на очень мелкие, но твердые осколки, без труда пробивающие кожу (не говоря уже о глазах).
Этот способ узнать рабочее напряжение конденсатора подходит для алюминиевых электролитических конденсаторов (полярных и неполярных). А таких конденсаторов большинство.
Суть заключается в том, чтобы отловить момент, при котором его ток утечки начинает нелинейно возрастать. Для этого собираем простейшую схему:
и делаем замеры тока утечки при различных значениях приложенного напряжения (начиная с 5 вольт и далее). Напряжение следует повышать постепенно, одинаковыми порциями, записывая показания вольтметра и микроампераметра в таблицу.
У меня получилась такая табличка (моя чуйка подсказала мне, что это довольно высоковольтный конденсатор, так что я сразу начал прибавлять по 10В):
Напряжение на конденсаторе, В | Ток утечки, мкА | Прирост тока, мкА |
---|---|---|
10 | 1.1 | 1.1 |
20 | 2.2 | 1.1 |
30 | 3.3 | 1.1 |
40 | 4.5 | 1.2 |
50 | 5.8 | 1.3 |
60 | 7.2 | 1.4 |
70 | 8.9 | 1.7 |
80 | 11.0 | 2.1 |
90 | 13.4 | 2.4 |
100 | 16.0 | 2.6 |
Как только станет заметно, что одинаковый прирост напряжения каждый раз приводит к непропорционально бОльшему приросту тока утечки, эксперимент следует остановить, так как перед нами не стоит задача довести конденсатор до электрического пробоя.
Если из полученных значений построить график, то он будет иметь следующий вид:
Видно, что начиная с 50-60 вольт, график зависимости тока утечки от напряжения обретает явно выраженную нелинейность. А если принять во внимание стандартный ряд напряжений:
Стандартный ряд номинальных рабочих напряжений конденсаторов, В | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
6.3 | 10 | 16 | 20 | 25 | 32 | 40 | 50 | 63 | 80 | 100 | 125 | 160 | 200 | 250 | 315 | 350 | 400 | 450 | 500 |
то можно предположить, что для данного конденсатора рабочее напряжение составляет либо 50 либо 63 В.
Согласен, метод достаточно трудоемкий, но не сказать о нем было бы ошибкой.
Чуть выше уже была описана методика измерения тока утечки. Хотелось бы только добавить, что Iут измеряется либо при максимальном рабочем напряжении конденсатора либо при таком напряжении, при котором конденсатор планируется использовать.
Также можно вычислить ток утечки конденсатора косвенным методом — через падение напряжения на заранее известном сопротивлении:
При проверке полярных конденсаторов на утечку необходимо соблюдать полярность их подключения. В противном случае будут получены некорректные результаты.
При измерении тока утечки электролитических конденсаторов после подачи напряжения очень важно выждать какое-то время (минут 5-10) для того, чтобы все электрохимические процессы завершились. Особенно это актуально для конденсаторов, которые в течение длительного времени были выведены из эксплуатации.
Вот видео с наглядной демонстрацией описанного метода измерения тока утечки конденсатора:
Самый просто способ — измерить емкость с помощью прибора, имеющего функцию измерения емкостей. Это и так понятно, и об этом уже говорилсь в начале статьи и тут нечего больше добавить.Если с приборами совсем туган, можно попробовать собрать простенький самодельный тестер. В интернете можно найти неплохие схемы (посложнее, попроще, совсем простая).
Ну или раскошелиться, наконец, на универсальный тестер, который измеряет емкость до 100000 мкФ, ESR, сопротивление, индуктивность, позволяет проверять диоды и измерять параметры транзисторов. Сколько раз он меня выручал!
Иногда бывает так, что имеется мультиметр с измерялкой емкости, но его предела не хватает. Обычно верхний порог мультиметров — это 20 или 200 мкФ, а нам нужно измерить емкость, например, в 1200 мкФ. Как тогда быть?
На помощь приходит формула емкости двух последовательно соединенных конденсаторов:Суть в том, что результирующая емкость Cрез двух последовательных кондеров будет всегда меньше емкости самого маленького из этих конденсаторов. Другими словами, если взять конденсатор на 20 мкФ, то какой бы большой емкостью не обладал бы второй конденсатор, результирующая емкость все равно будет меньше, чем 20 мкФ.
Таким образом, если предел измерения нашего мультиметра 20 мкФ, то неизвестный конденсатор нужно последовательно с конденсатором не более 20 мкФ.Остается только измерить общую емкость цепочки из двух последовательно включенных конденсаторов. Емкость неизвестного конденсатора рассчитывается по формуле:Давайте для примера рассчитаем емкость большого конденсатора Сх с фотографии выше. Для проведения измерения последовательно с этим конденсатором включен конденсатор С1 на 10.06 мкФ (он был предварительно измерен). Видно, что результирующая емкость составила Cрез = 9.97 мкФ.
Подставляем эти цифры в формулу и получаем:
Как известно, постоянная времени RC-цепи зависит от величины сопротивления R и значения емкости Cх:Постоянная времени — это время, за которое напряжение на конденсаторе уменьшится в е раз (где е — это основание натурального логарифма, приблизительно равное 2,718).
Таким образом, если засечь за какое время разрядится конденсатор через известное сопротивление, рассчитать его емкость не составит труда.Для повышения точности измерения необходимо взять резистор с минимальным отклонением сопротивления. Думаю, 0.005% будет нормально =)Хотя можно взять обычный резистор с 5-10%-ой погрешностью и тупо измерить его реальное сопротивление мультиметром. Резистор желательно выбирать такой, чтобы время разряда конденсатора было более-менее вменяемым (секунд 10-30).
Вот какой-то чел очень хорошо все рассказал на видео:
Также можно очень приблизительно оценить емкость конденсатора через скорость роста его сопротивления постоянному току в режиме прозвонки. Об этом уже упоминалось, когда шла речь про проверку на обрыв.
Яркость свечения лампочки (см. метод поиска КЗ) также дает весьма приблизительную оценку емкости, но тем не менее такое способ имеет право на существование.
Существует также метод измерения емкости посредством измерения ее сопротивления переменному току. Примером реализации данного метода служит простейшая мостовая схема:Вращением ротора переменного конденсатора С2 добиваются баланса моста (балансировка определяется по минимальным показаниям вольтметра). Шкала заранее проградуирована в значениях емкости измеряемого конденсатора. Переключатель SA1 служит для переключения диапазона измерения. Замкнутое положение соответствует шкале 40…85 пФ. Конденсаторы С3 и С4 можно заменить одинаковыми резисторами.
Недостаток схемы — необходим генератор переменного напряжения, плюс требуется предварительная калиброка.
Не существует однозначного ответа на вопрос как проверить конденсатор мультиметром не выпаивая: все зависит о схемы, в которой стоит конденсатор.
Все дело в том, что принципиальные схемы, как правило, состоят из множества элементов, которые могут быть соединены с исследуемым конденсатором самым замысловатым образом.
Например, несколько конденсаторов могут быть соединены параллельно и тогда прибор покажет их суммарную емкость. Если при этом один из конденсаторов будет в обрыве, то это будет очень сложно заметить.
Или, например, довольно часто параллельно электролитическому конденсатору устанавливают керамический. В этом случае нет ни малейшей возможности прозвонить конденсатор мультиметром на плате и определить внутренний обрыв.В колебательных контурах, вообще, параллельно кондеру может оказаться катушка индуктивности. Тогда прозвонка конденсатора покажет короткое замыкание, хотя на самом деле его нет.
Вот пример, когда все пять конденсаторов покажут ложное КЗ:
Таким образом, проверка конденсаторов мультиметром без выпаивания вообще невозможна.В схемах импульсных блоков питания очень часто встречаются контура, состоящие из вторичной обмотки трансформатора, диода и выпрямительного конденсатора. Так вот любая «прозвонка» конденсатора при пробитом диоде покажет КЗ. А на самом деле конденсатор может быть вполне исправен.Вообще-то, проверить электролитический конденсатор мультиметром не выпаивая можно, но это только для кондеров ощутимой емкости (>1 мкФ) и только проверить наличие емкости и отсутствие коротыша. Ни о каком измерении емкости и речи быть не может. К тому же, если прибор покажет КЗ, то выпаивать все-таки придется, так как коротить может что угодно на плате.
Мелкие кондеры проверяются только на отсутствие КЗ, обрыв и нулевую емкость таким образом не проверишь.
Вот очень правильный и понятный видос на эту тему:
Примеры выше (а также доходчивое видео) не оставляют никаких сомнений, что проверка конденсаторов не выпаивая из схемы — это фантастика.
Если какой-либо конденсатор вызывает сомнения, лучше сразу заменить его на заведомо исправный. Или хотя бы временно подпаять хороший конденсатор параллельно сомнительному, чтобы подтвердить или опровергнуть подозрения.
Все накопители заряда устроены примерно одинаково, только с применением разных материалов. Например, электролитические конденсаторы имеют две пластины из алюминиевой фольги (электроды), а между ними диэлектрик, материал с большим сопротивлением.
Электролитические неполярные конденсаторыВ качестве диэлектрика в электролитических конденсаторах используется бумага пропитанная электролитом, а для неполярных пленочных конденсаторов диэлектриком является керамика, стекло. Сопротивление бумаги ниже, чем керамики, поэтому электролитические конденсаторы имеют больший ток утечки (саморазряд) по сравнению с пленочными накопителями заряда.
Неисправность конденсаторовВ случае замыкания пластин выделяется тепло, испаряется электролит и происходит взрыв, который выворачивает все внутренности накопителя заряда. Чтобы электролитические конденсаторы не взрывались, на торце его корпуса выдавливается крест. При закипании электролита разрывается торец корпуса по линии креста и пары электролита выходят наружу, не разрывая корпус.
Поэтому на некоторых неисправных конденсаторах образуется вспучивание на торцах корпуса. По типу конденсаторы разделяется на полярные и неполярные. Полярные электролитические конденсаторы работают только при правильном подключении плюса и минуса к маркированным выводам конденсатора. В противном случае накопитель заряда выходит из строя.
Существуют также и электролитические неполярные конденсаторы, которые предназначены для работы в сетях переменного напряжения. Накопители пленочного типа относятся к неполярным емкостям. Соблюдение полярности в схемах для них не обязательно. Состояние конденсатора проверяется мультиметром на сопротивление или в режиме измерения емкости некоторыми мультиметрами (если имеется такой режим).
Проверка конденсаторов цифровым мультометромСопротивление диэлектрика электролитического конденсатора меняется от 100 Ком до 1 Мом. Перед проверкой электрического конденсатора нужно его разрядить. Если конденсатор небольшой емкости, то разрядить его можно, замкнув металлической отверткой вывода. Когда емкость большая и его номинальное напряжение высокое, разряжают накопитель через резистор 10 Ком, держа сопротивление инструментом с изолированными ручками.
Разряжать конденсаторы нужно в целях безопасности (особенно высоковольтные) и сохранения работоспособности мультиметра. Оставшееся напряжение на накопителе легко может вывести из строя измерительный прибор. При проверке электролитического полярного конденсатора мультиметром щупы прикладывают к его выводам в соответствии с полярностью, плюс прибора к плюсу накопителя.
Величину измеряемого сопротивления на приборе ставят от 100 Ком до 1 Мом, в зависимости от величины емкости. Для измерения большой емкости предел измерения сопротивления ставят 1 Мом. В начале измерения мультиметр покажет небольшое сопротивление, которое достигнет наибольшего значения при полной зарядке конденсатора. Если дисплей покажет ноль, значит неисправность ёмкости в коротком замыкании, а единица указывает на обрыв выводов.
Работоспособность ёмкости можно проверить, если зарядить ее от источника питания и замерить величину напряжения накопителя мультиметром. Если его рабочее напряжение 25 В, заряжают емкость от источника напряжением 9 – 12 В, в соответствии с полярностью. Показания на дисплее снимаются в момент прикосновения щупов к выводам ёмкости, потому что емкость начинает разряжаться через мультиметр, и напряжение будет падать.
Электролитический неполярный конденсатор используется в схеме запуска однофазного и трехфазного электродвигателей в однофазной сети. Этот конденсатор можно проверить мультиметром таким же способом, как и электролитический полярный накопитель заряда. Для него полярность мультиметра, при проверке работоспособности не имеет значения. Проверяются они на тех же пределах измерения резисторов, что и полярные ёмкости.
Проверка конденсаторов мультиметром V 890D в режиме измерения емкостиКерамические емкости имеют диэлектрик с большим сопротивлением (керамика, стекло), поэтому при проверке емкости сопротивление должна быть более 2 Мом. Если сопротивление меньше, это говорит о неисправности ёмкости. Таким образом проверяются накопители заряда от 0,25 мкф и выше. Ёмкости ниже 0,25 мкф проверить обычным мультиметром невозможно. Для этих целей имеются измерители LC.
Хотя функцию измерения емкостей до 200 мкф можно встретить в некоторых типах мультиметров. Проверить конденсатор мультиметром не выпаивая из схемы, тоже возможно. При этом необходимо соблюдать полярность при прозвонке и не касаться щупов руками. Погрешность проверки ёмкостей установленных на плате будет выше, так как на заряд накопителя влияют элементы схемы.
Проверить работоспособность емкости приблизительно можно и на искру, т. е. зарядить рабочим напряжением ёмкость, и далее закоротить металлической отверткой с изолированной ручкой ее вывода. По силе разряда можно приблизительно судить о работоспособности ёмкости. При проверке накопителя на искру предназначенных для работы в сети 220 В и выше, нужно предпринимать меры безопасности и разряжать емкости через резистор 10 Ком.
Проверка конденсаторов стрелочным тестером Ц 4353Стрелочный тестер более удобен при проверке работоспособности накопителей. Стрелка тестера во время измерения емкости плавно перемещается по циферблату, что дает более правильную картину проверки, чем мелькающие цифры цифрового мультиметра. Неисправность накопителей заряда также можно определить визуально по вспучиванию торца корпуса, тёмным пятнам и прожженным отверстиям на элементе.
Чтобы убедиться в исправности конденсаторов, необходимо провести определение их исправности и соответствия номинальных параметров. Для этой цели можно использовать тестер конденсаторов. Существует несколько видов таких приборов. Для определения исправности этих деталей возможно использовать более простые способы.
Конденсатор представляет собой радиодеталь, состоящую из двух обкладок, сделанных из проводников и диэлектрического слоя между ними. Электрическая емкость элемента измеряется в фарадах. Эта величина очень большая, поэтому на практике используются микрофарады или пикофарады.
Выполнение измерения емкостиКонденсаторы обычно бывают электролитическими или пленочными. В последних параметры мало меняются с течением времени. У электролитических ситуация другая. Жидкий состав, находящийся внутри, постепенно высыхает, и деталь теряет свои полезные свойства. Часто по внешнему виду нельзя судить по его исправности. Для проверки его нужно выпаивать.
Другая ситуация, когда важно проверить емкость, — это нарушение его работы от различных причин случайного характера — скачков напряжения или работы в условиях повышенной температуры. Неисправный элемент может послужить причиной неисправной работы всего устройства.
Чтобы изучить ситуацию, необходимо определить, соответствует ли емкость конденсатора номинальному значению. Для этой цели применяют тестеры конденсаторов.
Они могут быть цифровыми или аналоговыми. Во время проверки может определяться емкость или ESR, параметр, который представляет собой последовательное эквивалентное сопротивление.
Высокоточное измерениеВ некоторых мультиметрах имеется возможность непосредственной проверки емкости.
ESR-измерители производят определение эквивалентного последовательного сопротивления. Здесь речь идет о реактивном сопротивлении, которое обусловлено емкостью. Оно может существенно возрастать при увеличении частоты. Этот параметр оценивают с помощью сложных алгоритмов. Если он принимает слишком большую величину, то в некоторых ситуациях может быть нарушен температурный режим работы элемента. Это особенно опасно для электролитических элементов.
Существуют специальные измерители емкости.
Аналоговое устройствоТакой измерительный прибор оснащен жидкокристаллическим дисплеем. У него имеются 2 щупа: красный и черный. Первый считается положительным, второй — отрицательным. Перед тем, как проверять, элемент разряжают, закорачивая выводы друг на друга. Чтобы провести измерение, щупы соединяют с выводами конденсатора. Если используется полярная модель, необходимо при этом учитывать полярность щупов.
Затем прибор включают и через несколько секунд на экране появляются величины емкости и параметра ESR.
Измеритель емкостиДля определения исправности конденсатора мультиметр можно перевести в режим определения сопротивления. Переключатель нужно установить на 2 МОм или 200 Ком. Нужно подобрать этот параметр таким образом, чтобы зарядка происходила не сразу, а в течение нескольких секунд.
К его выводам элемента, который нужно выпаять из схемы, подключают красный и черный щупы. Теперь необходимо следить за данными на дисплее. Если там 0, то это означает обрыв контактов или другое механическое повреждение. Если tester показывает увеличивающиеся цифры и в конце концов появляется 1, то это говорит о работоспособности детали. Если сразу появляется единица, то это означает, что в конденсаторе произошел пробой.
При использовании аналогового прибора у исправной детали можно будет увидеть постепенное движение стрелки. Мгновенная установка минимального значения говорит об обрыве, а максимального — свидетельствует о пробое.
В мультиметре предусмотрена возможность непосредственного измерения емкости. Для этого нужно установить переключатель аппарата для ее измерения и выбрать наиболее подходящую шкалу. Обычно для контактов конденсатора предусматриваются особые клеммы. Если их нет, надо воспользоваться красным и черными щупами. В последнем случае необходимо воспользоваться такими же клеммами, как при измерении сопротивления.
Если значение емкости равно или близко к номинальному, то элемент исправен и может быть использован. В противном случае он неработоспособен. Считается, что совпадение с разницей не более 20% говорит о радиотехнической пригодности детали.
Протечка электролитаПеред тем, как производить измерение, нужно выполнить разрядку конденсатора. Для этого его выводы соединяют друг с другом.
Щупы мультиметра обеспечивают разность потенциалов, которая может быть использована для зарядки конденсатора. По времени зарядки можно приблизительно оценить емкость. Измеряя сопротивление, можно определить наличие повреждений или пробой конденсатора.
При измерении параметра ESR используются сложные алгоритмы. В таком тестере используются специальные микросхемы для управления процессом проверки.
Виды конденсаторовУ каждого конденсатора предусмотрено использование номинального напряжения. При тестировании его работы нужно, чтобы измерительный прибор был настроен именно на эту величину.
Для косвенных измерений можно использовать омметр или вольтметр. Некоторые радиолюбители собирают самодельный измерительный прибор.
Провести измерение емкости можно с помощью несложного прибора. Для него необходимы следующие детали:
Эта схема подойдет для проверки электролитических конденсаторов. Нужно выбрать входное напряжение таким, чтобы оно было немного меньше по сравнению с номинальным напряжением конденсатора. Один из выводов конденсатора к источнику питания подсоединяют через резистор. Вольтметр присоединяют к выводам конденсатора.
Схема проверкиПосле подключения измерителя начинается процесс зарядки конденсатора. Нужно засечь время, в течение которого он будет длиться. Величину сопротивления можно подобрать в значительной степени произвольно. При этом нужно ориентироваться на скорость зарядки. Нужно, чтобы она была такой, которую удобно измерять.
При проведении зарядки на вольтметре можно будет увидеть возрастание напряжения. В какой-то момент оно достигнет предельной величины и перестанет расти. Это будет конечный момент отсчета времени. Для вычисления емкости достаточно воспользоваться формулой: t=RC. В ней известно время и величина сопротивления резистора. Емкость можно определить из соотношения C=t/R.
Использование мультиметраПроверяют конденсатор на наличие пробоя с помощью схемы самоделки — последовательно соединенной с ним лампочки 40 Вт, включенных в обычную сеть переменного тока. Если лампочка светит в половину накала, то деталь исправна. При ярком свете имеется пробой, при отсутствии — повреждены контакты.
Если номинальное напряжение неизвестно, то можно действовать исходя из того, что оно составляет 10-12 В. Обычно используют резисторы, имеющие сопротивление 5-10 КОм.
Чтобы проверить деталь, не выпаивая ее из схемы, параллельно с ней можно подсоединить конденсатор с такими же параметрами в рабочем состоянии. Если схема восстановит свою работу, то это означает, что деталь была неисправна и ее следует заменить.
Мостовая схемаИзмерение емкости без выпаивания с платы сложно и доступно только профессиональному специалисту. Прибор для проверки электролитических конденсаторов без выпайки может быть использован только с учетом схемы подключения конденсатора. Дело в том, что полученный результат будет существенно зависеть от способа подключения детали и в различных ситуациях может показать труднообъяснимые результаты. Например, если параллельно с ним включена катушка, то при измерении емкости без выпайки будет показано нулевое сопротивление.
Если неисправен конденсатор, надо его проверить, применив один из имеющихся методов. В случае неисправности потребуется его заменить, чтобы плата восстановила свою работоспособность.
Конденсатор — часть разных микросхем. Если с ними возникли проблемы, нужно проверить именно этот элемент. В таком важном деле помогает с виду незатейливый, но очень полезный прибор — мультиметр. Чтобы вы смогли ощутить всю прелесть этого скромного измерителя, мы расскажем вам, как проверить конденсатор мультиметром.
Перед началом измерительных процессов учтите несложные, но очень важные правила проверки конденсатора мультиметром на работоспособность:
Есть ещё момент в отношении того, на плате как проверить конденсатор мультиметром, не выпаивая. Без выпаивания допускается проверить возможность функционирования элемента, если нет зашунтирования низкоомной цепью. Неисправность можно проверять, например, с помощью функции постоянного напряжения. То есть, если не выпаять элемент, можно даже на плате узнавать, рабочий конденсатор или нет.
Видео о проверке конденсатора мультиметром, не выпаивая:
Мы уже упоминали о полярности. Что нужно для определения полярного устройства? На корпусе будет контрастная полоса (на светлом фоне темная полоса и наоборот). Она является отметкой для вывода со знаком “-”.
Перед тем как измерить конденсатор мультиметром, посмотрите на наличие полоски. Если её нет, расположение щупов не важно.
Видео, как проверить мультиметром конденсатор электролитический, то есть полярный:
Вот как должен измеряться конденсатор:
Если появилась цифра 1, можно смело делать вывод о том, что с функционированием механизма всё в порядке. Если при соединении контактов сразу появилось это значение, радовать не чему: в детали есть обрыв и она не пригодна к дальнейшему использованию. Да и цифра 0 не особо оптимистична, ведь указывает на короткое замыкание.
Если конденсатор без полярностей, работоспособная цифра — 2. Всё, что ниже, указывает на отсутствие функционирования конденсатора. Теперь вы знаете, как проверить емкость мультиметром у конденсатора. Но эта инструкция предназначена для цифровых измерителей. Кстати, советуем к прочтению материал о том, как пользоваться тестером.
Для аналоговых моделей процесс измерений ещё более простой. Главное — смотреть на движение стрелки. Если она перемещается спокойно, всё в порядке. Если видите очень маленькое или большое значение, значит, конденсатор сломан.
Измерение конденсаторов мультиметром с функцией омметра осуществляется для элементов, ёмкость которых больше 0.25 мкФ. Если значение меньше, нужно использовать специальные измерители с высоким разрешением.
Сейчас поговорим о мультиметрах, у которых есть режим измерения ёмкости. Принцип действия практически такой же. Для начала выбираем нужную функцию мультиметра, затем:
Не замыкайте щупы на выводах собственноручно! Проводимость нашего организма по сравнению с конденсатором лучше, в результате чего ток тестера будет проходить по цепи из одной руки в другую. Поэтому на дисплее вы увидите цифры, которые относятся к вам, а не к конденсатору.
Есть тестеры с отверстиями для конденсаторов. Это удобно, так нужно только выбрать функцию и значения измерений, а затем вставить элемент в гнездо, после чего дисплей покажет значение проверки.
Теперь вы знаете самое необходимое о проверке емкости мультиметром.
Здесь мы снова имеем дело с ёмкостью. А всё потому, что принцип анализа на обрыв основан на том, чтобы поймать хотя бы какие-то признаки того, что у конденсатора есть ёмкость. Один из способов это осуществить — сигнал на функции прозвонки.
Очень простая пошаговая инструкция, как проверить конденсатор мультиметром:
Мультиметр должен выдать короткий писк. Он может звучать как щелчок, поэтому держите ухо востро.
Есть секрет, как сделать продолжительность сигнала больше. Для этого заранее зарядите конденсаторы напряжением со знаком “-”: приложите щупы в обратном порядке. За счет этого при следующей прозвонке измеритель сначала перезарядит элемент от “-” напряжение до 0, а потом от 0 до момента выключения писка. Так как этот процесс протекает дольше, писк тоже станет более продолжительным, и вам будет легче услышать его.
Посмотрите, как замерить конденсатор мультиметром:
Пусковой конденсатор нужен для стабильного функционирования электродвигателя. Проверить его работу мультиметром просто:
Если значение отличается от того, что на корпусе, скорее всего, механизм нуждается в замене.
Элементы из керамики обычно без полярностей. Как мы уже упоминали, их проверка практически такая же, отличается лишь норма полученных значений:
Если на дисплее вы увидели цифру от 2 Мом — всё в порядке. Если же значение меньше, конденсатор не пригоден для дальнейшего использования.
Теперь вы знаете самое главное о том, как проверить исправность конденсатора мультиметром и сможете сделать это самостоятельно.
Желаем вам безопасных и точных проверок!
Вопрос: Как можно проверить конденсатор обычным мультиметром на работоспособность?
Ответ: Сначала нужно разрядить конденсатор, а также определить его тип: если полярный, нужно соблюдать полярность. Если неполярный, то определять “-” и “+” выходы не обязательно. Также нужно выпаять конденсатор.
Вопрос: Как прозвонить конденсатор с помощью мультиметра?
Ответ: Нужно выбрать режим прозвонки, дотронуться щупами до выводов конденсатора и внимательно слушать. Мультиметр издаст короткий писк.
Вопрос: Как проверить конденсатор простым мультиметром, не выпаивая?
Ответ: Если оставить компонент на плате, результаты будут неточным. Без выпаивания можно только проверить, работает конденсатор или нет, если не зашунтирован низкоомной цепью. Для этого нужен режим проверки постоянного напряжения или сопротивлений.
Вопрос: Как правильно проверить электролитический конденсатор мультиметром?
Ответ: Электролитический или полярный конденсатор проверяется в режиме омметра или на функции измерения ёмкости. В первом случае выбираем режим омметра, устанавливаем пределы измерений (200 Ом), щупами касаемся выводов конденсатора в зависимости от полярности.
Вопрос: Как лучше всего проверить пусковой конденсатор мультиметром?
Ответ: Для этого нужно обесточить кондиционер, разрядить конденсатор и снять клемму. На мультиметре выбирается режим измерения ёмкости. Также выбирается предел значений в зависимости от того, что указано на корпусе. Клемма снимается, щупы присоединяются к конденсаторным выводам.
Мультиметр – это электроизмерительное устройство с различными функциями. С его помощью можно проверять напряжение, силу тока, а также производные от этих величин – сопротивление и емкость. С помощью мультиметра можно проверить и работоспособность различных электронных компонентов. В этой статье мы с вами узнаем, как проверить мультиметром конденсатор и его емкость.
Конденсаторы используются практически во всех микросхемах и являются частой причиной ее неработоспособности. Так что в случае неисправности устройства следует проверять в первую очередь именно этот элемент.
Виды конденсаторов по типу диэлектрика:
Основные неисправности конденсаторов:
Все эти причины приводят к тому, кто конденсатор становится непригодным для дальнейшего использования.
В данном случае присутствует протечка электролитаТ.к. конденсаторы накапливают электрический заряд, перед проверкой их следует разряжать. Это можно сделать отверткой – жалом нужно прикоснуться к выводам, чтобы образовалась искра. Затем можно прозванивать компонент. Проверку конденсатора можно сделать как мультитестером, так и при помощи лампочек и проводов. Первый способ является более надежным и дает более точные сведения об электронном элементе.
До начала проверки следует осмотреть конденсатор. Если он имеет трещины, нарушение изоляции, подтеки или вздутие, поврежден внутренний электролит и прибор сломан. Его нужно поменять на работающее устройство. При отсутствии внешних повреждений придется использовать мультиметр.
Перед проведением измерений нужно определить вид конденсатора – полярный или неполярный. У первого обязательно должна соблюдаться полярность, иначе прибор выйдет из строя. Во втором случае определение плюсового и минусового выходов не требуется, но измерения будут проводиться по другой технологии.
Определить полярность можно по метке на корпусе. На детали должна быть черная полоса с обозначением нуля. Со стороны этой ножки расположен отрицательный контакт, а с противоположной – положительный.
Переключатель мультиметра следует установить в режим сопротивления (омметра). В этом режиме можно посмотреть, есть ли внутри конденсатора обрыв или короткое замыкание. Для проверки неполярного конденсатора выставляется диапазон измерений 2 МОм. Для полярного изделия ставится сопротивление 200 Ом, так как при 2 МОм зарядка будет производиться быстро.
Сам конденсатор нужно отпаять от схемы и поместить его на стол. Щупами мультиметра нужно коснуться выводов конденсатора, соблюдая полярность. В неполярной детали соблюдать плюс и минус не обязательно.
Измерение в режиме сопротивленияКогда щупы прикоснутся к ножкам, на дисплее появится значение, которое будет возрастать. Это вызвано тем, что мультитестер будет заряжать компонент. Через некоторое время значение на экране достигнет единицы – это значит, что прибор исправен. Если при проверке сразу же загорается 1, внутри устройства произошел обрыв и его следует заменить. Нулевое значение на дисплее говорит о том, что внутри конденсатора произошло короткое замыкание.
Если проверяется неполярный конденсатор, значение должно быть выше 2. В ином случае прибор является не рабочим.
Аналоговое устройствоВышеописанный алгоритм подходит для цифрового тестера. При использовании аналогового устройства проверка производится еще проще – нужно наблюдать лишь за ходом стрелки. Щупы подключаются так же, режим – проверка сопротивления. Плавное перемещение стрелки свидетельствует о том, что конденсатор исправен. Минимальное и максимальное значение при подключении говорят о поломке электронной детали.
Важно отметить, что проверка в режиме омметра производится для деталей с емкостью выше 0Ю25 мкФ. Для меньших номиналов используются специальные LC-метры или тестеры с высоким разрешением.
Емкость является основной характеристикой конденсатора. Она указывается на внешней оболочке прибора, и при наличии тестера можно замерить реальное значение и сравнить его с номиналом.
Переключатель мультиметра переводится в диапазон измерений. Значение ставится равное или близкое к номиналу, указанному на компоненте. Сам конденсатор устанавливается в специальные отверстия –CX+ (если они есть на мультиметре) или с помощью щупов. Подключаются щупы так же, как и при измерении в режиме сопротивления.
При подключении щупов на мониторе должно появиться значение сопротивления. Если оно близко к номинальной характеристике, конденсатор исправен. Когда расхождение полученного и номинального значений отличаются более чем на 20% , устройство пробито, и его нужно поменять.
Проверка работоспособности детали может производиться и при помощи вольтметра. Значение на мониторе сравнивается с номиналом, и из этого делается вывод об исправности устройства. Для проверки нужен источник питания с меньшим напряжением, чем у конденсатора.
Соблюдая полярность, нужно подключить щупы к выводам на несколько секунд для зарядки. Затем мультиметр переводится в режим вольтметра и проверяется работоспособность. На дисплее тестера должно появиться значение, схожее с номинальным. В ином случае прибор сломан.
Важно! Напряжение проверяется в самом начале измерения. Это связано с тем, что при подключении конденсатор начинает терять заряд.
Можно проверить конденсатор, не выпаивая его из микросхемы. Для этого нужно параллельно подключить заведомо исправный конденсатор с такой же емкостью. Если устройство будет работать, то проблема в первом элементе, и его следует поменять. Такой способ применим только в схемах с небольшим напряжением!
Иногда проверяют конденсатор на искру. Его нужно зарядить и металлическим инструментом с заизолированной рукояткой замкнуть выводы. Должна появиться яркая искра с характерным звуком. При малом разряде можно сделать вывод, что деталь пора менять. Проводить данное измерение нужно в резиновых перчатках. К этому методу прибегают для проверки мощных конденсаторов, в том числе пусковых, которые рассчитаны на напряжение более 200 Вольт.
Использовать способы проверки без специальных приборов нежелательно. Они небезопасны – при малейшей неосторожности можно получить электрический удар. Также будет нарушена объективность картины – точные значения не будут получены.
Основной сложностью при определении работоспособности конденсатора мультиметром является его выпаивание из схемы. Если оставить компонент на плате, на измерение будут влиять другие элементы цепи. Они будут искажать показания.
В продаже существуют специальные тестеры с пониженным напряжением на щупах, которые позволяют проверять конденсатор прямо на плате. Малое напряжение сводит к минимуму риск повреждения других элементов в цепи.
Отличное видео с описанием процесса проверки конденсаторов и поиска неисправностей от популярных ютуб-блогеров.
Еще одно видео:
Конденсатор способствует накоплению электрического заряда. И если он неисправен, данное свойство теряется.
Классифицируются они на:
Для проверки работоспособности конденсатора следует воспользоваться простым мультиметром. Данное оборудование помогает в поиске сбоев в электроцепи (измерение напряжения, ее «прозвон»), и в анализе работоспособности отдельных электродеталей.
Так как конденсатор – составная часть любой электросхемы и его нерабочее состояние часто результат истечения его срока годности, то и тогда придет на помощь мультиметр, который уловит искажения в сигнале электроцепи.
Проверка начинается с визуального осмотра детали. Взрыв – естественное явление при увеличенном давлении внутри корпуса электролитов, если они повреждены. Даже при небольшой взрывной мощности вред будет заключаться в разбрызгивании их содержимого вокруг.
Чтобы предотвратить это, в верхней части конденсаторов делается крестообразная насечка, которая способствует стравливанию внутри корпусного давления. Вспучивание и разрыв корпуса уже говорит о неисправности устройства.
В остальных случаях потребуется проверить работоспособность конденсатора мультиметром, который измерит сопротивление батарейки. Для этого производится подключение прибора к выводам конденсатора с соблюдением полярности.
Первоначально сопротивление будет близко к 0 из-за разрежённости устройства. Но при зарядке конденсатора от батареи можно будет наблюдать увеличение показателя сопротивления. При окончании зарядки мультиметр высветит бесконечно большое сопротивление.
До проверки конденсатора потребуется его разрядка, которая может быть осуществлена при замыкании выводов между собой. Предельное значение измерения – максимально возможное. Производится соединение плюсового выхода детали с ее красным аналогом на приборе.
Подключение минусового черного выхода – к другому выходу. Измеряя сопротивление, следят за постоянно увеличивающимися показаниями мультиметра. Не должно быть их уменьшений.
Контакты между выходами должны быть надежными. Процесс не должен быть прерван. Запрещено прикасание к ним из-за сопротивления человеческого тела, которое помешает зарядке и определению работоспособности детали.
Результаты проверочной работы:
Напряжение мультиметра – до 1,5 В, а в рабочих схемах с конденсатором – значительно больше. Поэтому при наличии утечки у прибора и его установки при рабочем напряжении возможен полный его пробой.
К сожалению, при прогреве паяльным прибором при пайке восстановление свойств конденсаторной детали – явление редкое. И, к сожалению, нет универсального метода проверки его исправности без выпаивания данного элемента из схемы. Другие элементы, окружающие его, будут шунтировать его своим сопротивлением.
Поэтому:
При значениях конденсаторной емкости до 0,5 мкФ зарядка происходит с такой быстротой, что проследить за этим не под силу ни одному оборудованию. Для этого необходимо определение номинальности емкости детали с помощью измерителя емкости – LC-метра.
Для домашнего пользования возможно использование небольших цифровых измерителей емкости. У них есть щупы подключения, дисплей на жидких кристаллах и переключатель пределов измерения.
Чтобы проверить конденсаторный элемент, первоначально распознают его емкость по обозначениям на его корпусе, осуществляют выбор необходимого предела измерения и подсоединяют его к измерительному прибору. Есть модели, измеряющие емкость без выпаивания элементов из схемы.
При существующем разбросе параметров измеренное значение детали должно входить в регламентируемый допуск. Иначе конденсаторный элемент неисправен.
Можно приобрести мультиметры со встроенной данной функцией. Есть модели со стандартными щупами для подключения проверяемых элементов и гнездами на их корпусе. Однако, пределы данных моделей ограничены.
Статья была полезна?
0,00 (оценок: 0)
Знаете – ходит одна байка: для проверки конденсатора мультиметр излишен. Школьники-плохиши обижали ребят послабее экстравагантным методом. Заряжали большую емкость розеткой, били током. Проверить работоспособность основных конденсаторов импульсного блока питания не составит труда. В персональном компьютере напряжение достигает 650 вольт, тронешь — шарахнет сильно, уши задымятся. Избегайте также лезть отверткой. Температура дуги столь высока, что желание узнать емкость конденсатора может обернуться неплохими практическими навыками сварщика. Для целей разрядки народные умельцы применяют патрон, снабженный лампочкой Ильича. Высокий реактивный импеданс спирали позволит легко решить задачу, как проверить конденсатор мультиметром.
Увидите, проверить мультиметром конденсатор может каждый. Вопрос составлен требуемой точностью. Как говаривал Кашпировский: даже 100% не стопроцентны. В остальном, неполярный конденсатор, керамический конденсатор, разницы дают мало, многое определяет номинал. Однако сюрпризы способна преподнести гибридная технология. Понятно, извлечь SMD конденсатор — дело нешуточное (большинству не под силу). Тогда проводите косвенные тесты, например, сравнение показаний с заведомо рабочим устройством.
Проверка конденсатора
Ищущие шуток ошибаются. Простейшим методом проверки конденсатора называют натурное испытание. Причем в составе изначальной схемы. Потрудитесь:
Итак, инструкция по работе с тестером понадобится, цвет проводов покажет, куда тыкать. Кажется смешным, пока не попытаешься измерить высокое напряжение, нарезаемое импульсами крошечной микросхемой. Будут мешаться рядом лежащий корпус, провода, много другого. В таких условиях применяют специальные тончайшие щупы, набор лишен аксессуаров. Рекомендуем заранее потренироваться мультиметром вести работу. Особенно внимательны будьте с пределами. В большинстве современных тестеров имеются следующие варианты ведения работ:
Мультиметр
Проще проверить электролитический конденсатор мультиметром. Начать лучше с визуального контроля. Неисправные электролитические конденсаторы ощутимо раздуваются. На зарубежных моделях в верхней части цилиндра делается специальная крестовидная прорезь для гарантированной индикации неисправности. Внешние признаки молчат — нужно хватать мультиметр. Сначала элемент гарантированно разрядим. Обычно напряжение отсутствует, но совать голую отвертку, кусок провода — бестолковая идея. Будет неплохо создать своими руками разрядник, воспользовавшись патроном, ввинченной лампочкой. Штуковина повсеместно используется мастерами ремонта телевизоров, импульсных блоков питания. Пара слов касаемо процесса, когда конденсатор разряжен, можно хватать тестер.
На контактах мультиметра в некоторых режимах выходит напряжение 5 вольт. Необходимо, чтобы оценить параметры. Например, при измерении сопротивлений мультиметр просто делит напряжение на ток, получает искомую величину. Первая цифра известна – 5 вольт (определяет модель тестера). Аналогично проводится прозвонка. Подаются 5 вольт на оба конца. Некоторые стабилитроны пробиваются. Прозвонить такие элементы на цифровых мультиметрах не представляется возможным.
Зная указанные вещи, можно представить, что делать дальше:
Любой конденсатор, обладающий рабочим напряжением выше 5 вольт, проверим таким способом. Единственный фокус могут выкинуть полярные, например, электролитические емкости. Параллельно отслеживаем правильность расположения щупов (красного, черного). Взорваться, по идее ничего не должно… Теперь проводим анализ. Выяснили, годен ли конденсатор, имеются некоторые особенности. Обсуждали 5 вольт на щупах мультиметра, значение сильно зависит от модели. Можем измерить на концах заведомо исправного конденсатора: пока звоним контакты, емкость зарядится до нужной величины.
Итак, напряжение испытуемого образца сильно отличается от эталонных показаний (нужно заранее позаботиться о получении), наверняка сломалось. Начинаем измерять напряжение конденсатора, внутреннее сопротивление прибора уступает бесконечности. Потенциал начнет потихоньку падать, заметим на экране. Делаем два вывода:
Разумеется, делается больше навскидку, отличить мкФ от мФ удастся без труда. Жаждущим большего, можем сообщить: за время RC заряд падает на 63%. Каждый волен посчитать уровень вольт для мультиметра. Вычислить приблизительно внутреннее сопротивление, исходя из полученных данных, проводить приблизительный замер номинала емкости конденсатора.
Имеется простой способ проверить емкость конденсатора мультиметром. Купить тестер, у которого наличествует соответствующая шкала. Надписана буквой F (Farad). Прикупив прибор, избегаем выдумывать. Просто берется за ножки конденсатор, примерно выставляется диапазон, мультиметр сам проделает работу, описанную выше. Проверить конденсатор мультиметром, не выпаивая, может не выйти. Параллельно емкости включены резисторы, дроссели другие элементы (включая конденсаторы), мешающие оценить исправность. Будь то электролитический конденсатор, пленочный конденсатор, любой другой. Разумеется, многое определят конкретные номиналы.
Можно провести сравнение. Допустим, на исправной технике показывает фиксированное значение, на поломанной – нечто другое. Необязательно неисправный конденсатор мультиметром на плате нашли — цепь разряда барахлит. Пусковой конденсатор авто — можно вынуть, проверить (предварительно обработав разрядником), для электроники методика не всегда действенна.
Конденсатора на плате без предварительного демонтажа возникают проблемы. Конденсатор всегда включен в цепь и может соседствовать на плате с другими элементами схемы. Особенно влияют на измерения емкости обмотки трансформаторов, индуктивности, предохранители — у них маленькое сопротивление постоянному току.
Поэтому необходимо убедиться, что в цепях измеряемого конденсатора нет влияния таких элементов. Если в цепях с конденсатором включены транзистор или диод, тогда при измерении можно увидеть отклонение стрелки до определенного положения и падение до определенного значения, равному сопротивлению переходов полупроводника. И если нет короткого замыкания, то конденсатор может быть исправным.
При прикосновении щупами мультиметра на конденсатор подается постоянный ток от тестера. Конденсатор будет заряжаться, а сопротивление плавно увеличиваться.
На электронном тестере значение будет расти от отрицательных или положительных чисел до единицы, указывающей на сопротивление, превышающее предел измерений, выбранный ручкой переключения. После перестановки щупов тестера местами конденсатор должен перезарядиться, прибор должен действовать также.
По отклонению стрелки стрелочного мультиметра при подключении конденсатора и возврате ее в исходное положение можно заметить по шкале максимальное отклонение.
Если поменять местами щупы тестера, стрелка прибора должна снова отклониться на максимум и плавно упасть на исходное положение. После необходимо взять похожий и заведомо исправный конденсатор, и если стрелка тестера на контрольном элементе отклонится больше, то проверяемый конденсатор нерабочий.
Если при измерении и соответствии плюсов и минусов на тестере и выводах конденсаторов прибор покажет сопротивление, то такой конденсатор неисправен.
Существуют приборы, позволяющие проверять конденсаторы прямо на плате. Такие приборы работают на низких напряжениях для уменьшения опасности вывода из строя других элементов.
Можно самому изготовить приставку к тестеру по схемам, опубликованным в журналах и интернете. Но не всегда ими можно провести измерения точно из-за влияния других элементов схем. Например, несколько установленных параллельно конденсаторов в итоге покажут общую емкость.
В автомобиле есть множество электрических систем, которые выполняют определенные функции. Среди этих систем есть основная — система зажигания. В случае, если двигатель начинает работать неустойчиво, «троит», т.е. один из цилиндров двигателя не вступает в работу, необходимо проверить систему зажигания.
Для этого нужно убедиться, что свечи зажигания вырабатывают искру, с помощью которой производится воспламенение топливовоздушной смеси в цилиндре двигателя. Если одна или несколько свечей выдают слабые искры красного цвета или их появление неравномерно, нужно обратить внимание на работу распределителя зажигания, который еще называют трамблер (от французского «trembleur», что в переводе означает «прерыватель»).
В новых моделях автомобилей вместо механического трамблера используется электронный коммутатор, который в случае отказа меняется целиком. Чтобы обнаружить причину неустойчивой работы трамблера, необходимо снять с него крышку, которая сделана из эбонита. В крышке за время эксплуатации могут возникнуть микротрещины, в которые попадает пыль и грязь, что вызывает пробои в электрической цепи, и напряжение не подается на свечи зажигания. После осмотра крышки нужно уделить внимание зазорам между контактами прерывателя. Также необходимо проверить конденсатор в трамблере . Если зазоры нормальные, а при работе возникает сильное искрение, значит проблема в конденсаторе . Для проверки его работы потребуется амперметр.
Подключив прибор к контактам, включите зажигание и рукой разомкните контакты в трамблере. Понаблюдайте за показаниями стрелки амперметра . Если стрелка или цифровое значение на экране приблизились к нулю с положения разрядки 2-4А, то существует неисправность в работе конденсатора , и его следует заменить.
Также можно проверить конденсатор самостоятельно, когда есть подозрение в пробое на «массу». Для этого потребуется переносная автомобильная лампочка. Сначала нужно отсоединить провод катушки зажигания вместе с проводом конденсатора от зажима прерывателя и произвести
Все накопители заряда устроены примерно одинаково, только с применением разных материалов. Например, электролитические конденсаторы имеют две пластины из алюминиевой фольги (электроды), а между ними диэлектрик, материал с большим сопротивлением.
В качестве диэлектрика в электролитических конденсаторах используется бумага пропитанная электролитом, а для неполярных пленочных конденсаторов диэлектриком является керамика, стекло. Сопротивление бумаги ниже, чем керамики, поэтому электролитические конденсаторы имеют больший ток утечки (саморазряд) по сравнению с пленочными накопителями заряда.
В случае замыкания пластин выделяется тепло, испаряется электролит и происходит взрыв, который выворачивает все внутренности накопителя заряда. Чтобы электролитические конденсаторы не взрывались, на торце его корпуса выдавливается крест. При закипании электролита разрывается торец корпуса по линии креста и пары электролита выходят наружу, не разрывая корпус.
Поэтому на некоторых неисправных конденсаторах образуется вспучивание на торцах корпуса. По типу конденсаторы разделяется на полярные и неполярные. Полярные электролитические конденсаторы работают только при правильном подключении плюса и минуса к маркированным выводам конденсатора. В противном случае накопитель заряда выходит из строя.
Существуют также и электролитические неполярные конденсаторы, которые предназначены для работы в сетях переменного напряжения. Накопители пленочного типа относятся к неполярным емкостям. Соблюдение полярности в схемах для них не обязательно. Состояние конденсатора проверяется мультиметром на сопротивление или в режиме измерения емкости некоторыми мультиметрами (если имеется такой режим).
Сопротивление диэлектрика электролитического конденсатора меняется от 100 Ком до 1 Мом. Перед проверкой электрического конденсатора нужно его разрядить. Если конденсатор небольшой емкости, то разрядить его можно, замкнув металлической отверткой вывода. Когда емкость большая и его номинальное напряжение высокое, разряжают накопитель через резистор 10 Ком, держа сопротивление инструментом с изолированными ручками.
Разряжать конденсаторы нужно в целях безопасности (особенно высоковольтные) и сохранения работоспособности мультиметра. Оставшееся напряжение на накопителе легко может вывести из строя измерительный прибор. При проверке электролитического полярного конденсатора мультиметром щупы прикладывают к его выводам в соответствии с полярностью, плюс прибора к плюсу накопителя.
Величину измеряемого сопротивления на приборе ставят от 100 Ком до 1 Мом, в зависимости от величины емкости. Для измерения большой емкости предел измерения сопротивления ставят 1 Мом. В начале измерения мультиметр покажет небольшое сопротивление, которое достигнет наибольшего значения при полной зарядке конденсатора. Если дисплей покажет ноль, значит неисправность ёмкости в коротком замыкании, а единица указывает на обрыв выводов.
Работоспособность ёмкости можно проверить, если зарядить ее от источника питания и замерить величину напряжения накопителя мультиметром. Если его рабочее напряжение 25 В, заряжают емкость от источника напряжением 9 — 12 В, в соответствии с полярностью. Показания на дисплее снимаются в момент прикосновения щупов к выводам ёмкости, потому что емкость начинает разряжаться через мультиметр, и напряжение будет падать.
Электролитический неполярный конденсатор используется в схеме запуска однофазного и трехфазного электродвигателей в однофазной сети. Этот конденсатор можно проверить мультиметром таким же способом, как и электролитический полярный накопитель заряда. Для него полярность мультиметра, при проверке работоспособности не имеет значения. Проверяются они на тех же пределах измерения резисторов, что и полярные ёмкости.
Проверка конденсаторов мультиметром V 890D в режиме измерения емкости
Керамические емкости имеют диэлектрик с большим сопротивлением (керамика, стекло), поэтому при проверке емкости сопротивление должна быть более 2 Мом. Если сопротивление меньше, это говорит о неисправности ёмкости. Таким образом проверяются накопители заряда от 0,25 мкф и выше. Ёмкости ниже 0,25 мкф проверить обычным мультиметром невозможно. Для этих целей имеются измерители LC.
Хотя функцию измерения емкостей до 200 мкф можно встретить в некоторых типах мультиметров. Проверить конденсатор мультиметром не выпаивая из схемы, тоже возможно. При этом необходимо соблюдать полярность при прозвонке и не касаться щупов руками. Погрешность проверки ёмкостей установленных на плате будет выше, так как на заряд накопителя влияют элементы схемы.
Проверить работоспособность емкости приблизительно можно и на искру, т. е. зарядить рабочим напряжением ёмкость, и далее закоротить металлической отверткой с изолированной ручкой ее вывода. По силе разряда можно приблизительно судить о работоспособности ёмкости. При проверке накопителя на искру предназначенных для работы в сети 220 В и выше, нужно предпринимать меры безопасности и разряжать емкости через резистор 10 Ком.
Проверка конденсаторов стрелочным тестером Ц 4353
Стрелочный тестер более удобен при проверке работоспособности накопителей. Стрелка тестера во время измерения емкости плавно перемещается по циферблату, что дает более правильную картину проверки, чем мелькающие цифры цифрового мультиметра. Неисправность накопителей заряда также можно определить визуально по вспучиванию торца корпуса, тёмным пятнам и прожженным отверстиям на элементе.
С помощью специального технического оборудования можно обнаружить различные радиоэлементы, которые вышли из строя или износились. Но все становится весьма непросто, когда требуется произвести тестирование емкостных элементов при помощи мультитестера, потому как самых обычных «прозвонов» элементы данного типа не боятся.
Что такое мультиметр? Это универсальное устройство, которое позволяет выполнять электрические измерения. При помощи этого аппарата можно произвести измерения показателей тока постоянного и переменного типа, а также замерить мощностной показатель сети, емкость конденсатора, мощность сопротивления и радиодеталей.
На данный момент все приборы этого типа подразделяют на два основных типа:
На корпусе прибора устанавливают специальный регулятор. В некоторых случаях таких регуляторов бывает несколько. Они необходимы для того, чтобы переключать режимы и величины измерения. Для того, чтобы выполнить замер применяют щупы (специальный провод на одном конце которого имеется разъем, а на второй – наконечник из металла).
Электролитический конденсатор можно проверить мультиметром не выпаивая. Специально для этого используют омметр, который входит в состав устройства этого вида.
Показатель сопротивления электрического конденсатора будет выше отметки в 100 Мом:
Для наглядного ознакомления с проведением данного технического процесса можно воспользоваться видеоматериалом, представленным ниже:
Чтобы измерить емкость конденсатора при помощи мультиметра, необходимо следовать инструкции:
Этот метод используют для определения утечки или наличия обрывов. При необходимости проведения проверки конденсатора на плате с помощью мультиметра используют зарядку устройства и разрядку его, при этом практически полностью меняют полярность. По мнению опытных специалистов этот вариант является весьма сомнительным.
При проверке керамического конденсатора (неполярного) с помощью мультиметра применяют различные диэлектрики. К примеру, это может быть бумага, стекло или воздух.
Весь процесс сводится к следующему:
В том случае, если устройство рабочее, то на нем покажется величина в 2 Мом. Если же показатель будет меньше, то прибор вышел из строя.
Проверяя пленочный конденсатор мультиметром, проверяют показатель сопротивления. Если в устройстве «утечка», то ничего не изменится. Если существует внутренний обрыв, то на аналоговом мультиметре стрелочка уйдет в бесконечность.
Если с помощью мультиметра необходимо произвести проверку на работоспособность пускового конденсатора, то первоначально извлекают пусковой механизм. Затем проверяют его на наличие утечек электрического типа. Присоединяют щупы к клеммам. После этого выполняют проверку емкости.
Когда речь заходит о проверки неполярного конденсатора, то следует обратиться к материалу, предоставленному выше, потому как с точки зрения принципиального устройства прибор этого типа ничем не отличается от керамического конденсатор.
Проверка smd конденсатора проводится также, как и обычного устройства. С помощью измерения максимального показателя сопротивления.
Внимание! Проверяя высоковольтный конденсатор всего-то и надо, что зарядить его свыше нормы. Тогда все будет заметно сразу же.
Конденсатор переменного тока проверяют при помощи мультиметра с помощью измерения данного показателя дважды с переменой полярности. После чего их сравнивают и на основе этого делают вывод. Если показатель №2 будет выше, то прибор исправен.
В некоторых отдельных случаях приходится проверять конденсатор, который находится в корпусе бытовой техники:
Для того чтобы проверить конденсатор на работоспособность без использования специального измерительного оборудования необходимо работать с конденсаторами высокой мощности. При этом пользуются одним из свойств конденсатора – копить заряд и подзаряжаться. конденсатор заряжают высоким напряжение (больше чем номинал, указанный на корпусе устройства). Делают это на протяжении нескольких секунд.
Внимание! Руки не должны прикасаться к металлическим элементам устройства. Железо должно быть полностью изолировано от человека. После аккуратно замыкают при помощи железного элемента контакты конденсатора. Появится искра.
Смотрите на видео как проверить конденсатор:
Сегодня создано большое количество технических средств, предназначенных для измерения и замера различных электрических и технических показателей. При помощи них можно вовремя выявить неполадки и произвести замену. Ко всему прочему можно будет избежать серьезных трат на покупку нового оборудования. Вес что потребуется – это отремонтировать или заменить износившийся элемент.
Окт 5, 2015 Татьяна Сумо
На данный момент практически каждый человек может столкнуться с поломкой конденсатора. Чтобы определить его исправность вам не потребуется изучать основы электротехники. Достаточно будет просто знать, как проверить мультиметром конденсатор.
Благодаря этому можно восстановить работоспособность микроволновки или холодильника. Перед тем, как выполнить ремонт необходимо определить, какая именно деталь неисправна. Для проверки конденсатора отлично подойдет цифровой мультиметр.
Во время проверки вам необходимо помнить, что не все неисправности будут поддаваться тестированию в режиме омметра. Если мультиметр будет показывать бесконечно большое сопротивление полярного элемента, тогда это будет считаться признаком его неисправности. Проверить потерю номинальной емкости в режиме омметра у вас не получится. Чтобы измерить эту характеристику необходимо использовать цифровой мультиметр. Это устройство поможет проводить тестирование в пределах от 20 нф до 200 мкф.
Благодаря мультиметрам с подобной функцией появится возможность тестировать любые конденсаторы, даже электролитические. Если вы желаете выполнить проверку электролитического конденсатора, тогда необходимо соблюдать полярность.
На фото выше вы видите, что для проверки емкости конденсатора необходимо вставить выводи детали в гнезда Сх, а ручку необходимо установить в положение необходимого диапазона измерений. После этого все параметры емкости будут отображаться на дисплее.
Неважно, какой тип конденсатора вы используете. Любой конденсатор может выйти из строя в связи со следующими проблемами:
Все неисправности, которые мы описали выше чаще всего могут возникнуть в результате нарушения температурного режима или превышения порога допустимого напряжения. Специалисты уверяют, что благодаря понижению рабочей температуры можно значительно продлить срок службы радиоэлемента.
На практике чаще всего неисправность конденсатора может быть вызвана коротким замыканием. Теперь мы решили подробно рассказать о том, как выполнить диагностику конденсатора.
Выявить пробой конденсатора также можно благодаря визуальному осмотру. Если произошел пробой, тогда на конденсаторе могут образоваться трещины или вздутие. На фотографии ниже вы можете увидеть признаки пробоя конденсатора.
В большинстве случаев обнаружить пробой во время визуального осмотра не всегда возможно. Если внешний вид детали действительно нормальный, тогда возможно проблема произошла из-за внутреннего короткого замыкания. Перед тем как начать проверять мультиметром неполярный пленочный, керамический, электролитический, smd или sbb конденсатор необходимо будет снять его с платы. Отпаивать конденсатор не всегда обязательно. В некоторых случаях можно проверить сопротивление цепи прямо на плате. Но вам необходимо помнить, что для этого потребуется карта сопротивлений.
Для проверки устройства с помощью мультиметра вам не потребуется замерять емкость конденсатора неполярного типа. В этом случае будет достаточно просто измерить его сопротивление. Оно в обязательном порядке должно быть бесконечно большим. Если произошел пробой, тогда мультиметр покажет незначительную величину. Для тестирования, вам потребуется выполнить следующий алгоритм действий:
Важно знать! Во время проведения измерений помните, что нельзя держать щупы прибора за неизолирование места. В этом случае показания могут быть просто недостоверные.
При необходимости вести тестирование вы также можете в режиме проверки диодов. Если в этом случае будет присутствовать пробой, тогда мультиметр издаст характерный сигнал. У нас вы также можете воспользоваться калькулятором для .
Проверять конденсаторы полярного типа необходимо подобным образом. Единственной особенностью считается то, что порог измерения должен быть больше 100 ком. Перед проведением диагностики вам потребуется разрядить радиодеталь. Для этого можете просто соединить выводы. Если вы используете высоковольтный конденсатор, тогда его необходимо «закорачивать» через нагрузку.
Если вы не уберете заряд, тогда можете испортить мультиметр. Кроме этого, следует помнить о том, что, если вы дотронетесь одним из выводов до тела, тогда можете провести разряд через себя. Если во время разрядки вы увидите искры, тогда это будет говорить о том, что устройство исправно.
Для проверки мультиметром конденсатора необходимо подсоединить щупы. В результате этого электрический ток, который поступает с прибора будет накапливаться в тестируемой детали. Если мультиметр будет показывать увеличение сопротивления, тогда это говорит об исправности. Наиболее детально этот процесс можно будет изучить в аналоговых измерительных приборах.
Метод проверки в режиме омметра считается косвенным. Для получения более точно оценки необходимо воспользоваться цифровым мультиметром. Для проведения измерения вы можете использовать мультиметр DT890B+.
Если конденсаторы выходят из строя, тогда соответственно и бытовая техника постепенно перестает функционировать. Наши советы помогут просто определить исправность конденсатора. После проведения анализа необходимо заменить конденсатор и техника вновь заработает.
Перед тем, как приступать к ремонту бытовых приборов необходимо убедиться в том, что они отключены от электропитания. Теперь вы знаете как проверить конденсатор мультиметром своими руками. Надеемся, что эта информация была полезной и интересной.
Эй! надеюсь, у вас все хорошо.
Печатная плата обычно имеет резисторы, конденсаторы, катушки индуктивности, микросхемы, разъемы и некоторые другие компоненты. Часто эти компоненты получают ожоги и требуют замены.
Компоненты, которые имеют более высокую вероятность сгорания, — это резисторы, конденсаторы и, реже, микросхемы. Причина в том, что большинство резисторов и конденсаторов находится на передней панели любой платы. А иногда перенапряжение их выгорает.
Что касается резистора и микросхемы, вы можете определить неисправный, просто взглянув на него на плате. Сгоревшая микросхема или резистор вскрываются, и вы можете найти их на плате за секунды.
Однако это не относится к конденсатору.
В случае с конденсатором дела обстоят немного иначе. Если вам повезет, вы найдете неисправный конденсатор, просто взглянув на его верхнюю часть, он будет взломан.
Но что, если тебе не повезло?
Настоящая проблема, с которой вы столкнетесь, — нормально выглядящий конденсатор может оказаться плохим.Таким образом, вам нужно удалить все конденсаторы с платы, проверить каждый из них, найти плохого парня и перепаять всех без исключения на плате. Это не лучший способ, и никто не хочет этого делать.
Не волнуйтесь.
В этом посте мы определенно найдем способ проверить конденсатор, не снимая его с корпуса.
Надеюсь, вам понравится эта статья.
Давай посмотрим правде в глаза.
Вы просто не можете проверить неисправный конденсатор внутри или снаружи печатной платы, измерив его значение емкости с помощью измерителя конденсаторов или мультиметра. Потому что в такой ситуации упомянутые устройства приводят вас к ложным показаниям, и вы не сможете на самом деле сказать, был ли конденсатор, который вы тестировали, действительно плохим или правильным.
Почему?
Несомненно, для измерения емкости используются мультиметры или емкостные измерители. Им просто нельзя доверять, чтобы сказать вам, плохой или хороший конденсатор, вне или внутри печатной платы.
Итак, как я могу проверить эту суку?
Остался один вариант, который мы можем использовать для проверки конденсатора, и это измерение его эквивалентного последовательного сопротивления (ESR).
Таким образом, лучшим решением для проверки конденсатора без его фактического демонтажа является использование измерителя ESR или интеллектуального пинцета. Оба работают одинаково и их можно использовать. Но измеритель ESR предпочтительнее для сквозных конденсаторов, а последний — для проверки конденсаторов SMD.
В оставшейся части статьи я подробно расскажу, что это за устройства, и как они проверяют внутрисхемные конденсаторы.
Термин ESR означает эквивалентное последовательное сопротивление, измеряемое в Ом, что означает, что измеритель ESR — это устройство, используемое для определения эквивалентного последовательного сопротивления реального конденсатора без его отсоединения от цепи.
Это устройство не может измерять емкость и может использоваться только для проверки конденсатора.
У идеального конденсатора значение ESR равно нулю, но на самом деле оно очень-очень меньше; близка к идеальной стоимости. Высокое значение ESR является первым признаком неисправности конденсатора.
Увеличение значения ESR увеличивает как падение напряжения внутри конденсатора, так и нагрев. Тепло, выделяемое в конденсаторах, происходит из-за резистивного нагрева, и это тепло вызывает утечку конденсатора.
Если вы не проверите электролитический конденсатор на значение ESR с помощью измерителя ESR, вы не сможете определить, хороший или плохой конденсатор.
Ниже приведены быстрые шаги для проверки любого внутрисхемного конденсатора с помощью измерителя ESR.
В техническом описании каждого конденсатора указано его значение ESR при частоте 100 кГц и определенное номинальное напряжение.Отклонение от этого значения помогает нам решить, нужно ли заменять конденсатор. Обычно ESR неисправного конденсатора увеличивается.
Более того, хороший конденсатор будет иметь измерения почти как короткое замыкание, а все другие части, подключенные параллельно ему, будут иметь минимальное влияние на конечные измерения. Это функция, которая делает измеритель СОЭ незаменимым инструментом для поиска и устранения неисправностей электронного оборудования.
Итак, если вы действительно хотите обнаружить и исправить неисправные конденсаторы в ваших устройствах, вам понадобится приличный измеритель ESR.Хорошее СОЭ можно найти где угодно.
Просто найдите это.
Я рекомендую и мне нравится этот измеритель ESR (ссылка на Amazon). По сути, это комбинированный измеритель LCR с высокой точностью. Единственная проблема, которую я вижу в этом счетчике, — это диапазон цен. Для меня это дороговато. Теперь, если вы можете подождать 7-23 дня доставки, я могу порекомендовать этот измеритель СОЭ (ссылка на продукт) . Он менее дорогостоящий, потому что он специально разработан для тестирования конденсаторов в цепи и измерения ESR внутри цепи.Он не может измерять другие вещи, как первый измеритель esr.
Обычно измеритель ESR может сделать всю работу за вас, но когда дело доходит до SMD-компонентов, он не так удобен, как умный пинцет. Если вы решите использовать ESR, все будет в порядке, но умный пинцет (ссылка на Amazon) — это весело и, на мой взгляд, замечательный инструмент для вашей лаборатории.
Настоящая проблема умных пинцетов в том, что они дорогие. В последний раз, когда я проверял, его цена была около 140 долларов.Но помимо использования его только для проверки конденсаторов, он также может быть отличным портативным измерителем LCR.
Все шаги измерения такие же, как я обсуждал выше для измерителя ESR.
Вместо того, чтобы использовать измеритель ESR или пинцет, мы также можем проверить конденсатор, не снимая его, путем общего осмотра.
Плохой электролитический конденсатор проглатывается на верхней стороне, вы видите такой в цепи; просто замените его, не теряя времени на тестирование.
Значение емкости может быть в диапазоне хороших значений, когда вы проверяете его вне цепи с помощью мультиметра или емкостного измерителя, но все же оно плохое.
Вы просто не можете проверить неисправный конденсатор внутри или снаружи печатной платы с помощью измерителя емкости или мультиметра. Причина в том. оба они могут привести к ложным результатам.
Единственное решение для проверки конденсаторов без демонтажа припайки — это измерение их эквивалентного последовательного сопротивления (ESR).Это значение измеряется измерителем СОЭ.
Измеритель ESR посылает переменный ток частотой 100 кГц в проверяемый конденсатор. Ток создает напряжение на конденсаторе, а затем с помощью математики рассчитывается и отображается на экране ESR.
Вы получаете смещенное значение ESR после сравнения его с диаграммой ESR, у вас плохой конденсатор.
Ну вот и все. Теперь, если такой читатель, как я, сначала прочтет заключение. Вы это читаете. Пора перейти к началу.Но вы читатель, зашедший так далеко. Надеюсь, вам понравилось.
Спасибо и хорошо проводите время.
Другие полезные посты
В большинстве случаев электрики, любители и энтузиасты работают с печатными платами.
Это основа всех электронных устройств, которые мы видим на рынке, и тех, которые мы производим сами.
Печатные платысостоят из множества различных компонентов, таких как конденсаторы, резисторы, индукторы, микросхемы и проводники, и это лишь некоторые из них.
Нередко один или несколько таких компонентов перегорают или повреждаются, что означает их необходимость в замене.
С некоторыми компонентами, такими как резисторы и микросхемы, выяснить, работают ли они или нет, действительно легко и может быть выполнено за считанные секунды.
Однако с конденсаторами дело обстоит немного сложнее.
Если вам повезет, вы можете обнаружить неисправный конденсатор, проверив его верхнюю часть, и если он сломался, это означает, что конденсатор необходимо заменить.
Тем не менее, во многих случаях нормальный конденсатор все еще может быть неисправен, поэтому настоятельно рекомендуется проверить ваши конденсаторы, чтобы быть уверенным.
Многие люди, особенно новички, думают, что для этого требуется демонтаж, но на самом деле вы можете протестировать конденсатор без демонтажа, о чем мы и поговорим в этой статье.
Итак, если вы искали пошаговое руководство по тестированию конденсатора без демонтажа припоя, вы попали в нужное место.
Прочтите, чтобы узнать больше.
В отличие от других электрических компонентов, вы не можете проверить конденсатор с помощью простого мультиметра.
Это связано с тем, что использование таких устройств, как мультиметр или конденсаторный измеритель, может фактически приводить к неточным результатам.
Это происходит из-за того, что конденсаторы внутри схемы подключены последовательно или параллельно другим компонентам, поэтому вы фактически получаете эквивалентное, а не фактическое значение.
Хотя конденсаторные измерители и мультимеры определенно могут измерять емкость, их не рекомендуется использовать для проверки того, работает ли конденсатор.
Вместо этого существует ряд устройств, которые можно использовать для проверки конденсатора без демонтажа припайки, например измеритель ESR, интеллектуальный пинцет и проверка зрения.
В этом разделе мы расскажем, как использовать любой из этих трех методов.
Это самый важный шаг, который вы должны предпринять при тестировании конденсаторов, независимо от того, какие инструменты используются.
Это связано с тем, что не разрядить его перед тестированием может привести к повреждению измерителя СОЭ или другого инструмента, который вы используете.
Это нужно будет сделать независимо от того, какие параметры проверяются.
Для разрядки просто закоротите ноги любым доступным вам способом.
Однако при этом рекомендуется использовать провод с высоким сопротивлением.
И как только вы это сделаете, вы можете переходить к следующему шагу.
Чтобы начать тестирование, просто включайте измеритель СОЭ, пока на экране не появится «0».
Когда он показывает 0, это означает, что вам не нужно сокращать количество потенциальных клиентов, и вы можете начинать тестирование.
Чтобы начать тестирование, все, что вам нужно сделать, это прикрепить провода в нужных местах.
Тестер имеет два вывода: красный и черный.
Красный провод подключается к положительной клемме, а черный — к отрицательной клемме конденсатора.
После того, как вы подключите провода, измеритель СОЭ должен начать отображать данные.
Просто запишите показания, а затем сравните их с таблицей, которая обычно помещается на корпусе измерителя СОЭ, чтобы интерпретировать их.
В то время как на большинстве счетчиков таблица уже напечатана на корпусе, на других моделях этого нет.
И в этой ситуации все, что вам нужно сделать, это использовать техническое описание конденсатора и сравнить его со значением ESR.
Во всех технических паспортах конденсаторов указано их значение ESR для частоты 100 кГц и его конкретное номинальное напряжение.
Любое отклонение от этой частоты указывает на неисправный конденсатор, который требует замены, и
Если речь идет о конденсаторах, значенияобычно отклоняются в сторону увеличения.
Хотя тестера ESR было бы достаточно для измерения и проверки значений ESR большинства конденсаторов, при работе с SMD-компонентами все может быть довольно сложно.
Когда дело доходит до гибкости и эффективности, интеллектуальный пинцет может оказаться лучшим вариантом по сравнению с тестерами СОЭ.
Они позволят вам намного проще получать данные и тестировать компоненты SMD, а также обычные компоненты с отверстиями.
При этом пара интеллектуальных пинцетов может быть очень дорогой, особенно по сравнению с простым и экономичным измерителем СОЭ.
ПинцетSmart на рынке может стоить до 300 долларов, что может быть недоступно для многих новичков и любителей, и в этом случае лучшим выбором будет тестер СОЭ.
И если вы решите инвестировать в умный пинцет, это все равно будет очень выгодным вложением, поскольку это очень полезный и функциональный инструмент, который можно использовать на рабочем месте.
Чтобы использовать интеллектуальный пинцет для проверки конденсаторов, просто выполните те же действия, что и при использовании тестера ESR.
Разрядите конденсатор, подсоедините провода, сравните и интерпретируйте данные.
Нет ничего проще и проще.
Многие люди не знают, что в отсутствие тестера ESR или интеллектуального пинцета вы все равно можете проверить, работает ли конденсатор, проверив зрение.
Это не самый точный способ сделать это, но это быстрый, дешевый и простой способ выполнить работу.
Неисправный или неисправный конденсатор будет вздуться или вздуться на верхней стороне, и если вы заметите это, это означает, что у вас неисправный конденсатор и его необходимо заменить.
Опять же, это не самый точный способ узнать, неисправен ли ваш конденсатор, но это быстрый и простой способ проверить.
В случае сомнений всегда лучше использовать подходящие инструменты и инструменты для работы.
Многие думают, что для проверки конденсатора его нужно распаять и снять с печатной платы.
Это не так, поскольку существует множество способов проверить конденсатор без демонтажа припоя.
Первый метод — использовать измеритель ESR, который требует только разрядить конденсатор перед тестированием.
Вы также можете использовать те же методы для проверки конденсатора с помощью интеллектуального пинцета.
После получения данных о значении ESR воспользуйтесь таблицей, напечатанной на измерителе, или прочтите лист данных конденсатора, чтобы определить, неисправен он или нет.
Вдобавок к этому вы можете провести быструю проверку зрения и посмотреть, не вздулся ли конденсатор или не выпирал ли он вверх.
Если он вздулся, это означает, что конденсатор неисправен и его необходимо заменить.
Как мы упоминали ранее, мультиметр можно использовать для проверки множества различных компонентов, но он не будет надежным для проверки конденсаторов.
Это связано с тем, что, хотя он может проверять емкость, данные не будут надежными.
Причина этого в том, что конденсаторы обычно включаются последовательно или параллельно с другими компонентами, что может помешать получению точных данных.
Вот почему ESR-тестеры и интеллектуальные пинцеты более рекомендуются для проверки конденсаторов, чем мультиметры.
Чтобы проверить, не закорочен ли конденсатор, вам понадобится мультиметр.
Просто подключите выводы мультиметра к конденсатору и наблюдайте за данными.
Если измеритель сопротивления начинает с низкого значения и постепенно увеличивается, это означает, что ваш конденсатор работает нормально.
Однако, если сопротивление остается низким в течение длительного времени и не повышается, это означает, что у вас закорочен конденсатор, который необходимо заменить.
При коротком замыкании конденсатора возникает сопротивление между проводами напряжения и заземления.
Это потенциально может нарушить работу цепи, что может вызвать множество различных проблем.
Поэтому, если ваш конденсатор закорочен, не забудьте сразу заменить его, чтобы избежать каких-либо осложнений или повреждения вашей электроники.
Вдобавок ко всему, если конденсатор закорочен, устройство временами просто не будет работать.
Существует множество инструментов, которые могут помочь вам в достижении ваших целей, когда дело касается электроники и печатных плат.
Вы можете ознакомиться с другими нашими руководствами здесь для получения дополнительной информации.
На этом наше краткое руководство по тестированию конденсаторов без распайки подходит к концу.
Есть много разных способов сделать это, используя различные инструменты и инструменты.
Фактически, один из методов предполагает использование только ваших глаз и наблюдательных навыков.
Итак, теперь, когда вы знаете, как это сделать, вам остается только отправиться в мастерскую с любыми приборами, которые вы выберете для использования, и приступить к тестированию своих конденсаторов!
Дополнительная литература:
Как работают конденсаторы
Последнее обновление 19 июня 2021 года Томом
Мультиметр определяет емкость, заряжая конденсатор известным током, измеряя результирующее напряжение и затем вычисляя емкость.
Предупреждение: Хороший конденсатор сохраняет электрический заряд и может оставаться под напряжением после отключения питания. Перед тем, как прикасаться к нему или проводить измерение: а) выключите все питание, б) используйте мультиметр, чтобы убедиться, что питание отключено, и в) осторожно разрядите конденсатор, подключив резистор к его проводам (как указано в следующем абзаце). Обязательно используйте соответствующие средства индивидуальной защиты.
Для безопасной разрядки конденсатора: После отключения питания подключите 5-ваттный резистор 20 000 Ом к клеммам конденсатора на пять секунд.Используйте мультиметр, чтобы убедиться, что конденсатор полностью разряжен.
4. Для правильного измерения необходимо удалить конденсатор из цепи. Разрядите конденсатор, как описано в предупреждении выше.
Примечание: Некоторые мультиметры поддерживают относительный (REL) режим. При измерении малых значений емкости можно использовать относительный режим для удаления емкости измерительных проводов.Чтобы перевести мультиметр в относительный режим измерения емкости, оставьте измерительные провода открытыми и нажмите кнопку REL. Это удаляет значение остаточной емкости измерительных проводов.
Устранение неисправностей однофазных двигателей — одно из наиболее практичных применений функции емкости цифрового мультиметра.
Однофазный двигатель с конденсаторным пуском, который не запускается, является признаком неисправного конденсатора. Такие двигатели будут продолжать работать после запуска, что затрудняет поиск и устранение неисправностей. Отказ конденсатора жесткого пуска компрессоров HVAC — хороший пример этой проблемы.Двигатель компрессора может запуститься, но вскоре перегреется, что приведет к срабатыванию выключателя.
Однофазные двигатели с такими проблемами и шумные однофазные двигатели с конденсаторами нуждаются в мультиметре для проверки правильного функционирования конденсаторов. Почти все моторные конденсаторы имеют значение в микрофарадах, указанное на конденсаторе.
Трехфазные конденсаторы коррекции коэффициента мощности обычно защищены плавкими предохранителями. Если один или несколько из этих конденсаторов выйдут из строя, это приведет к неэффективности системы, скорее всего, увеличатся счета за коммунальные услуги и могут произойти непреднамеренные отключения оборудования.Если предохранитель конденсатора перегорел, необходимо измерить предполагаемое значение микрофарад конденсатора и убедиться, что оно находится в пределах диапазона, указанного на конденсаторе.
Стоит знать о некоторых дополнительных факторах, связанных с емкостью:
Ссылка: Принципы цифрового мультиметра Глена А. Мазура, American Technical Publishers.
В этом руководстве мы увидим, как проверить конденсатор и выяснить, работает ли конденсатор должным образом или он неисправен.Конденсатор — это электронный / электрический компонент, который накапливает энергию в виде электрического заряда. Конденсаторы часто используются в печатных платах электроники или небольшом количестве электрических приборов и выполняют множество функций.
Когда конденсатор помещается в активную цепь (цепь с протекающим активным током), в конденсаторе (на одной из его пластин) начинает накапливаться заряд, и как только пластина конденсатора больше не может принимать заряд, это означает, что конденсатор полностью заряжен.
Теперь, если схема требует этот заряд (например, байпасный конденсатор), конденсатор возвращает заряд обратно в схему, и это продолжается до тех пор, пока заряд не будет полностью снят или схема не перестанет требовать. Эти действия называются зарядкой и разрядкой конденсатора.
В основном конденсаторы можно разделить на электролитические и неэлектролитические. Как и все электрические и электронные компоненты, конденсатор также чувствителен к скачкам напряжения, и такие колебания напряжения могут необратимо повредить конденсаторы.
Электролитический конденсаторчасто выходит из строя из-за разряда большего тока за короткий период времени или не может удерживать заряд из-за высыхания со временем. С другой стороны, неэлектролитические конденсаторы выходят из строя из-за утечек.
Существуют различные методы проверки правильности работы конденсатора. Давайте посмотрим на некоторые методы проверки конденсатора.
ПРИМЕЧАНИЕ: Некоторые из упомянутых здесь методов могут быть не лучшими способами проверки конденсатора. Но мы включили эти методы, чтобы указать возможности.Будь очень осторожен.
Прежде чем продолжить и рассмотреть различные методы тестирования конденсатора, давайте разберемся, как правильно разрядить конденсатор. Это очень важно, потому что конденсаторы могут удерживать заряд даже при отключении питания. Если конденсатор не разряжен должным образом и если вы случайно коснетесь выводов конденсатора, он разрядится через ваше тело и вызовет поражение электрическим током.
Есть несколько способов разрядить конденсатор.Будет специальное руководство о том, как разрядить конденсатор, но пока давайте очень кратко рассмотрим оба этих метода.
ПРЕДУПРЕЖДЕНИЕ: Этот метод не является предпочтительным (особенно если вы новичок), так как во время разряда будут образовываться искры, которые могут вызвать ожоги или другие повреждения. Используйте этот метод в крайнем случае.
Если конденсатор находится в цепи (на печатной плате), правильно распаяйте его и не прикасайтесь к клеммам конденсатора.Теперь возьмите изолированную отвертку (с более длинной ручкой) и возьмите ее в одну руку. Возьмите конденсатор другой рукой и прикоснитесь металлической частью отвертки к обоим выводам конденсатора.
Вы увидите искры и услышите треск, указывающий на электрический разряд. Повторите несколько раз, чтобы убедиться, что конденсатор полностью разряжен.
Теперь мы увидим безопасный способ разрядить конденсатор.Этот метод часто используется в источниках питания и других подобных схемах, где резистор, известный как Bleeder Resistor, размещается параллельно выходному конденсатору, так что при отключении питания оставшийся заряд в конденсаторе разряжается через этот резистор. .
Возьмите резистор большого номинала (обычно несколько килоомов) с высокой номинальной мощностью (например, 5 Вт) и подключите его к клеммам конденсатора. Вместо прямого подключения можно использовать провода с зажимами типа «крокодил» на обоих концах.Конденсатор будет медленно разряжаться, и вы можете контролировать напряжение на выводах конденсатора с помощью мультиметра.
Существует простой в использовании «Калькулятор безопасного разряда конденсатора» от Digi-Key. Используйте этот инструмент как отправную точку.
Например, предположим, что у нас есть конденсатор емкостью 1000 мкФ, рассчитанный на 50 В, и мы хотим разрядить этот конденсатор до 1 В. При использовании резистора 1 кОм для разряда конденсатора потребуется почти 4 секунды. Также номинальная мощность резистора должна быть не менее 2.5Вт.
ПРИМЕЧАНИЕ. Резисторы с номинальной мощностью обычно дороги по сравнению с обычными резисторами (1/4 или 1/2 Вт).
Это один из самых простых, быстрых и точных способов проверки конденсатора. Для этого нам понадобится цифровой мультиметр с функцией измерителя емкости. Большинство цифровых мультиметров среднего и высокого уровня имеют эту функцию.
Измеритель емкости цифровых мультиметров часто отображает емкость конденсатора, но несколько счетчиков отображают другие параметры, такие как ESR, утечку и т. Д.
Используя этот метод, можно измерить емкость конденсаторов от нескольких нанофарад до нескольких сотен микрофарад.
Большинство недорогих и дешевых цифровых мультиметров не включают измеритель емкости или настройки емкости.Даже с этими мультиметрами мы можем проверить конденсатор.
Этот метод тестирования конденсатора может быть неточным, но позволяет различать хорошие и плохие конденсаторы. Этот метод также не дает данных о емкости конденсатора.
Этот метод применим только в том случае, если известно значение емкости и если мы хотим проверить, исправен ли конденсатор или нет. В этом методе мы измеряем постоянную времени конденсатора и выводим емкость из измеренного времени.Если измеренная емкость и фактическая емкость одинаковы, то конденсатор исправен.
ПРИМЕЧАНИЕ: Осциллограф будет лучшим инструментом для этого метода, чем мультиметр.
Постоянная времени конденсатора — это время, необходимое конденсатору для зарядки до 63,2% приложенного напряжения при зарядке через известный резистор. Если C — емкость, R — известный резистор, то постоянная времени TC (или греческий алфавит Tau — τ) задается как τ = RC.
Также можно рассчитать время разряда. В этом случае можно измерить время, необходимое конденсатору для разряда до 36,8% пикового напряжения.
Все конденсаторы рассчитаны на максимальное допустимое напряжение. Для этого метода проверки конденсатора мы будем использовать номинальное напряжение конденсатора.
Следует принимать во внимание только начальные показания мультиметра, так как значение будет медленно падать. Это нормально.
, как и цифровые мультиметры, могут измерять различные величины, такие как ток (A), напряжение (V) и сопротивление (O). Чтобы проверить конденсатор с помощью аналогового мультиметра, мы собираемся использовать его функцию омметра.
Этот тест может применяться как для сквозных, так и для поверхностных конденсаторов.
Описанный здесь метод — один из старейших методов проверки конденсатора и проверки того, хороший он или плохой.
Предупреждение: Этот метод очень опасен и предназначен только для профессионалов. Его следует использовать как последний вариант для проверки конденсатора.
Безопасность: Метод описан для источника переменного тока 230 В. Но из соображений безопасности можно использовать источник питания 24 В постоянного тока. Даже при 230 В переменного тока нам необходимо использовать последовательный резистор (высокой номинальной мощности) для ограничения тока.
Этот метод можно использовать для конденсаторов с меньшей емкостью. Этот метод может только определить, может ли конденсатор удерживать заряд или нет.
Полное руководство для начинающих по различным способам проверки конденсатора.Узнайте, как проверить конденсатор, как правильно разрядить конденсатор перед тестированием, какие методы безопасны для использования новичками.
Почти каждое электронное устройство использует материнскую плату. Материнские платы находятся внутри компьютеров, планшетов, мобильных телефонов, цифровых фотоаппаратов и всех видов другой электроники. Конденсаторы — это небольшие детали, припаянные к материнской плате, которые предотвращают выбросы электричества и обжаривание других компонентов. Иногда эти конденсаторы необходимо заменить.
Какие шаги нужно сделать, чтобы припаять конденсатор к материнской плате? В этом руководстве я объясню, как отпаять старые конденсаторы и припаять новые конденсаторы к материнской плате. Поскольку этот процесс очень тонкий и точный, важно быть полностью подготовленным и хорошо осведомленным, прежде чем приступить к этому проекту. Это руководство покажет вам путь.
Прежде чем мы углубимся в пошаговые инструкции, у вас должны быть все инструменты, необходимые для начала пайки сменных конденсаторов.Прежде чем начать, убедитесь, что все перечисленные ниже элементы доступны для вас, чтобы вам не пришлось прерывать процесс позже. При обращении с электричеством важно принимать все необходимые меры безопасности.
Перед снятием материнской платы с любого устройства вы следует убедиться, что все отключено от источника питания.Следующий шаг по предотвращению поражения электрическим током — убедиться, что ни один из конденсаторов материнской платы не сохраняет заряд. Хотя это, скорее всего, не будут большие расходы, лучше проявить осторожность.
Даже когда материнская плата снимается с электронного устройства, одна из задач конденсаторов — сберегать электронные заряды. Используйте разрядный стержень или аналогичный метод, чтобы убедиться, что ни один из конденсаторов не удерживает электрический заряд.
Перед тем, как новый конденсатор для замены можно будет припаять к материнской плате, необходимо удалить проблемный (-ые) конденсатор (-ы).Найти конкретный конденсатор, который необходимо удалить, может быть сложно, так как он имеет небольшой размер. Дефект не всегда на первый взгляд очевиден. Могут пригодиться увеличительное стекло или глазная лупа.
Часто неисправный конденсатор выглядит вздутым или вздутым. Более внимательный осмотр каждого конденсатора поможет определить, какой из конденсаторов на материнской плате поврежден, поскольку выпуклость может не казаться слишком большой. Утечка — еще один показатель. Конденсаторы заполнены проводящим жидким электролитом.Если он протекает, конденсатор неисправен.
Мощность вашего паяльник зависит от уровня вашего опыта. Новичкам следует использовать паяльники мощностью 30 Вт и ниже, чтобы не допустить перегрева других компонентов на плате и повреждения схемы.Более профессиональные паящики могут использовать утюги с более высокой мощностью, потому что они будут лучше контролировать время и направление тепла.
Вы хотите использовать стамеску, так как это лучший вид паяльного жала для работы с материнскими платами и схемами. Жало паяльника не обязательно должно быть маленьким, но и большим. Пайка — это тонкая работа, и жало должно обладать такой точностью. Он также должен быть чистым.
Нагрейте паяльник в течение нескольких минут, пока он не станет горячим и не будет готов к использованию.Чтобы кончик был чистым, используйте влажную губку, чтобы очистить кончик от остатков. Держите губку. Начиная с основания кончика, быстро подметайте его вверх, пока не очистите весь кончик. Из-за попадания воды на губку, скорее всего, появится дым. Это не повод для беспокойства.
Конденсатор виден на одной стороне материнской платы, а его выводы припаяны на противоположной стороне. Убедитесь, что вы нашли клеммы, относящиеся к конденсатору, который вы хотите удалить и заменить.После обнаружения очистите клеммы изопропиловым спиртом и мягкой зубной щеткой.
Этот этап очистки не является обязательным, так как эта область терминала также будет очищена после следующего этапа. Однако предварительная очистка изопропиловым спиртом гарантирует, что пыль, мусор или остатки не будут мешать процессу распайки. Будьте осторожны с зубной щеткой, чтобы не повредить окружающие следы материнской платы.
Есть несколько способов удалить старый припой.Разные люди предпочитают разные методы, поэтому не стесняйтесь пробовать разные подходы и решать, что лучше всего подходит для вас. Ниже я рассмотрю несколько методов.
Первый способ, который я упомяну, является наиболее обычным: нагрев старого припоя паяльником. Старый припой становится жидким, и вы можете его удалить.
Когда паяльник нагреется, приложите жало к исходному припою на несколько секунд. Это должно ослабить припой, позволяя выводам поврежденного провода конденсатора отсоединиться от материнской платы.Удерживая наконечник у припоя, покачивайте изогнутый штифт, чтобы он стал прямым. Это позволит штифтам проходить прямо через сквозные отверстия.
Очищайте паяльник от влажной губки каждый раз, когда вы замечаете, что он становится черным от припоя. Выключайте утюг, когда он не используется.
Удалите дефектный конденсатор
Пока припой жидкий, а контакты конденсатора прямые, вы сможете освободить конденсатор от материнской платы.Делайте это осторожно, чтобы не повредить схемы или следы на материнской плате. Если оригинальный конденсатор был припаян без погнутых контактов, вам не придется беспокоиться о их выпрямлении.
Многим людям сложно нагреть старый припой одним только паяльником.Независимо от того, недостаточно ли нагревается их инструмент или старый припой слишком стойкий, старый припой не разжижается должным образом. В любом случае, удобный способ обойти это — использовать свежий припой, чтобы ослабить старый припой. Звучит безумно, но это работает!
Нанесите небольшое количество свежего припоя на жало паяльника. Затем приложите кончик паяльника к старому припою, как описано выше. Свежий жидкий припой будет взаимодействовать со старым припоем, и весь припой рассыпется.Твердый припой будет действовать как новый припой, и вы сможете удалить его, как описано выше.
Очищайте паяльник от влажной губки каждый раз, когда вы замечаете, что он становится черным от припоя. Выключайте утюг, когда он не используется.
Удалите дефектный конденсатор
Пока припой жидкий, а контакты конденсатора прямые, вы сможете освободить конденсатор от материнской платы. Делайте это осторожно, чтобы не повредить схемы или следы на материнской плате.Если оригинальный конденсатор был припаян без погнутых контактов, вам не придется беспокоиться о их выпрямлении.
Еще один отличный инструмент для распайки небольшого количества припоя, например, на клеммах конденсатора, — это отпайка оплетки.Оплетки для распайки также называют фитилями для припоя. Оплетка для распайки — это медная проволока, плотно скрученная вместе. Они отлично подходят для распайки при подготовке к новому припою и для исправления ошибок при пайке в середине проекта.
Чтобы удалить припой с помощью распаянной оплетки, разверните несколько дюймов оплетки и поместите кусок прямо на припаянный штифт, который вы хотите удалить. Наденьте паяльник на оплетку. Когда вы почувствуете, что припой внизу начинает разжижаться, подержите его еще пару секунд, а затем снимите.Вы увидите, что оплетка унесла с собой припой. Повторить!
Очищайте паяльник от влажной губки каждый раз, когда вы замечаете, что он становится черным от припоя. Выключайте утюг, когда он не используется.
Удалите неисправный конденсатор
В отличие от методов, описанных выше, вам придется повторить этот процесс несколько раз, чтобы выпаять достаточно припоя. Он хорошо работает, когда нужно удалить немного припоя. Для проектов, требующих удаления большого количества припоя, его лучше использовать в качестве метода очистки, чтобы удалить излишки припоя после того, как конденсатор был удален с печатной платы.
После удаления достаточного количества припоя воспользуйтесь инструментом для выпрямления контактов конденсатора. Вы должны освободить конденсатор от материнской платы. Делайте это осторожно, чтобы не повредить схемы или следы на материнской плате. Если оригинальный конденсатор был припаян без погнутых контактов, вам не придется беспокоиться о их выпрямлении.
Очищайте паяльник от влажной губки каждый раз, когда вы замечаете, что он становится черным от припоя. Выключайте утюг, когда он не используется.
Как указано выше, на некоторых неисправных печатных платах происходит утечка электролитной жидкости.Эта жидкость вызывает коррозию. Не переходите к следующему шагу, пока эта едкая жидкость не будет удалена с доски. Используйте тот же изопропиловый спирт, который у вас есть под рукой, чтобы аккуратно удалить протечку. Изопропиловый спирт великолепен, и вы всегда должны помнить об этом.
Неисправный конденсатор может быть свободным, но сквозные отверстия в выводах, вероятно, все еще покрыты остатками припоя. Пришло время взять присоску для припоя или демонтажный насос. Для этого также подойдет демонтажная оплетка.Метод распайки оплетки более тонкий, хотя и утомительный. Присоска для припоя работает быстро, но менее точно.
Присоска для припоя похожа на вакуум и всасывает рыхлый припой, который вы создаете, опустошая сквозные отверстия после нескольких раундов. Чтобы включить присоску для припоя, опустите ее рычаг вниз, как при взведении пистолета. Чтобы всасывать припой, вам нужно будет использовать обе руки. Одной рукой нужно будет держать паяльник, а другой — присоску.
В одних руках разогрейте припой паяльником.Припой необходимо разжижить, чтобы присоска припоя могла его всасывать. С другой стороны, у вас должна быть вооруженная присоска для припоя. Чтобы использовать присоску для припоя, нажмите кнопку сбоку, которая запустит всасывающий механизм. Возможно, вам придется повторить это несколько раз, чтобы получить весь припой.
Метод распайки оплетки такой же, как и выше, только без конденсатора внизу. Поместите оплетку на припой и держите паяльник поверх нее. Когда припой станет достаточно жидким, снимите утюг и оплетку.Повторяйте это, пока весь припой не будет удален. В этом процессе могут помочь точные ручные инструменты.
Инструмент | Присоска для припоя | Оплетка для распайки |
Плюсы | Быстрый, удобный, точный, хороший для большого количества припоя 9087 мелкие детали и небольшое количество припоя | |
Минусы | Неточность требует двух рук | Требуется больше времени, оплетка нагревается |
Очищайте паяльник от влажной губки каждый раз, когда вы замечаете, что она становится черной от припоя.Выключайте утюг, когда он не используется.
Удаление верхнего слоя припоя с платы должно быть относительно простым с использованием одного из вышеуказанных методов. Однако припой часто застревает в конденсаторе через отверстия. Кусок вывода конденсатора также может застрять. Все это необходимо полностью удалить, прежде чем можно будет паять новый конденсатор.
Присоски для пайки, оплетки для распайки и точные ручные инструменты также отлично подходят для такого рода работ.Вам нужно будет использовать свой паяльник и свежий припой, так как создание массы расплавленного припоя является ключом к проталкиванию или вытягиванию застрявших битов через отверстия конденсатора.
Вам нужно будет добавить в паяльник свежий припой и нагреть старый припой. Это самая сложная часть, так как для ослабления застрявшей биты необходимо очень сильно нагреться, но плата не должна перегреваться. Когда застрявшая насадка нагреется и достаточно ослабнет, ее можно пропылесосить, снять или протолкнуть с помощью вышеупомянутого инструмента.
Очищайте паяльник от влажной губки каждый раз, когда вы замечаете, что он становится черным от припоя. Выключайте утюг, когда он не используется.
Теперь, когда вы очистили область несколько раз, вы знаете, что такое сверло. К счастью, на этот раз должно быть проще, чем когда-либо прежде. Не должно быть мешающих контактов конденсатора или затвердевшего припоя. Вытащите удобный изопропиловый спирт и зубную щетку, потому что они вам понадобятся.
Осторожно почистите место, где вы работали. Утечка электролита давно исчезла благодаря вашим предыдущим усилиям. Припой ушел благодаря вашим невероятным усилиям. Пришло время подготовиться к пайке нового заменяющего конденсатора. Зубная щетка и изопропиловый спирт не подходят для пыли и мусора.
Не все материнские платы идентичны, но у каждой есть индикатор полярности.Конденсаторы должны быть размещены правильно, положительная сторона должна быть на положительной клемме, а отрицательная сторона — на отрицательной клемме. Материнская плата и конденсатор подскажут, какая сторона положительная, а какая отрицательная.
Самый простой способ следить за полярностью — это записывать ее перед тем, как снимать неисправные конденсаторы. Если исходный конденсатор имеет положительный заряд на одной стороне и отрицательный — на другой, запишите это и используйте это руководство при добавлении новых конденсаторов.Однако мы не всегда думаем о будущем. К счастью, есть и другие способы.
На материнских платах и печатных платах изображен круг. Половина круга будет одного цвета, а другая половина — заштрихованной или закрашенной. Внимательно посмотрите на круг. На положительной стороне должен быть небольшой знак плюса (+). Часто это будет та сторона, которая не заштрихована.
Еще один способ узнать наверняка, какая сторона представляет собой положительный полюс, а какая — отрицательный, — это поискать другие конденсаторы, которые все еще прикреплены к материнской плате.Вы должны увидеть, в каком направлении конденсатор вставляется в эти клеммы, и таким же образом вставьте новый конденсатор.
Конденсаторы материнской платы — это электролитические конденсаторы, которые будут иметь четкие индикаторы того, какая сторона является положительной, а какая — отрицательной.Крайне важно, чтобы положительная сторона конденсатора была установлена в положительную клемму, а отрицательная сторона была установлена в отрицательную клемму. Производители упростили определение того, что есть что.
Посмотрите на контакты конденсатора. Положительный вывод должен быть длиннее отрицательного. Это первое указание на то, какая сторона какая. На одной стороне конденсатора также будет полоса, указывающая на отрицательную сторону. Скорее всего, на нем будет знак минус (-).На полосе также могут быть стрелки, указывающие на отрицательный вывод.
Остальные типы конденсаторов имеют другие показатели. При работе с материнскими платами вы можете контактировать только с электролитическими конденсаторами. Это единственный тип, имеющий отношение к этому руководству, и, к счастью, их довольно легко сопоставить с правильными точками на материнской плате.
Вышеуказанные шаги очень важны. Если вы неправильно соблюдаете полярность и вставите конденсатор задом наперед, он взорвется, и вся ваша тяжелая работа будет напрасной. Убедитесь, что положительный вывод конденсатора не вставлен в отрицательный, и наоборот. При наличии всех индикаторов это должно быть легко сделать правильно.
Установите конденсатор на клемму в правильном направлении.Вставив булавки, осторожно разведите их в противоположных направлениях, чтобы они образовали легкую Y-образную форму. Это необходимо для того, чтобы конденсатор не соскользнул обратно через сквозные отверстия и не упал с платы.
Некоторые паяльщики рекомендуют не гнуть контакты. Аргумент состоит в том, что изгиб контактов в форме буквы «Y» затрудняет замену конденсатора позже. Это верно, поскольку вам придется снова повернуть штифт прямо, когда вы снимаете его в дороге.
Однако все сводится к тому, цените ли вы удобство сейчас или удобство позже. Сгибание контактов позволяет конденсаторам оставаться на своих местах. Это упростит процесс пайки. Если держать их прямо, сейчас будет сложнее, потому что конденсатор может перемещаться, но в будущем его будет легче заменить.
После того, как вы установили конденсатор на место и вставили контакты через сквозные отверстия, обрежьте контакты так, чтобы конденсатор равномерно прилегал к другим конденсаторам на плате.Булавки будут очень долго, прежде чем вы их подрежете, но большая часть этого — лишний материал. Необязательно, чтобы они были очень длинными, чтобы припаять их на место.
Здесь вам нужно будет достать фрезы. Не следует обрезать контакты настолько коротко, чтобы они находились заподлицо со сквозными отверстиями, так как это не даст вам ничего припаять. Вместо этого оставьте несколько миллиметров булавки с каждой стороны.
Этот этап почти идентичен предыдущим этапам распайки.Теперь вместо того, чтобы удалять старый, поврежденный конденсатор, вы будете устанавливать новый конденсатор. Надеюсь, через много лет вы сможете использовать эти навыки, чтобы заменить это точно так же.
Убедитесь, что вы работаете с правильной стороной материнской платы — стороной, противоположной самому конденсатору.
При повторном нагреве паяльника необходимо убедиться, что он полностью нагрет, прежде чем пытаться что-либо паять. Обычно на паяльниках есть световые индикаторы, которые сообщают вам, когда они готовы к использованию.
Когда все будет готово, разверните немного припоя и дайте ему расплавиться на наконечнике железа. Поместите жидкий припой на каждый штифт. Убедитесь, что на каждом штыре достаточно припоя, чтобы он оставался на месте.
Не создавайте перемычки между двумя контактами. Это создаст короткое замыкание и помешает правильному течению электричества. Хотя такая ошибка может иметь серьезные последствия, это не серьезная проблема. Паяный мостик довольно легко сделать и, к счастью, его легко исправить.
Пайка — это деликатный процесс. Вам нужно достаточно припоя, чтобы штыри оставались на месте через хорошее соединение. Если вы добавите слишком много припоя, между двумя контактами образуется шарик, образуя перемычку.На печатной плате компоненты расположены так близко друг к другу. Если образуется мост, элементы соединяются электрически, чего не должно быть, и возникают проблемы.
Вы можете исправить перемычки, используя те же методы, которые описаны выше. Для этого отлично подходят присоски для припоя и распаянные оплетки. Иногда можно даже просто использовать сам паяльник. Поскольку жидкий припой является податливым и текучим, горячее паяльное жало обычно может сдвинуть мостиковый припой в сторону, нарушая соединение.
При использовании метода всасывания припоя будьте осторожны, поскольку, вероятно, не будет большого объема припоя, который необходимо всасывать.При использовании любого метода лучше всего дать всему мосту остыть, а затем повторно обработать середину моста, чтобы не удалился и хороший припой.
Теперь, когда конденсаторы заменены, вы должны проверить отремонтированную материнскую плату.Сделайте это, повторно подключив его к электронике, с которой он был удален, и запустив процесс загрузки. Если проблема была в разорванном конденсаторе, элемент должен загрузиться как новый.
Источники:
https://blog.knowlescapacitors.com/blog/capacitor-fundamentals-part-13-soldering-for-chip-capacitors
https://www.gizbot.com/computer/features/explained -what-is-motherboard-how-does-it-work-what-are-its-types-components-069132.html
https://www.techjunkie.com/how-capacitors-on-a-motherboard- work / #: ~: text = В% 20layman’s% 20terms% 2C% 20a% 20capacitor, a% 20steady% 20stream% 20of% 20power.
https://www.computerhope.com/issues/ch001547.htm
http://www.capacitorlab.com/recapping-tools/
https://electronicsclub.info/soldering.htm
https: //www.instructables.com/How-to-reapair-capacitors-on-computer-motherboards/
https://www.digikey.com/en/blog/how-and-when-to-use-solder- фитиль
https://www.geeksinphoenix.com/blog/post/2013/08/11/How-to-check-your-desktop-computer-for-failed-capacitors.aspx
https: // www.allaboutcircuits.com/technical-articles/a-solder-bridge-to-nowhere-what-is-a-solder-bridge-how-to-prevent/#:~:text=A%20solder%20bridge%20forms%20when, % 20the% 20PCB% 20solder% 20mask.
Если вам понравилась эта статья, взгляните на другие мои статьи по этой теме, которые я написал!
Более проблематичны конденсаторы высоковольтных источников питания, обычно многосекционные. алюминиевые банки, установленные на верхней пластине шасси. Чтобы отремонтировать их, у вас, возможно, есть четыре параметры:
Электролитики бездействием не переносят. Они могут вызвать большие неприятности при простое в течение длительного времени, требуется периодическая подзарядка, чтобы оставаться «сформированным» и поддерживать оксидный слой, изолирующий проводящие пластины. Иногда их можно «реформировать», постепенно возвращаясь к работе. напряжение (см. ниже). Даже при регулярном использовании электролиты выходят из строя. из-за высыхания или утечки электролита в результате внутренней коррозии.Если электролит вздувается, показывает очевидную потерю электролита или просто не может быть реформирован, вы должны заменить его.
Обратите внимание, что есть два типа утечки; физические и электрические. Поскольку электролит представляет собой жидкость или пасту, когда электролит катастрофически в случае неудачи обычно выделяется какая-то едкая грязь: физическая утечка. В отличие от идеальный конденсатор, электролиты слегка проводят при наличии напряжения пластины: утечка электричества. Помимо отклонения от идеала поведение, небольшая утечка в новом электролите не вызывает серьезных проблем; по мере старения электролита утечка увеличивается.Утечка выделяет тепло, что приводит к старению электролита и увеличивает утечку, вызывая больше тепла, и так далее. При достаточной утечке электролит закипает, и пар лопается. предохранительная пробка контейнера, вызывающая физическую утечку и сигнализирующая кончина конденсатора.
Обратите внимание, что существуют и другие формы отказа клемм, в том числе: полная потеря емкости (разомкнутая) или замыкание проводящих пластин (короткая). Хотя вы можете реформировать свой 30-50-летний оригинал электролитические, они могут работать не так хорошо, как новые.Может быть частичная потеря емкости или может быть чрезмерная утечка ( колпачки действительно нагреваются), или и то, и другое. Если вы не хотите сохранить оригинал состояние вашего усилителя, превентивная «перепланировка» может быть лучшим решением восстановить оборудование до функционально первоначального состояния.
Метод ограничения тока (от Angela Instruments): Вот ссылка к инструкциям Angela instruments по переработке старых электролитов из их шасси с помощью внешнего источника питания. В этом методе используется большая серия резистор и высоковольтный источник питания для преобразования конденсаторов, которые не используются. (новый-старый сток) или конденсаторы, снятые с шасси оборудования.
Метод ограничения по напряжению 1: В методах ограничения по напряжению используется удобное устройство, называемое переменным автотрансформатором (A.к.а. Вариак, генерал Фирменное наименование радио). Используя внешний высоковольтный источник питания, каждый конденсатор медленно доводят до рабочего напряжения, медленно поднимая линейное напряжение к источнику питания. Это также можно сделать с помощью переменной DC питание с диапазоном примерно от 50 В до 500 В, но варианты дешевле и чаще. Резистор может быть установлен последовательно для контроля тока, но наблюдение за напряжением также может выявить прогресс реформирования; на каждом вариакте настройки, напряжение будет медленно расти, пока не будет достигнуто преобразование при этом напряжении. полный.
Запас для этой цели сделать несложно из мусорных коробок; Схема представляет собой пару трансформаторов 500 мА 24 В, подключенных вторично к вторичная, за которой следует цепь утроения напряжения. Общая стоимость составила около 10 долларов (правда), включая коробку из местного Radio Shack. Будучи напряжением утроение, регулирование слабое, и напряжение сильно падает с увеличением тока. Я использовал эту характеристику, чтобы дать приблизительную оценку текущего слейте воду, как показано в таблице в верхней части источника.(Значения были измерены используя реостат и мой цифровой мультиметр — источник питания с другим набором деталей будет иметь аналогичное поведение, но будет измерять по-другому). Обычно я подключил бы мою поставку через электролитики, которые нужно реформировать, вдоль с моим цифровым мультиметром, установленным на максимальное значение напряжения. Я подключаю питание к variac (выключен, установлен на ноль), включите variac и медленно увеличивайте на настройку 30 вольт. Если показание напряжения на цифровом мультиметре не повышается, или поднимается ниже 95 вольт, вероятно короткое замыкание.Если напряжение повышается, напряжение указывает ток, потребляемый источником питания. Как конденсатор начинает восстанавливаться, ток утечки будет уменьшаться, и напряжение будет продолжают расти. Как только утечка снизится до приемлемого уровня, Я пошагово поднимаюсь вверх с настройкой variac до тех пор, пока рабочее напряжение для конденсатора достигается.
В шасси оборудования часто конденсаторы разного номинального напряжения соединены резисторами для падения напряжения, а в оборудовании используются текущие требования схемы для поддержания напряжения в рабочем диапазоне.Ты мог бы отключите каждый конденсатор от схемы и восстановите индивидуально, или, возможно, следуйте методу 2.
Метод ограничения по напряжению 2: Используя двухступенчатый метод, мы можем используйте нагрузку цепи, чтобы поддерживать напряжение во всех цепях. конденсаторы источника питания в рабочем диапазоне. Это метод, который Я обычно использую, и это можно сделать с помощью собственного оборудования. источник питания. Посмотрите на схему и обратите внимание на самое низкое номинальное напряжение все конденсаторы, которые подключаются к источнику высокого напряжения (B +).Удалить лампы от шасси и, используя вариак, отремонтировать блок питания конденсаторы на это самое низкое напряжение. Теперь вставьте трубы в шасси и поднимите конденсатор с максимальным рабочим напряжением до этого минимального напряжения. Этот обычно дает около 60% B + и достаточное напряжение накала обеспечить нагрузку. Медленно повышайте сетевое напряжение (используя вариак) преобразовать каждый конденсатор источника питания, подключенный через резистор, к своему собственному рабочее напряжение (или чуть выше).
Этот метод имеет несколько больший риск по сравнению с реформированием шасси. — вам нужно будет следить за общим потребляемым током и повышать напряжение больше медленно, так как у вас меньше информации о состоянии человека конденсаторы.Помните, что вполне вероятно, что все подключенные конденсаторы, кроме одного, будут исправлены, но эта одна плохая секция потянет жребий тока. Вы, , не можете предположить, что , если допустимая утечка для одного электролита это 1 мА, тогда нормально для 4 подключенных электролитов вместе иметь утечку около 4 мА — ваша группа из 4 электролитов должна иметь суммарную утечку меньше, чем допустимо для одного электролитического в противном случае вы допустили возможность 3 хорошего качества и 1 драндулет.
Если в оборудовании есть ламповый выпрямитель, вы должны перемыть его кремниевые диоды для работы этого метода. Это действительно просто — удалить выпрямитель и используйте несколько зажимов и пару 1N4007s, как показано на этом рисунке. ПРЕДУПРЕЖДЕНИЕ — очевидно, что этот метод оставляет провода незащищенными во время работы. Эти провода потенциально находятся под ВЫСОКИМ НАПРЯЖЕНИЕМ , которое может убить. Например, если вы положите правую руку на вариак (землю) и коснетесь открытые зажимы, которые образуют цепь от одной руки через вашу грудь, и вниз через другую руку, что может вызвать остановку сердца.Для меня это кажется не более опасным, чем работа с оборудованием, работающим под напряжением, с крышками выключено, хотя в обоих случаях требуется особая осторожность. Действуйте на свой страх и риск!
Некоторые последние предупреждения:
Слева направо у нас есть компьютерный конденсатор LCR, Elna Cerafine. компьютерный тип (к сожалению, снят с производства), крепление на защелках Panasonic TSHA конденсатор, твистлок Aero-M нового производства, твистлок NOS Mallory, и хорошая, но бывшая в употреблении Элна, снятая с оборудования.
Twist-Locks можно приобрести NOS (новые старые запасы) через обычные по каналам розничной торговли и на своп-встречах из старых складских запасов электронных магазинов, и так далее. Большинство из этих типов имеют несколько разделов (т.е. больше, чем один конденсатор в банке) и были построены с множеством различных комбинаций секций как по емкости, так и по номинальному напряжению. Последнее, что я слышал, Aero M / Mallory было прекратили производство электролитиков Twistlock на замену, но в недавнем сообщении группы новостей утверждалось, что производство будет возобновлено, если были востребованы. Антикварная электроника в настоящее время имеет ограниченный запас. Иногда удачно использованные твистлоки можно удалить с старое оборудование или найденное на свапе электроники встречается.
Подержанные или замененные на другие устройства перед установкой необходимо отремонтировать.С разнообразие используемых товаров или типов БДУ становится все более и более ограниченным со временем вам, возможно, придется довольствоваться меньшим количеством разделов, чем в исходном конденсаторы. Это не проблема, если вы можете скрыть оставшиеся разделы в шасси оборудования. Вы также можете принять замену на более высокую емкость, чем у оригинала, от 60% до 80% и, возможно, больше в зависимости от расположения в цепи. Однако не используйте замену с более низким номинальным напряжением, чем у оригинального оборудования (более высокое номинальное нормально, даже желательно).Разделы также могут быть параллельны, чтобы получить более высокую емкости; например, если вам нужен 40/20/20/25 мкФ @ 450/350/350/25 В, и вы нашли конденсатор для замены 20/20/20/20/20 мкФ @ 500/500/500/500 В, вы бы подключили две секции по 20 мкФ параллельно, чтобы получить 40 мкФ при 500 В, и используйте две оставшиеся секции 20uF @ 500V на 350V, затем поставьте 25uF / 25V конденсатор где-то в шасси.
Замена проста, но хорошо помните о проводе места перед любой распайкой. Также обратите внимание на расположение клеммы заземления, чтобы при установке новой крышки все провода дойдут до их наконечников.
Корпуса компьютеров различаются по высоте и диаметру; если они может поместиться на вашем шасси, вы можете выбрать один из многих физических размеров для ваш проект. Разъемы с винтовыми зажимами и наконечниками (типа Faston) использовал. Несмотря на то, что доступно множество диаметров и номинальных напряжений, мы сосредоточить внимание на высоковольтных компьютерных крышках диаметром 1,3125 дюйма и кратным разделы. Этот диаметр соответствует обычному диаметру поворотных замков. обсуждалось выше, и, таким образом, может использоваться для замены без серьезных модификация оборудования.
Производство электролитов с синей пластиковой оболочкой производства LCR прекращено (некоторые на складе все еще есть), но аналогичные конденсаторы продолжают производить JJ Electronics в Словакии. Elna в черной куртке, ориентированная на аудиофилов Cerafines были прекращены, хотя аудиофилы были нацелены на Black Gates. можно купить по бешеной цене, но я не могу позволить себе владеть примерами из тех. Для JJs, Триодная электроника, Анджела Инструменты, Запчасти Экспресс. Для черного Gates, Handmade Electronics, Angela Instruments, поставщики других запчастей на моей домашней странице.Показан пример моего Scott 299C с LCR. справа.
Для установки этих крышек требуется зажим, прикрученный к корпусу, и вы обычно приходится добавлять отверстия для крепления зажима, а возможно и увеличивать отверстие с зазором для соединительных наконечников. Зажимы можно найти в Mouser Electronics примерно за 50 центов. Обычно здесь меньше секций по сравнению с оригинальными поворотными замками, поэтому некоторые из секции необходимо переместить в шасси.
Заглушки Snap Mount обычно устанавливаются на печатную плату.В штифты защелкиваются в отверстиях на печатной плате и остаются там достаточно хорошо, чтобы их можно было волновать. припаял на место. Легко припаять прямо к контактам … и некоторые защелкивающиеся крепления имеют правильный диаметр (35 мм) для замены поворотных замков используя те же зажимы, что и крышки компьютеров выше. К несчастью, только с одним разделом, вам все равно придется скрыть оставшиеся разделы в шасси, хотя дают возможность залить некоторые площади шасси с качественной емкостью, а не с мертвым конденсатором.Проверьте Panasonic TSHA или TSHB (от Digikey Electronics) или Nichicon NT (Майкл Перси, но вероятно, другие производители тоже).
При выборе конденсаторов для монтажа под шасси помните о качество конденсатора, который вы планируете использовать. Я знаю по личному опыту что дешевые общие излишки электролитов взорвутся, если подвергнуться воздействию высоких пульсирующий ток.Специально для конденсатора, электрически ближайшего к выпрямителя, выберите новый конденсатор высокого качества, специально предназначенный для сильных пульсаций тока, например Panasonic EB (поставляется Digikey Electronics).
Выше изображены 3 камеры Panasonic TSHA 47 мкФ / 400 В, смонтированные на стекловолокне. плату (FR4) с помощью втулок. Изготовлены втулки и установочный инструмент. компанией Keystone и доступен в Mouser Электроника. Вы также можете протравить печатные платы для этой цели; Шелдон Стоукс из SDS Labs построил несколько высококачественных заменяющих плат для Harmon-Kardon Citation II и Dynaco ST-70.Обидно не использовать занимаемое пространство шасси колпачками твистлок, но доски Sheldon — очень изящное решение. Некоторые досок Sheldon также продаются Триодная электроника.
КОНДЕНСАТОРЫ, ПОДКЛЮЧАЕМЫЕ СЕРИИ: Недостаточное номинальное напряжение может быть проблемой, а последовательное соединение может быть единственным способ получения электролитов с достаточно высоким номинальным напряжением. Я знаю только несколько современных электролитов с номинальное напряжение выше 450 В, включая LCR (500 В) и атомы Sprague (600 В).Последовательное соединение требует добавления так называемых резисторов для выравнивания напряжения или резисторов , по одному на каждом конденсаторе, проводя ток, который поддерживает напряжение в серии конденсаторы симметричные. Некоторые из них описаны в заявке производителя. Примечания; Источниками здесь являются, в частности, примечания к приложениям Nichicon и Rifa.
Даже новейшие высококачественные электролитические конденсаторы в некоторой степени проводят ток. Этот ток утечки зависит от качества электролита, температуры и состояния электролита. конденсатор, и может быть представлен сопротивлением, параллельным конденсатору.На рисунке последовательно соединенные конденсаторы C1 и C2 имеют некоторое сопротивление утечке RL1 и RL2. Из-за широкие допуски электролитов, этот ток утечки варьируется от образца к пробе и по закону Ома влияет на баланс напряжений между электролитическими конденсаторы соединены последовательно. Обратите внимание, что мы рассматриваем только новые, идентичные конденсаторы, подключенные последовательно — пожалуйста, не смешивайте номиналы, типы или марки.
Балансные резисторы RB1 и RB2 поддерживают баланс напряжений между последовательными конденсаторами. в пределах допуска за счет включения другого большего тока параллельно с утечкой Текущий.Уравновешивающий ток выбран достаточно большим, чтобы подавить любую утечку. дисбаланс и тем самым гарантировать безопасную работу. Для расчета стоимости балансировочные резисторы, сначала определите приблизительную максимальную утечку последовательно соединенные конденсаторы. Ток утечки в мкА составляет от 1/5 кв. 1/2 sqrt (CV) согласно Nichicon, где C в мкФ, В в вольтах и ток в мкА. Вы также можете получить характеристики утечки из вашего конденсатора. техническая спецификация. Общее практическое правило для балансировочного тока — 10-кратная утечка. ток — таким образом, для двух конденсаторов 100 мкФ / 350 В, соединенных последовательно, чтобы сформировать 50 мкФ конденсатор, максимальная утечка 1/2 sqrt (100 * 350) = 94 мкА, умноженное на 10 составляет примерно 1 мА.Допустим, мы хотим, чтобы наш прикладной напряжение должно быть 650 В, тогда RB1 и RB2 = 325 кОм. Рассеиваемая мощность I * V = 0,325 Вт, поэтому резистор минимум 1 Вт обеспечит достаточный запас прочности. Обязательно проверьте напряжение рейтинг любых балансировочных резисторов тоже.
Можно подумать, что два электролита 350 В, соединенные последовательно, будут иметь напряжение номинал 700В, но опять мешают слабые допуски электролитов. В качестве указано в инструкции по применению электролитического конденсатора Evox Rifa, последовательные конденсаторы действуют как емкостный делитель напряжения, а N электролитические элементы, подключенные последовательно с диапазоном допуска емкости от Cmin до Cmax имеют максимальное разделенное напряжение (на стыке двух конденсаторов) Vdiv = (Vapplied * Cmax) / (Cmax + (N — 1) * Cmin).Итак, в нашем примере с допуском емкости +/- 20% Cmax = 1,2 * 100 и Cmin = 0,8 * 100, с Vdiv = (650 * 120) / (120 + (2-1) * 80) = 390V. Это превышает номинальное напряжение электролитов на 40 вольт; с некоторой алгеброй мы можем видеть, что 350 + 350 дает максимум 583 В при допуске емкости 20%. Для наших примененных напряжение 650 В, минимальное номинальное напряжение для каждого конденсатора должно быть 400 В.
В примечании к применению Nichicon представляет более точный расчет балансировочного тока, чем приведенное выше правило 10-кратной утечки.Пусть Vdif = (Vmax — Vmin) — разность рабочее напряжение в результате дисбаланса утечки для двух последовательно соединенных электролитов, а Idif = (Imax — Imin) — это максимальная разница в ток утечки между двумя конденсаторами, тогда RB1 = RB2 = Vdif / Idif (см. примечание по применению, хотя получить такой результат довольно просто). Используя текущий диапазон, указанный выше, Idif = 0,3 * sqrt (CV) * Tc * F, где Tc равно температурный коэффициент и F — коэффициент выдумки. Электролитики проводят больше при повышении температуры с Tc при 20 ° C от 1 до 2 примерно при 60 ° C и 5 примерно при 85 ° C.Опять же, вы можете найти эту характеристику в своем паспорт конденсатора. Фактор выдумки — это произвольный коэффициент безопасности дополнительные 40%, например, для нашего примера при 60 ° C: 0,3 * sqrt (100 * 400) * 2 * 1,4 = 168 мкА. Ничикон выбирает произвольное значение Vdif, равное 10% от номинала конденсатора, но зная предполагаемое приложение, мы можем сделать лучшую оценку в худшем случае.
Учтите, что в худшем случае дисбаланс напряжения из-за тока утечки между Последовательные конденсаторы увеличиваются с уменьшением тока балансного резистора.Таким образом чем больше дисбаланс мы можем терпеть, тем меньше может быть ток баланса. Если мы не игнорируем емкостной допуск, мы должны добавьте эффекты емкости и утечки, чтобы получить действительную оценку для наихудшего случая дисбаланс напряжений. Используя 2 последовательных соединения при 400 В / 100 мкФ, работающих при 650 В, наихудший случай дисбаланса напряжений из-за с допуском по емкости 20% 390 — 260 = 130В. Этот дисбаланс может увеличение из-за утечки максимум на 20 В до 400 — 250 = 150 В и Vdif / Idif = 20 В / 168 мкА = 120 К Ом или 2.7 мА. Это 0,9 Вт на балансный резистор … требуется два 2 Вт или более мощные резисторы. Лучшее решение было бы увеличить номинальное напряжение до 450 В, что привело бы к небольшому увеличение разницы тока утечки (10uA) с увеличением напряжения допуск дисбаланса на 100В. Тогда Vdif / Idif = 120 В / 178 мкА = 675 кОм или 480 мкА при 0,16 Вт. Также может быть целесообразно подобрать устройства, чтобы минимизировать емкостные дисбаланс, хотя должна оставаться некоторая терпимость, чтобы учесть возможные изменение характеристик стареющих конденсаторов.
Поскольку 450 В — это наивысшее доступное электролитическое напряжение, для напряжения намного выше 650 В, мы должны увеличить количество последовательно соединенных конденсаторы. С 3 последовательно подключенными конденсаторами по 450 В и емкостью 20% Допуск, максимальное рабочее напряжение 450 * (120 + 2 * 80) / 120 = 1050В. Выбор рабочего напряжения 900 В с номиналом 300 В на каждом конденсатор, если два конденсатора работают при самом низком напряжении, а один — при низком напряжении. наибольшее, тогда Vmax = 1,2 * 900 / (1,2 + 0.8 + 0,8) = 346В. Здесь Vdif = 2 * (450-346) а Idif по-прежнему составляет 178 мкА, поэтому Vdif / Idif = 1,2 МОм или 250 мкА.
Сводя это к выводам, не требующим математики, для нескольких одинаковых последовательно соединенных электролитические конденсаторы:
Конденсатор можно восстановить, теперь с быстрым возвратом восстановленного жестяная банка. Любой поворотный замок можно восстановить за 30 долларов, до четырех секций.Максимум 450 вольт по этой цене. Банки с гайкой, односекционные, $ 20, для многосекционных Добавьте 2 доллара за секцию только для банок с гайкой. Доставка добавляет $ 4 за заказ для приоритетной и застрахованной доставки через PO. Восстановленные банки возвращаются только после квитанция о чеке, денежном переводе или информации о кредитной карте. Наша гарантия на все восстановленные бидоны, 1 год. Мы проверим любую банку на утечку и емкость, при правильное напряжение, за 2 доллара. Конденсатор Frontier, PO Box 218, Lehr, ND 58460 или 403 С. Макинтош, UPS. Бесплатный звонок (877) 372-2341.Тел .: (701) 378-2341. Факс: (701) 378-2551, запись голосовой почты в любое время
Я полагаю, что Frontier может открыть обжатое дно банки и замените пластины и электролит, затем закройте банку, чтобы восстановить оригинальный внешний вид.
Если вы восстанавливаете электролитик самостоятельно, вам нужно будет разрезать банку. и заменить существующее содержимое банки новыми электролитиками, направив новые провода к клеммам. Эта процедура требует некоторого мастерства, здравого смысла и планирования, поэтому остерегайтесь поражения электрическим током и / или возгорания, если вы сделаете какие-либо ошибки.Вот несколько пошаговых инструкций:
Сначала соберите новые электролиты, которые вы будете использовать для замены существующих. кишки банки. Они должны уместиться внутри банки, так что расставьте их как хотите. поместите в банку и убедитесь, что они не превышают высоту или диаметр банки, плюс немного места для маневра. Обратите внимание на совет по выбору крышки в предыдущий раздел.
Далее нужно разрезать банку. Я использовал широкую пилу X-acto, или зажал конденсатор в токарном станке по металлу и прорезал узким бит металлорежущий.Мой друг использует инструмент Dremel с отрезным диском. Конденсатор содержит катушку из алюминиевых пластин (фольги), разделенных электролитом и выводы из алюминиевой фольги от пластин подключаются к клеммам в фенольная плита основания. Капля смолы закрепляет пластины в алюминии. может (обычно). Монтажный фланец, банка и фенольное дно обжать вместе, чтобы закрыть банку.
Когда у вас будет банка, снимите и выбросьте пластины. Обрежьте вывод как можно ближе к фенольной пластине.Соскребите смолу. Чистый Удалите посторонний электролит влажным ватным тампоном.
Хорошо, теперь немного о планировании: поскольку вы вырезали выводы, вы нужно подвести провода к клеммам от новых конденсаторов внутри банка. Вам также потребуется создать новое заземление, так как электролитики теперь будут изолированы от канистры. Я начинаю с приклеивания конденсаторы вместе с небольшой каплей силиконового герметика (RTV) в ориентацию они будут принимать при установке в банку. Вам нужно планировать расположение выводов так, чтобы они могли проходить через фенольный диск и оберните вокруг основания существующих клемм.В зависимости от свинца длины, возможно, вам придется добавить дополнительный провод … обычно мне нужно только добавьте провод для заземляющего провода. Если вам нужно уложить новый электролитик внутри банки, чтобы они поместились, обязательно изолируйте все провода от других провода и банка с трубкой для спагетти или термоусадочной трубкой.
Что касается RTV, я использую для этой работы легко доступную торговую марку хозяйственного магазина. Обычный RTV выделяет уксусную кислоту при отверждении, поэтому он может разъедать любые металлы. он соприкасается с.У меня не было проблем с коррозией, но вы могли используйте RTV, не вызывающий коррозии, если это проблема. Клей-расплав может также можно использовать, но будьте осторожны с пальцами, так как он очень горячий и прилипает к коже нравится, ну и клей.
Используя сверло наименьшего размера, просверлите отверстие для каждого нового выводного провода рядом с каждый терминал, к которому он будет подключен. Протолкните провода через фенольный диск, размещение нового электролита на диске. Оберните провода вокруг их клеммы и протрите землю к банке, добавив немного спагетти. при необходимости трубку.Припаяйте новые выводы к клеммам.
Я предпочитаю добавить немного RTV вокруг конденсаторов, чтобы стабилизировать их в банке. Теперь вы должны закрыть банку, которую вы разрезали. Я закончил довольно много таких перестроек, просто склеив банку медью ленты, но недавно я добавил тонкую медную накладку, приклеенную к внутренней стороне банка. Больше клея на пластыре, и банку можно соединить вместе, как спичечная коробка. Остается едва заметная тонкая линия на месте пореза. Тот же друг, упомянутый выше использует немного эпоксидной смолы или, может быть, жидкую сталь.Он также близко режет к основанию и удерживает верх с помощью эпоксидной смолы, которая может быть больше эстетически приемлемо.
Вот мой Eico HF-85 с восстановленным фильтрующим конденсатором блока питания. используя вышеуказанный метод. Этот ремонт был произведен на месте , хотя я не рекомендую оставив электролит в шасси, так как вам нужно припаять к все равно терминалы.
Тим РизВот как заменить конденсаторы на материнской плате.Это в равной степени применимо к замене конденсаторов на любой печатной плате компьютерного продукта. Изначально я написал это для раздела часто задаваемых вопросов на форумах о плохих шапках. |
Полезно знать историю правления.Например, если на плате появились плохие колпачки, но они были выведены из эксплуатации раньше, тогда это отличный кандидат для повторения. Если плата была оставлена на очень долгое время и заглушки протекли повсюду, то слив, вероятно, можно было бы хорошо очистить. Если плата теперь мертва после выключения в один прекрасный день, то, если ничего не сгорело, возможно, не удалось открыть некоторые крышки, и плата все еще годна для ремонта. Если плата вышла из строя и на ней появился запах гари или подгоревшие предметы, то есть вероятность, что в некоторых колпачках произошло короткое замыкание. |
Тестирование платы — Внимание! |
Если вам дается плата для устранения неполадок, которая не выполняет POST, она просто мигает светодиодом на плате и дергается вентилятор, вы должны быть осторожны, чтобы плата не была в состоянии, которое может повредить процессор, который вы используете для тестирования доска.Существует вероятность того, что микросхема VRM повреждена из-за короткого замыкания полевого транзистора и, следовательно, Vcore будет слишком высоким. Плата станет убийцей ЦП. Лучше протестировать Vcore с помощью мультиметра, прежде чем подключать процессор для устранения неполадок с платой. В любом случае всегда полезно тестировать неизвестные платы с вашими худшими компонентами. |
2. Сначала практикуйтесь и изучите рекомендации |
Вы вполне можете отремонтировать материнскую плату самостоятельно, но вы должны сначала прочитать всю информацию, а также потренироваться, прежде чем начинать свой первый ремонт.Даже если вы прочитали всю информацию, пайка и замена колпачков требует некоторой практики. Будет ОЧЕНЬ приятно увидеть вашу первую повторную загрузку, но разочаровывает, если она выглядит неаккуратно или не работает из-за того, что вы сделали это неправильно. |
Достаньте хлам материнская плата |
Лучше всего достать хлам материнскую плату и потренироваться снимать с нее заглушки.Научитесь делать это аккуратно, и вы также узнаете, будет ли ваш паяльник достаточно горячим для настоящей работы. Было бы хорошо также приобрести несколько самых дешевых крышек и попрактиковаться в установке их на мусорную доску. |
Узнайте, что такое хорошее паяное соединение |
Узнайте, что такое хорошее паяное соединение по следующим ссылкам, и попрактикуйтесь в его изготовлении.Мы гарантируем, что это будет самая сложная часть операции, но с практикой вы научитесь делать это хорошо. Ресурсы для Elecraft Builder (нажмите на руководство по пайке) Apogee Kits Downloads (нажмите на бесплатное иллюстрированное руководство ApogeeKits по пайке электроники) |
3.Спланируйте работу перед тем, как начать |
Убедитесь, что у вас достаточно крышек |
Самое важное — проверить, достаточно ли у вас правильных значений ограничений для выполнения работы.Когда вы закончите, вы захотите увидеть загрузку платы и не захотите ждать следующего заказа крышек. Снова проверьте исходные заглушки на доске, чтобы увидеть, не пропустили ли вы один или ошиблись с значениями. Сделать это очень просто. |
Построить схему |
Схема разъемов платы |
При извлечении материнской платы из корпуса для любого вида работ очень полезно сделать диаграмму положений разъемов корпуса (переключатель питания, сброс, светодиод жесткого диска и т. Д.), А также записать положение каждого цветного провода.Отметьте также положение основной / второй IDE, дискеты, записав положение красной линии на кабеле. Это делает его намного проще, и тогда вам не придется искать руководство по чьей-то непонятной плате в Интернете, если вы позже подключили его неправильно. Или придется снова открывать этот проклятый футляр, потому что у вас был перевернут жесткий диск и т. Д. |
Схема расположения колпачков |
Очень важно составить схему расположения и номинала оригинальных конденсаторов на плате.Обязательно отметьте, где на схеме находится отрицательный вывод каждого конденсатора. Отрицательный вывод обозначен на конденсаторе полосой сбоку. Эта полоса соответствует белой полусфере вокруг отверстия для отрицательного вывода на трафарете платы. Эта диаграмма также является полезным инструментом для окончательной проверки перед включением платы. Очень важно записать положение фактического отрицательного вывода оригинального конденсатора, потому что трафарет платы может быть неправильным, и вы хотите перепроверить схему перед неправильной установкой нового конденсатора.Отметьте на диаграмме номиналы оригинальных конденсаторов, а также значения, которыми вы будете заменять каждый конденсатор, если они разные. Очень полезно иметь эту диаграмму под рукой во время перепланировки, чтобы вы могли сосредоточиться на пайке и не думать слишком много или ошибаться |
Отметить на плате места, где не устанавливались заглушки |
Из-за изменений и исправлений конструкции на трафарете платы могут быть места, где конденсаторы были помечены для установки, но не были.Очень важно отметить на доске тонким маркером X на этих позициях. Не рекомендуется устанавливать колпачки в эти положения, если вы не пользуетесь испытанным модом платы. Очень легко ошибиться и установить колпачки в неправильное положение, поэтому приятно видеть, что на доске отмечены крестики, чтобы напомнить вам. |
4.Подготовьте рабочее место и доску |
Все инструменты всегда под рукой |
Вам понадобится следующее.Получите все готово и под рукой. Больно, когда приходится вставать и что-то искать во время работы. Нагрейте паяльник, пока готовите область. Вы хотите установить температуру утюга на 450oC и дать ему нагреться примерно 10 минут, прежде чем начать. — Паяльная станция или сетевой паяльник (должен быть заземлен! И минимум 40 Вт (60 Вт — хороший выбор) |
Паяльная станция ERSA 60 Вт.Очень важно иметь при себе влажную губку для чистки утюга во время работы, независимо от того, берете ли вы утюг со шнуром или станцию. |
то, что вы считали хорошим, бесполезно. 40 Вт — это абсолютный минимум для перепланировки. рекомендуется использовать короткие «стандартные» долота, так как они лучше выдерживают тепло |
— Припой (60/40, 0.8мм хорошо) |
припой 60/40 0,8 мм |
— Швейная игла из нержавеющей стали или стоматологическая отмычка из нержавеющей стали (см. Далее в FAQ) — Лампочка для распайки (если хотите) — Свинцовые кусачки (кусачки для тонкой проволоки) |
Pro’s Kit кусачки для свинца |
— Держатель платы |
— Спрей для очистки флюса |
Cramolin Flux-Off спрей |
— Ватные палочки / ватные палочки (обычно используются для чистки ушей) — Спирт (95% или лучше всего 99-100%) для очистки электролита от доски — Антистатический браслет |
антистатический браслет |
Для очистки свинцовых отверстий вы можете использовать либо только иглу / резец, либо использовать грушу для распайки / оплетку для распайки / демонтажный паяльник (по вашему выбору) |
Подготовьте конденсаторы |
Особенно, если вы работаете с несколькими номиналами конденсаторов, хорошо иметь каждое значение в отдельных отсеках одной из этих пластиковых коробок с множеством отсеков для размещения винтов и прочего.Это предотвращает подобрать неверное значение и установить его на плату. Вы можете использовать один из отсеков для установки снятых конденсаторов. |
Снимите все компоненты с платы |
Это довольно очевидно, но все равно будет сказано.Перед началом работы необходимо удалить с платы HSF (радиатор / вентилятор ЦП), ЦП, ОЗУ и все карты. Когда вы снимаете HSF сокета процессора (не P4 и т. Д.), Вы должны поместить визитную карточку между нижней частью зажима, на который вы будете оказывать давление, и платой. Это потому, что очень легко надавить слишком сильно и повредить следы. |
Очистите доску |
Перед началом работы очистите доску от пыли с обеих сторон сжатым воздухом. |
Подготовьте держатель платы |
Легко найти держатель для досок — это два зажима для дерева, те, которые вы используете, чтобы прикрепить дерево к столу для безопасного пиления. Вероятно, они есть в вашем гараже.Вы можете прикрепить их к своему рабочему столу вверх ногами, и тогда доска поместится между ручками и металлическими направляющими зажимов. Для снятия заглушек важно, чтобы доска была надежно закреплена. Если вы собираетесь работать с доской между колен или чем-то в этом роде, это не рекомендуется, и вы, вероятно, обожжетесь. Вам нужно, чтобы держатель платы находился сбоку от рабочего пространства, а затем вам понадобится чистая ровная площадка для размещения платы, лежащей на столе, для установки новых заглушек.Паяльник должен находиться в пределах досягаемости от обеих сторон и с ним удобно работать. |
5.Снятие конденсаторов |
Получите защитные очки на |
При пайке НЕОБХОДИМО носить защитные очки или обычные очки по рецепту. Попадание горячего флюса в глаз может серьезно поранить. |
Купите антистатический браслет на |
При пайке или работе с платой необходимо носить антистатический браслет. Наденьте его на руку, держащую утюг.Лучше всего прикреплять ремешок к задней панели компьютера, который подключен к розетке. |
Подготовьте держатель платы |
Лучший способ снять конденсаторы — положить плату на стол тыльной стороной вверх.Затем добавьте припой к нескольким крышкам. Затем вставьте его в держатель платы, чтобы снять заглушки. В идеале передняя панель должна быть обращена к вам, а вы нагреваете ее сзади. В противном случае вы можете держать доску коленями, если у вас нет держателя для доски. |
Добавьте припой на каждый вывод на задней стороне платы |
Очень важно добавить немного припоя к выводам конденсатора, который вы должны удалить, в том месте, где вывод встречается с платой.Это поможет вам быстро и легко нагреть весь припой при снятии конденсатора. Нагрейте один из выводов конденсатора с задней стороны платы, чтобы утюг касался контактной площадки вокруг отверстия и вывода. Затем нанесите немного припоя на уже имеющийся припой. Сделайте то же самое с другим отведением. Проще всего это сделать с рядом конденсаторов, а затем сконцентрироваться на процессе их удаления. |
добавление припоя к выводам существующих конденсаторов |
припой добавлен и готов к удалению. |
Снимите конденсатор |
Чтобы удалить конденсатор, необходимо нагреть один из выводов конденсатора с задней стороны платы, чтобы утюг соприкасался с площадкой вокруг отверстия и проводом.Затем вы пошевелите и подтолкните конденсатор к другому выводу, продолжая нагревать припой утюгом. Затем проделайте то же самое с другим отведением. Здесь вы создадите свою собственную технику. Некоторым людям нравится нагревать оба провода и вытаскивать их одновременно. Другим нравится попеременно нагревать и покачивать каждый вывод, пока конденсатор не освободится. Или даже полностью отключите один вывод, а затем поработайте над другим. Важно найти лучший способ снятия конденсатора с наименьшей нагрузкой.Вы должны убедиться, что весь припой хороший и горячий и не тяните слишком сильно, а немного покачивайте вывод назад и вперед, пока он не освободится. Если вы потянете слишком сильно, когда припой недостаточно горячий, вы можете повредить фольгу выводного порта, который проходит через плату и соединяется с электрическими дорожками. Не волнуйтесь, просто будьте осторожны, и вы не повредите доску. |
Снятие крышки |
Возникли проблемы с удалением конденсатора? |
Если у вас возникли проблемы с извлечением конденсатора, возможно, ваше железо недостаточно горячее.Если это 60 Вт, то, возможно, вам стоит попробовать наконечник другого размера, возможно, наконечник слишком длинный и тонкий и не передает достаточно тепла от нагревателя утюга. Не забывайте, что если вы работаете возле больших следов, они забирают тепло от утюга, что затрудняет работу в этом положении. Типы используемого припоя, по-видимому, различаются в зависимости от производителя платы. Некоторые легко нагреть, другие — нет. С старыми досками работать сложнее. С большинством досок у вас не возникнет проблем, если ваш утюг достаточно горячий. Есть разные техники работы на сложных досках. Некоторым нравится нагревать доску термофеном или работать термовоздушным карандашом. Другим нравится использовать паяльные пистолеты большой мощности для устойчивых паяльных площадок. Все это требует некоторого опыта и знаний, иначе доска будет выброшена. |
Очистка отверстия |
После того, как вы удалите конденсатор, отверстие не будет чистым, если вам не повезет.Некоторые люди не утруждают себя чисткой отверстия, а помещают выводы нового колпачка напротив отверстий, а затем вдавливают колпачок, одновременно нагревая отверстия на обратной стороне платы. Это не самый лучший метод, и перед установкой нового колпачка лучше всего очистить отверстие. Здесь мы обсудим некоторые методы очистки отверстий. На самом деле вам нужно будет найти метод, который лучше всего подходит для вас. Чтобы очистить отверстие, можно держать доску держателем. |
Механические насосы для пайки |
НЕ рекомендуется использовать механический пневматический насос для пайки для очистки отверстия, они действительно имеют слишком большую мощность.Существует возможность повредить выводной порт, высасывая его одновременно с припоем. Это будет означать, что вам придется аккуратно впаивать новую крышку, следя за тем, чтобы припой проходил через отверстие, чтобы найти правильные следы в слоях платы. Это будет довольно сложно, так что забудьте о механических насосах для пайки. Кроме того, отдача может ударить по плате и повредить след, или насос может распылить на плату остатки припоя, что может вызвать короткое замыкание при включении платы. |
пневматические насосы для пайки. не рекомендуется. если вам действительно нужно их использовать, то используйте их наполовину не взведенными. как только вы освоите хорошую технику иглы или зубочистки, вы забудете о них. они полезны для удаления разъемов atx / usb / kbd, хотя |
Колба под припой |
Вы можете попробовать очистить отверстие, используя лампочку для припоя, которая представляет собой устройство с соплом и лампочкой.Всасывание не такое мощное, как насос для пайки, но его мощности достаточно для очистки переходных отверстий. Вы можете использовать его, работая с соплом на лицевой стороне платы и паяльником сзади (способ 1). Или вы можете использовать его, работая как с соплом, так и с паяльником на задней стороне платы (метод 2). Опять же, это личное предпочтение. Некоторым сложно работать с обеих сторон доски одновременно, и для этого вам понадобится держатель для доски (другие используют колени, но вы должны быть осторожны, если будете это делать).Если бы вы использовали метод 2, вы могли бы положить доску на стол. (метод 1) Вы помещаете сопло заподлицо с отверстием на передней части доски, нагревая отверстие утюгом с задней стороны доски. Вы отпускаете утюг с тыльной стороны платы, а затем быстро сжимаете лампочку, чтобы высосать припой из отверстия. Вы можете найти этот тип инструмента для демонтажа полезным или неэффективным. Не рекомендуется использовать лампу более двух раз на одном и том же отверстии.Если отверстие не очищено, после этого лучше всего перейти к использованию зубочистки или иглы. Вы также можете нанести немного свежего припоя в отверстие на задней стороне платы, чтобы облегчить процесс удаления припоя перед использованием лампы. |
лампа для распайки |
Фитиль для демонтажа |
Некоторым нравится использовать фитиль для распайки, который вы кладете на отверстие, а затем нагревают утюгом.Затем припой будет вытянут и приклеен к фитилю. Затем вы периодически отрезаете часть с припоем, чтобы иметь свежий кусочек фитиля для работы. Кому-то оно нравится, кому-то оно не приносит пользы. |
Паяльник |
Если вы часто меняете колпачки, возможно, вам будет полезно купить демонтажный паяльник у одного из крупных производителей.Это будет похоже на паяльник, но в нем есть вакуумный насос, который всасывает припой через жало. С такими установками будет работать намного проще, но они довольно дорогие. |
Стоматологическая отмычка или игла |
Topcat, владелец бадапов.net разработала решение с использованием зубочистки для очистки отверстий. Это не зубочистка, это ручной инструмент, которым стоматолог соскребает между зубами. Вам нужно будет получить его в магазине или у стоматолога! Он также имеет то преимущество, что отводит тепло от платы. |
Игла идеального размера (чуть больше проволочного наконечника), удерживаемая в части электрического блока. |
Опять же, как и в случае с лампой для распайки, есть личные предпочтения: вы можете работать с отмычкой на передней панели платы, нагревая ее сзади, или, как topcat, работает как с рисунком, так и с утюгом на задней стороне платы. Итак, что вам нужно сделать, это нагреть отверстие утюгом, пока припой не расплавится. Затем вы вставляете кирку в отверстие до упора, не прикладывая усилий, пока она не выйдет с другой стороны.Затем вы снимаете утюг и даете припою затвердеть. Поскольку резец изготовлен из нержавеющей стали, припой к нему не прилипнет. Затем вы осторожно вращаете и поворачиваете отмычку, пока она не высвободится, и вытаскиваете ее из отверстия. Вы можете использовать бритвенный нож, чтобы соскрести сухой припой с отверстия, но будьте осторожны, чтобы не повредить след на плате. Теперь отверстие должно быть чистым. Если у вас нет доступа к зубочистке, вы можете использовать вместо нее швейную иглу из нержавеющей стали. Может быть полезно иметь два размера (один маленький и острый, один большой и закругленный наконечник), которые вы можете удерживать в электрическом блоке (обычный тип, используемый для соединения двух кабелей вместе. |
помогает игле пройти через сложное отверстие за счет нагрева спереди |
Таким образом, вы сделаете свой личный выбор того, как прочистить отверстия. Намерение состоит в том, чтобы найти метод, который очистит отверстия быстрее всего, так как если вы нагреете колодки в течение очень долгого времени, вы повредите доску.Самое главное — иметь хороший горячий утюг, чтобы входить в него горячим и быстрым. |
Проверка отверстия |
Очень полезно иметь поблизости настольную лампу, которую можно осветить на обратной стороне доски и проверить, чисты ли и чисты ли отверстия.Гораздо легче увидеть, что отверстие чистое, когда сквозь него светит свет. |
очищенных отверстий |
7.Установка новых конденсаторов |
Подготовка конденсатора к установке |
Новые конденсаторы поставляются с довольно длинными выводами, рекомендуется обрезать выводы конденсатора, который вы собираетесь установить, до длины примерно 1 см для обоих выводов.Это не является обязательным требованием, но это упростит вам продвижение коротких проводов через отверстия, а не ненужных длинных проводов. Для обрезки выводов конденсатора используйте микрокусачки, а не стандартные кусачки. Это связано с тем, что микрокусачки хорошо режут провода и не сжимают концы в острые точки, как стандартные кусачки. |
Снимите плату с держателя платы |
Для установки конденсатора вам необходимо положить плату на стол. |
Перед началом работы внимательно проверьте отрицательный провод |
Посмотрите на переднюю часть доски, вы увидите белый полукруг или отметку на одной стороне круга.Вы должны совместить белую / серебряную / золотую линию, идущую вниз с одной стороны конденсатора, с этой белой меткой. Это показывает отрицательный результат. Обратите внимание на это важно, конденсатор при неправильной установке при подаче питания на плату перегорит. |
Здесь полезно сослаться на диаграмму, которую вы составили до того, как начали процесс пересчета.Дважды проверьте на диаграмме значение устанавливаемого колпачка, а также еще раз проверьте полярность. Иногда полярность, указанная на трафарете платы, неверна. Доверяйте полярности, в которой был установлен старый конденсатор, а не трафарету платы. Asus, например, показывает положительный результат с белым полушарием, в отличие от всех остальных. Также проверьте на передней панели платы, что вы не отметили X, чтобы показать, что конденсатор не был установлен в этом положении. Легко увлечься и совершить ошибку.Не рекомендуется устанавливать новые колпачки там, где их не было раньше, если вы не используете проверенный и проверенный мод. |
Не прикладывайте силу к выводам конденсатора в отверстие |
Вы должны слегка согнуть провода вместе, чтобы они точно прошли через оба отверстия, не прилагайте усилий к конденсатору, если у вас есть проблемы, согните выводы еще немного или, возможно, вам придется снова прочистить отверстие, но на этот раз лучше.Если приложить усилие, можно повредить фольгу внутри отверстия. |
8. Пайка конденсатора в |
Вставьте конденсатор и положите плату на стол тыльной стороной к себе.потяните за ножки конденсатора, чтобы убедиться, что он плотно прилегает к плате, и слегка отогните ножки крышки наружу. не слишком много, ровно столько, чтобы держать крышку. Нагрейте прокладку вокруг отверстия и провод с помощью утюга. Вы должны расположить припой в точке, где есть очевидное пространство между выводом и контактной площадкой вокруг отверстия. Держите утюг на другой стороне. Затем в отверстие введете припой. Если у вас возникли проблемы с нагревом вывода и контактной площадки, вы можете быстро коснуться припоя на утюге, а затем ввести его в отверстие. |
припаивание нового колпачка |
Отверстие для вывода соединяет площадку для пайки через отверстие с площадкой на другой стороне платы и по пути также обеспечивает соединение с правильными дорожками для этого компонента на любом слое платы, требуемом конструкцией.Поэтому нет необходимости заливать припой в отверстие, чтобы обеспечить хороший электрический контакт. Чтобы конденсатор физически лучше удерживался на плате, хорошо залить в отверстии немного припоя. Однако, когда вы совершенствуете свои методы пайки, вы обнаружите, что смачивание отверстия припоем и немедленная попытка ввести припой в отверстие дает гораздо лучшее соединение, чем работа только с паяльной площадкой, которая может привести к некрасивому шаровому паяльному соединению. |
Хорошие блестящие пайки — это то, что вам нужно увидеть.сложно сделать фото таймером и сделать красивый стык. в любом случае не нужно больше припоя, чем это то, что вам нужно. Если паять при 450 ° C, как будто сняли крышку, будет сложно сделать красивое соединение. хотя это нормально. для достижения наилучших характеристик припаивать при 350 ° C |
Узнайте, что такое хорошее паяное соединение |
Вы, вероятно, поймете, что вам потребовалось меньше припоя и времени, чем вы предполагали.Ознакомьтесь с приведенными ниже ссылками и поймите, что такое хорошее паяное соединение, а затем попробуйте улучшить следующее. Здесь сложно обучить технике. Вы должны понимать, как правильно паять соединение, а затем изменять свою технику, пока не достигнете ее. Я думаю, что 450oC может быть слишком горячим для достижения идеального стыка, но легче держать утюг таким же горячим, чем снимать крышки. Идеальное паяное соединение — это ровно столько припоя, чтобы обеспечить хорошее соединение. Припой не образует шар вокруг контактной площадки, он изгибается от вывода посередине вниз к сторонам контактной площадки.Не волнуйтесь, что вы не сделали хорошее соединение, пока соединение красивое и блестящее, а припой вошел в отверстие, вы научитесь делать хорошие паяные соединения с практикой. Теперь сделай другой ход. Производители указывают, что если припой сразу расплавляется утюгом, значит, утюг слишком горячий. Расплавление припоя должно занять 1,5-3 секунды. Они не рекомендуют нагревать дольше 3 секунд. Но не беспокойтесь об этом слишком сильно, сконцентрируйтесь на создании хорошего паяного соединения, и каждый раз вы будете быстрее припаивать колпачок. |
Закрепите провода |
Когда вы закончите, воспользуйтесь небольшой парой кусачков для обрезки лишних проводов. Я рекомендую 8PK-30D от Pro’s Kit, отличной тайваньской компании и не очень дорогой.Большие стандартные кусачки для проводов не справятся с этой задачей, вам понадобятся подходящие микрокусачки, они также полезны, если вы хотите обрезать выводы конденсатора перед установкой. Обрежьте провода так же коротко, как и другие компоненты на плате. |
обрезанные отведения |
Не нагревайте припой повторно |
Не рекомендуется повторно нагревать припой, нанесенный на новые колпачки, а затем наносить еще в случае возникновения проблемы.Это может ухудшить состояние сустава. Лучше проделать весь процесс, чтобы снять колпачок, прочистить отверстие и начать заново. |
Не снимайте и не переустанавливайте конденсаторы чрезмерное количество раз |
Чем чаще вы это делаете, тем выше опасность повреждения переходных отверстий на плате.Кроме того, если вы чрезмерно нагреете новые конденсаторы, вы повредите их, поэтому мы хотим нагреть их только один раз, когда мы их припаяем, и, следовательно, гарантировать, что они будут работать наилучшим образом. Одним из примеров такой плохой практики может быть удаление старых конденсаторов с платы-донора, а затем их повторная установка на плату, которую вы ремонтируете, просто для проверки, если она размещается, а затем удаление их и установка новых хороших конденсаторов. Лучше всего установить новые конденсаторы с первого раза и свести к минимуму возможность повреждения платы. |
9.Завершение работы — Очистка доски |
После шлифовки необходимо очистить флюс вокруг паяных соединений, а также от брызг флюса, которые могут быть вокруг платы. Вам понадобится спрей FLUX-OFF. Я использую один из Cramolin, который называется FLUX-OFF и представляет собой диметоксиметан. Это повредит пластик и ПВХ, поэтому вы нанесете небольшое количество брызг вокруг паяных соединений и обработаете излишки с помощью ватной палочки или ватной палочки (обычно используются для чистки ушей), чтобы они не стекали в отверстие, как из разъемов pci или что угодно на другую сторону доски.Затем можно растереть излишки флюса вокруг стыков с помощью бутона. После выполнения всех соединений и проверки тех, которые я пропустил, я оставляю доску с галогенной настольной лампой (или другой горячей настольной лампой) примерно в футе от нее на 10 минут, чтобы убедиться, что весь FLUX-OFF испарился. Он легко воспламеняется, поэтому курить запрещено. Причина, по которой вы выполняете эту очистку, заключается в том, что некоторые флюсы имеют умеренную коррозию. Если вы использовали припой без чистого флюса, этот шаг можно пропустить. |
Если вы сравните предыдущие фотографии, вы увидите коричневый флюс вокруг паяных соединений.похоже, что плата сгорела, но это не так. после чистки это выглядит так. |
По завершении перенастройки важно тщательно проверить плату, прежде чем подавать на нее питание. |
Визуально проверить плату |
Проверьте, не прилипли ли к плате мелкие кусочки припоя или кусочки проводов, которые вы подрезали, и которые могут вызвать короткое замыкание. Я также продувал доску с обеих сторон небольшим количеством сжатого воздуха по тем же причинам.Проверьте контактные площадки на задней стороне платы на наличие установленных вами крышек, чтобы убедиться, что они не соединены припоем с соседним компонентом и могут вызвать короткое замыкание. Короткое замыкание при включении платы — это нехорошо. |
Сравните плату с диаграммой, которую вы сделали |
Перед подачей питания убедитесь, что ВСЕ конденсаторы, которые вы установили, имеют правильные значения и установлены в правильном направлении.Еще раз проверьте, что вы НЕ устанавливали заглушки в положения, которых не было раньше. |
завершена работа по перепрофилированию |
Подать питание на плату |
Подключите процессор / оперативную память / клавиатуру / гибкий диск и монитор, затем включите плату.Полезно иметь процессор и оперативную память, которые предназначены только для тестирования, чтобы вы не поджаривали детали клиентов или друзей, если вы допустили ошибку. |
Если это не POST |
Не спешите с выводом, что вы прикрутили плату на основании светодиодов платы, которые показывают сообщение об ошибке или если вы не получаете видеосигнал.Сохраняйте спокойствие и проверьте соединения монитора, посадочные места для плунжера и процессора, прежде чем вы решите, что допустили ошибку при пайке. Обратитесь к руководству по светодиодам платы, чтобы узнать, в чем проблема. Я гарантирую, что если вы проявите разумную осторожность, то получите выгоду. Платы могут выдержать некоторые злоупотребления при пайке. Другое дело, если вы сожгли или поцарапали следы платы во время работы или короткое замыкание. Иногда очистка BIOS с помощью перемычки или извлечение батареи может решить проблемы. |
поврежденные следы от чрезмерного нагрева.не очень хорошие снимки, потому что они сделаны после попытки ремонта, но идею вы поняли. |
11. Запустите тестовые утилиты |
Сначала я бы начал с загрузки служебного диска для тестирования оперативной памяти, например http: // www.memtest86.com/ и проверка на наличие ошибок оперативной памяти в течение нескольких часов при использовании известной ХОРОШЕЙ оперативной памяти, затем вы можете запустить некоторые утилиты, такие как prime95 http://www.mersenne.org/freesoft.htm, также в Windows, и вы захотите увидеть, что плата полностью стабильна без ошибок после запуска в течение нескольких дней. По крайней мере, запускайте доску на ночь, если вы спешите. |
12.Удачи с новой доской |
DIY сделает вас очень счастливыми, и вы можете перейти к другой задаче пайки, например, изготовить комплект стереоусилителя или что-то в этом роде. Стоящий способ провести выходные и очень полезный. Если вы перейдете к замене симпатичных крышек, вы также сможете начать делать доски своих друзей и заработать немного денег. |