Menu

Приемник ламповый – Простейший ламповый приемник

Ламповый укв приемник своими руками. Ламповый радиоприемник как сделать

Радиовещание на ультракоротких волнах осуществляется с использованием частотной модуляции (ЧМ) и занимает следующие полосы частот:

  • УКВ – 65,9-74 МГц
  • FM1 – 87,5-95 МГц
  • FM2 – 98-108 МГц

УКВ диапазон использовался в советское время и применяется в России в настоящее время. В FM диапазонах работают радиостанции других стран. Сделать своими руками ламповый радиоприёмник не сложно. Основные трудности заключаются в настройке и регулировке конструкции. Если звуковую аппаратуру можно наладить на слух, так как легко проверить наличие и прохождение сигнала по цепям, то для настройки устройств радиоволнового диапазона потребуется ГСС (Генератор стандартных сигналов) и осциллограф. ГСС позволит настраивать радиоприёмные устройства, работающие во всех радиодиапазонах с амплитудной или частотной модуляцией. Если не требуется точная подгонка по диапазону и изготовление шкалы с рабочими частотами, можно обойтись без генератора.

Как сделать ламповый радиоприёмник

С появлением транзисторов и интегральных микросхем ламповые конструкции были, на некоторое время, забыты. Сейчас радиолюбители всё чаще обращаются к электронным лампам в своих конструкциях. Самодельный ламповый радиоприёмник УКВ диапазона можно собрать на одной лампе. В схеме используется принцип сверхрегенератора. В таких устройствах применяется небольшое количество радиодеталей. Они обладают высокой чувствительностью. Недостатком сверхрегенеративных приёмников является шум в динамиках, при отсутствии полезного сигнала.

УКВ приёмник собран на пальчиковом пентоде 6Ж5П. В качестве источника питания используется мостовой выпрямитель, обеспечивающий 100-120 В постоянного напряжения. Все конденсаторы, кроме переходного, керамические. Катушка L содержит 4 витка медного провода диаметром 1 мм. Лучше всего использовать посеребрённый или лужёный провод. Обычно питание накалов ламп осуществляется от переменного напряжения 6,3 В, но в данном случае, для уменьшения фона переменного тока, применяется постоянное напряжение от отдельного выпрямителя.

Полная схема УКВ-ЧМ приёмника с усилителем низкой частоты. В зависимости от типа выходного трансформатора в устройстве можно использовать высокоомный наушник или динамик 4-8 Ом.

В цепи питания сеток ламп стоит электролитический конденсатор 50,0 мкф на 200 В. Переменный резистор в цепи управляющей сетки выходной лампы регулирует громкость сигнала.

Простой ламповый приёмник своими руками

Приёмник УКВ диапазона с частотной модуляцией можно выполнить по другой схеме. Это сверхрегенеративный детектор, который рассчитан на приём радиостанций в диапазоне от 36 до 75 МГц. Ламповый радиоприёмник своими руками можно собрать на одной лампе

6Ж3П или 6Ж5П.

В схеме сохранены принципиальные обозначения оригинальной схемы. Сигнал подаётся на вход усилителя низкой частоты через конденсатор 5000 пФ. Конденсатор С1 – подстроечный керамический или воздушный. Катушки L1 и L2 бескаркасные. Они наматываются на оправках диаметром 15 мм. L1 содержит 7 витков лужёного медного провода диаметром 1,5 мм, а L2 – 3 или 4 витка такого же провода. Количество витков подбирается экспериментально. Расстояние между катушками определяется в процессе наладки схемы. Для приёма станций в FM диапазоне (88-104 МГц) число витков катушки L1 нужно уменьшить до 4.

Дроссель Др выполнен из провода ПЭЛШО 0,2. Он содержит 100 витков, которые наматываются на корпусе резистора МЛТ-2. Обмотка припаивается к выводам резистора. Припаивать дискретные элементы лучше всего к ножкам ламповой панели, чтобы уменьшить паразитные связи. Все соединительные провода должны быть как можно короче. Схема обладает высокой чувствительностью по всему диапазону. После того как схема правильно собрана её настраивают.

Для этого, после включения питания, вращением ручки переменного резистора R2 нужно добиться сверхрегенерации. Это шипящий звук в динамиках. Затем, вращая подстроечный конденсатор С1 нужно убедиться, что эффект присутствует по всему диапазону. Провалы генерации устраняются подбором витков дросселя, изменением ёмкости С4 или сопротивления R1 и конденсатора С2. Затем подключается штыревая антенна (кусок провода) и производится настройка на станцию. При появлении сигнала шипение пропадает и слышна работа радиостанции. Изменить частоту принимаемого диапазона можно раздвигая и сжимая витки катушки L1.

Максимально допустимое напряжение на аноде радиолампы составляет 300 В. Для снижения фона переменного тока питание на накал лампы лучше подавать с отдельного выпрямителя. Готовую и настроенную конструкцию нужно поместить в металлический экран, как это сделано в промышленных приёмниках.



Нужна консультация специалиста?

Оставьте заявку и мы перезвоним Вам в течение 48 часов!

Имя
менеджер, эксперт
высшее проф. обр.

dinamikservis.ru

Низковольтный ламповый сверхрегенеративный FM-приемник без выходного трансформатора

Здравствуйте.

Примечание

В конце статьи есть два видеоролика, которые примерно дублируют содержимое статьи и демонстрируют работу устройства.


Могу предположить, что многих здешних обитателей привлекают электронные устройства, основанные на электронных лампах (лично меня радует теплота, приятный свет и монументальность ламповых конструкций), но при этом желание сконструировать что-то теплое и ламповое своими руками часто ломается о боязнь связываться с высокими напряжениями или проблемы с поиском специфических трансформаторов. И этой статьей я хочу попытаться помочь страждущим, т.е. описать
ламповую
конструкцию с низким анодным напряжением, очень простой схемой, распространенными элементами и отсутствуем потребности в выходном трансформаторе. При этом это не очередной усилитель для наушников или какой-нибудь овердрайв для гитары, а намного более интересное устройство.

«Что же это за конструкция?» — спросите вы. А ответ мой прост: «Сверхрегенератор!».
Сверхрегенераторы — это очень интересная разновидность радиоприемников, которая отличается простотой схем и неплохими характеристиками, сравнимыми с простыми супергетеродинами. Сабжи были крайне популярны в середине прошлого века (особенно в портативной электронике) и предназначены они в первую очередь для приема станций с амплитудной модуляцией в УКВ диапазоне, но также могут принимать станции с частотной модуляцией (т.е. для приема тех самых обычных FM-станций).

Основным элементом данного типа приемников является сверхрегенеративный детектор, который является одновременно как частотным детектором, так и усилителем радиочастоты. Такой эффект достигается за счет применения регулируемой положительной обратной связи. Подробно описывать теорию процесса не вижу смысла, так как «все написано до нас» и без проблем осваивается по этой ссылке.

Далее в данном наборе букофф будет сделан акцент на описание постройки проверенной конструкции, ибо встреченные в литературе схемы часто сложнее и требуют более высокого анодного напряжения, что нам не подходит.

Начал я поиск схемы, удовлетворяющей поставленной требованиям, с книги товарища Туторского «Простейшие любительские передатчики и приемники УКВ» образца 1952 года. Там нашлась схема сверхрегенератора, но лампу, которую было предложено использовать я не нашел, а с аналогом схема у меня так нормально и не завелась, так что поиски были продолжены.

Затем была найдена вот эта статья. Она уже подходила мне лучше, но в ней присутствовала зарубежная лампа, которую найти еще сложнее. В итоге было принято решение начать эксперименты с использованием распространенного примерного аналога, а именно, лампы 6н23п, которая прекрасно себя чувствует в УКВ и может работать при не слишком большом анодном напряжении.

Взяв за основу эту схему:

И проведя ряд экспериментов была сформирована следующая схема на лампе 6н23п:


Данная конструкция работает сразу (при правильном монтаже и живой лампе), причем выдает неплохие результаты даже на обычные наушники-вкладыши.

Теперь подробнее пройдемся по элементам схемы и начнем с лампы 6н23п (двойной триод):


Чтобы понять правильное расположение ног лампы (информация для тех, кто раньше с лампами дел не имел), нужно повернуть ее ножками к себе и ключом вниз (сектор без ножек), тогда представший перед вами прекрасный вид будет соответствовать картинке с распиновкой лампы (работает и для большинства других ламп). Как видно по рисунку, в лампе целых два триода, но нам нужен всего один. Вы можете использовать любой, никакой разницы нет.

Теперь пойдем по схема слева на право. Катушки индуктивности L1 и L2 лучше всего мотать на общем круглом основании (оправке), идеально для этого подходит медицинский шприц диаметром 15мм, причем L1 желательно мотать поверх картонной трубки, которая с небольшим усилием движется по корпусу шприца, чем обеспечивает регулировки связи между катушками. В качестве антенны к крайнему выводу L1 можно припаять кусок провода или же припаять антенное гнездо и использовать что-то более серьезное.

L1 и L2 желательно мотать толстым проводом для повышения добротности, например, проводом 1мм и больше с шагом 2мм (особая точность тут не нужна, так что можете особо не заморачиваться с каждым витком). Для L1 нужно намотать 2 витка, а для L2 — 4-5 витков.

Далее идут конденсаторы C1 и C2, которые представляют собой двухсекционный конденсатор переменной емкости (КПЕ) с воздушным диэлектриком, он является идеальный решением для подобных схем, КПЕ с твердым диэлектриком использоваться нежелательно. Наверное, КПЕ является самым редким элементом данной схемы, но его довольно легко найти в любой старой радиоаппаратуре или на барахолках, хотя его можно заметить и двумя обычным конденсаторами (обязательно керамическими), но тогда придется обеспечивать подстройку с помощью импровизированного вариометра (прибора для плавного изменения индуктивности). Пример КПЕ:

Нам нужно всего две секции КПЕ и они

обязательно должны быть симметричны, т.е. иметь одинаковую емкость в любом положении регулировки. Их общей точной будет служить контакт подвижной части КПЕ.

Затем следуется цепочка гашения выполненная на резисторе R1 (2.2МОм) и конденсаторе C3 (10 пФ). Их значения можно менять в небольших пределах.

Катушка L3 выполняет роль анодного дросселя, т.е. не позволяется высокой частоте пройти дальше. Подойдет любой дроссель (только не на железном магнитопроводе) с индуктивностью 100-200 мкГн, но проще намотать на корпус сточенного мощного резистора 100-200 витков тонкого медного эмалированного провода.

Конденсатор C4 служит для отделения постоянной составляющей на выходе приемника. Наушники или усилитель можно подключать непосредственно к нему. Емкость его может варьироваться в довольно больших пределах. Желательно, чтобы C4 был пленочный или бумажный, но с керамическим тоже будет работать.

Резистор R3 представляет собой обычный потенциометр на 33кОм, который служит для регулирования анодного напряжения, чем позволяет менять режим лампы. Это необходимо для для более точной подстройки режима под конкретную радиостанцию. Можно заменить на постоянный резистор, но это нежелательно.

На этом элементы закончились. Как видите схема очень простая.

И теперь немного по поводу питания и монтажа приемника.

Анодное питание можно смело использовать от 10В до 30В (можно и больше, но там уже немного опасно подключать низкоомную аппаратуру). Ток там совсем небольшой и для питания подойдет БП любой мощности с необходимым напряжением, но желательно, чтоб он был стабилизирован и имел минимум шумов.

И еще обязательным условием является питание накала лампы (на картинке с распиновкой он обозначен как нагреватели), так как без него она работать не будет. Тут уже токи нужны поболее (300-400 мА), но напряжение всего 6.3В. Подойдет как переменное 50Гц, так и постоянное напряжение, причем оно может быть от 5 и до 7В, но лучше использовать каноничное 6.3В. Лично я не пробовал использовать 5В на накале, но скорее всего все будет нормально работать. Накал подается на ножки 4 и 5.

Теперь про монтаж. Идеальным является расположение всех элементов схемы в металлическом корпусе с подключенной к нему в одной точке землей, но будет работать и вообще без корпуса. Так как схема работает в УКВ диапазоне, все соединения в высокочастотной части схемы должны быть максимального короткими для обеспечения большей стабильности и качества работы устройства. Вот пример первого прототипа:

При таком монтаже все работало. Но с металлическим корпусом-шасси немного стабильнее:

Для таких схем идеальным является навесной монтаж, так как он дает хорошие электрические характеристики и позволяет без особых затруднений вносить поправки в схемы, что с платой уже не так просто и аккуратно получается. Хотя и мой монтаж аккуратным назвать нельзя.

Теперь по поводу наладки.

После того как вы на 100% убедились в правильности монтажа, подали напряжение и ничего не взорвалась и не загорелось — это значит, что скорее всего схема работает, если использованы правильные номиналы элементов. И вы скорее всего услышите в наушниках шумы. Если во всех положениях КПЕ вы не слишите станции, и вы точно уверены, что у вас принимаются вещательные станции на других устройствах, то попробуйте изменить количество витков катушки L2, этим вы перестроите частоту резонанса контура и возможно попадете на нужный диапазон. И пробуйте крутить ручку переменного резистора — это тоже может помочь. Если совсем ничего не помогает, то можно поэкспериментировать с антенной. На этом наладка завершается.

На этом этапе все самое основное уже сказано, а представленное выше неумелое повествование можно дополнить следующими роликами, которые иллюстрируют приемник на разных этапах разработки и демонстрируются качество его работы.

Чисто ламповый вариант (на макетном уровне):


Вариант с добавлением УНЧ на ИМС (уже с шасси):

В последнем варианте ламповость немного потеряна, ибо применена ИМС. Это оказалось единственным решением, так как при анодном 20В в режиме УНЧ второй триод так и не заработал у меня, хотя может подходящий режим и есть, но я найти его не смог.

В качестве УНЧ был использован усилитель PAM8403, который питается от линейного стабилизатора напряжения L7805 (в народе зовется кренкой, по названию советского аналога).

В планах по развитию данного проекта имеется создание еще одного сверхрегенератора на лампе 6с6б, но уже портивного, так как очень соблазнительно иметь ламповый портативный приемник.

Спасибо за внимание. Готов ответить на вопросы по теме.

PS: Данное устройство генерирует собственные колебания во время работы и излучает их через приемную антенну, т.е. сверхрегенератор может создавать помехи, учитывайте это.

Источники:

1. Сверхрегенерация
2. Сверхрегенеративный приемник
3. Документация на лампу 6н23п
4. Туторский «Простейшие любительские передатчики и приемники УКВ» 1952

habr.com

СХЕМА ПРОСТОГО ЛАМПОВОГО ПРИЁМНИКА

   На страницах нашего сайта уже много раз поднималась тема ламповых самодельных усилителей звука, и для тех, кто хочет продолжить знакомство с радиолампами, мы подготовили интересную схему приёмника диапазона КВ. Этот радиоприемник очень чувствительный и достаточно селективный для приёма коротковолновых частот по всему миру. Одна половина лампы 6AN8 служит как усилитель РЧ, а другая — как регенеративный приемник. Приемник предназначен для работы с наушниками или как тюнер, с последующим отдельным усилителем НЧ.

Схема приёмника на одной лампе

   Для корпуса берите толстый алюминий. Шкалы напечатаны на листе толстой глянцевой бумаги, а затем приклеены к передней панели. Моточные данные катушек указаны на схеме, там же и диаметр каркаса. Толщина провода — 0,3-0,5 мм. Намотка виток к витку.

   Для блока питания радио вам нужно найти стандартный трансформатор от любой маломощной ламповой радиолы, обеспечивающий примерно 180 вольт анодного напряжения при токе 50 мА и 6,3 В накала. Не обязательно делать выпрямитель со средней точкой — хватит обычного мостового. Разброс напряжений допустим в пределах +-15%.

Настройка и устранение неисправностей

   Настройтесь на желаемую станцию с помощью переменного конденсатора С5 примерно. Теперь конденсатором C6 — для точной настройки на станцию. Если ваш ресивер не будет нормально принимать, то либо менять значения резисторов R5 и R7, формирующих через потенциометр R6 дополнительное напряжение на 7-м выводе лампы, или просто поменять местами подключение контактов 3 и 4 на катушке обратной связи L2. Минимальная длина антенны будет около 3-х метров. С обычной телескопической принимать будет слабовато.

   Форум по ламповым РП

   Обсудить статью СХЕМА ПРОСТОГО ЛАМПОВОГО ПРИЁМНИКА




radioskot.ru

РАДИО для ВСЕХ — Четырёхламповый приёмник коротковолновика

Ламповый КВ приёмник для прослушивания SSB/CW радиолюбительских станций работающих на диапазонах 20/40/80 метров. 

Приёмник разработан Сергеем Эдуардовичем Беленецким (US5MSQ). Приёмник позволяет принимать сигналы радиолюбительских CW/SSB радиостанций, работающих на диапазонах 20, 40 и 80 метров. Подробное описание конструкции выложено на сайте автора здесь http://us5msq.com.ua Кроме того, там Вы сможете найти информацию по другим его конструкциям, задать вопросы на форуме, а также приобрести наборы для сборки.  Данная конструкция опубликована с любезного разрешения автора и, надеюсь, заинтересует радиолюбителей. Его принципиальная схема приведена здесь и на чертеже ниже.

Вместо штатного ГПД можно использовать синтезатор частот «Ёжик» 🙂 тогда схема приобретёт вот такой внешний вид

При подключении синтезатора Ёжик к этому приёмнику можно применить простой дешифратор диапазонов, выполненный всего на двух транзисторах и двух резисторах. При поступлении с синтезатора на разъём ABCD кода диапазона 80м (1000) высокий уровень напряжения (примерно +5в) на входе А одновременно на оба транзистора — через резистор R1 поступает на базу VT1 и отпирает его и напрямую на эмиттер VT2 и запирает его. На входе В при этом напряжение низкого уровня (менее 0,7в), т.е. вывод практически заземлён и обеспечивает протекание через открытый ключ VT1 тока реле 80 м диапазона. Допустимый выходной ток на любом их выводов регистра 74HC595 не менее 35 мА. Этого вполне достаточно для надёжного управления практически любым современным реле.

При включении диапазона 40 м (на разъёме ABCD код 0100) ситуация с ключами меняется на противоположную. При включении диапазона 20 м (на разъёме ABCD код 0010) на обоих входах (А и В) низкий уровень и об транзистора закрыты. Разумеется, что на других, не рабочих диапазонах, ключи будут срабатывать, пощёлкивая реле согласно поступающим кодам на входы А и В, но это на мой взгляд, не большая плата за простоту решения и совершенно не существенно.

Транзисторы можно применить практически любые n-p-n типа с беттой не менее 100. Дешифратор можно смонтировать на небольшой макетке и разместить его либо на разъёме ABCD (см. фото) либо на свободном месте платы приёмника. А если применить SMD компоненты, то размеры будут настолько маленькие, что его можно будет сделать в виде миниатюрного кабельного переходника 🙂

Набор позволяет самостоятельно собрать одноплатный четырёхламповый трёхдиапазонный приемник для наблюдений за любительскими станциями на самых оживлённых диапазонах 20/40/80 метров. Приёмник RX204080EMF TUBE представляет собой улучшенный по многим параметрам вариант приёмника, описанного здесь https://us5msq.com.ua/trexlampovyj-trexdiapazonnyj-priyomnik-korotkovolnovika-3/. Использование новых схемных и конструкторских решений позволило значительно снизить трудоёмкость изготовления и упростить повторение в домашних условиях.

Основные технические характеристики приемника RX204080EMF TUBE:

Диапазоны рабочих частот, МГц ……………………………………………… 3,5, 7, 14

Полоса пропускания приемного тракта (по уровню –6 дБ), Гц ……………….. 3000…3400*

Чувствительность на всех диапазонах, мкВ (сигнал/шум 10 дБ), не хуже ………0,6

Общийй коэффициент усиления приёмного тракта не менее 200 тысяч раз

Уровень собственных шумов при максимальной громкости, мВэфф, не более … 45

Избирательность по соседнему каналу, дБ, не менее …………………………. 60*

Коэффициент прямоугольности сквозной АЧХ по уровням 6/60 дБ ……………. 1,6*

Диапазон регулировки АРУ при изменении уровня выходного сигнала

не более, чем в 2,5 раза (8 дБ) ………………………………………………. 3000 раз (70 дБ)

Выходная мощность тракта НЧ на нагрузке 8 Ом, Вт, не менее ………………. 0,25

Ток потребления по цепи анодного напряжения +140 В, мА, не более ………. 65

Ток потребления по цепи накального напряжения +6,3 В, А, не более ……… 1,25

Мощность, потребляемая от электросети, Вт, не более……………………….. 30

* — определяются параметрами применённого ЭМФ.

В комплекте набора для самостоятельной сборки есть все радиокомпоненты, устанавливаемые на плату: резисторы, конденсаторы, диоды, транзисторы, ферритовое кольцо для катушки ГПД, катушки ПДФ, разъёмы и их ответные части на провод, реле, керамические панельки для радиоламп, варикап, подстроечные конденсаторы и т.п.. Печатная плата для большей универсальности применения разработана с учётом возможности установки ЭМФ практически всех известных типоразмеров (круглых и прямоугольных) с полосой пропускания 2,35 кГц, 2,75 кГц, 3,0 и 3,1 кГц. Внешние подключения выполняются при помощи разъёмов, входящих в комплект набора. Все детали самые обычные выводные. Их маркировка нанесена на плату и просверлены отверстия для выводов, которые также для большей универсальности применения сделаны для большей части контурных элементов с шагом 5 и 10 мм, что позволяет устанавливать на плату не только современные малогабаритные конденсаторы и дроссели, но и старые советские типа КТ1, КД и т.п.

Набор для сборки платы приёмника (лампами комплектуется по желанию Заказчика)

Стабилизированный блок питания ламповой техники.

Блок питания для лампового приёмника описан здесь >>

Плата «S — метра»

Трансформатор выходной для ламповых УНЧ от старых ламповых радиоприёмников 🙂 

Трансформатор сетевой с обмотками:
71 Вт: (0-220В-230 В) / (0-60-80 В х 0,2 А; 150 В х 0,2 А; 6,3 В — 0 — 6,3 В х 2 А), размерами 90 х 45 мм 

Конденсатор переменой ёмкости 2х(12-495 пФ)

Любителям зелёного «глаза» 😉 лампа индикатор уровня 6Е5С

Схема подключения лампы-индикатора 6Е5С:

Видео работы S-метра на 6Е5С:

Микроамперметр 35х35 мм с подсветкой:

Материал: пластик
Цвет: черный
Размеры: 35х35 ммСопротивление DC: 630 Ом
Ток полного отклонения стрелки: 500 мкА
Напряжение нити накала лампочки подсветки: DC/AC 6 ~ 12 В

Стоимость микроамперметра —  260 грн.

Лампа 6Ф12П (новые с хранения)

Лампа 6Ж2П-ЕВ (новые с хранения)

Микроамперметр стрелочный М68502 250±25 мкА — 90 грн.

Микроамперметр стрелочный М476/2 150-250 мкА — 25 грн.

 

Макеевская 3-х входовая цифровая шкала с ЦАПЧ

Краткая инструкция по сборке и настройке приёмника находится здесь 🙂 >>>

1. Стоимость печатной платы с маской и маркировкой приёмника RX204080EMF TUBE (175х105 мм) — 250 грн.
2. Стоимость набора для сборки приёмника RX204080EMF TUBE без учёта ламп и без ЭМФ (печатная плата, керамические панельки для ламп, разъёмы с ответными частями, все радиокомпоненты для платы, регулятор громкости, ручка регулятора громкости) — 775 грн.
С перечнем комплектующих набора для сборки можно ознакомиться здесь >>>
3. ЭМФ в состав набора не входит, если нужно укомплектовать набор фильтром, то комплектую б/у демонтированными рабочими фильтрами нижними или средними, на своё усмотрение, стоимость фильтра — 180 грн.
4. Стоимость нового круглого и толстого 🙂 «нижнего» эектромеханического фильтра ЭМФ-500-3Н — 300 грн.
5. Стоимость комплекта новых с хранения радиоламп 6Ф12П — 3 шт., 6Ж2П-ЕВ — 1 шт. — 150 грн.

6. Стоимость сетевого трансформатора (71 Вт: (0-220В-230 В) / (0-60-80 В х 0,2 А; 150 В х 0,2 А; 6,3 В — 0 — 6,3 В х 2 А), размерами 90 х 45 мм) — 760 грн. (к сожалению трансформаторов ТАН у меня нет, они дешевле, но увы)
7. Стоимость КПЕ 2х(12-495 пФ) — 100 грн.
8. Стоимость выходного звукового Б/У трансформатора от лампового радиоприёмника — 140 грн.
9. Стоимость платы с маской и маркировкой «S» метра (52х15 мм) — 15 грн.
10. Стоимость наборчика 🙂 для сборки платы «S» метра — 30 грн.
11. Стоимость набора для сборки платы стабилизированного блока питания приёмника — 300 грн.
Вся информация по блоку питания у меня на сайте здесь >>>
12. Электронно-световой индикатор 6Е5С — 160 грн.
13. 
Панель ламповая (8-конт. ) под печатную плату и под шасси (для 6Е5С) — 44 грн. /шт.
14. 
Панель ламповая (9-конт. ) под печатную плату — 36 грн. /шт.

15. Индикатор стрелочный М68502 250±25 мкА — 90 грн.

16. Индикатор стрелочный М476/2 150-250 мкА — 25 грн.

Немного видео первого включения 🙂

НЕБОЛЬШИЕ КОРРЕКТИРОВКИ 🙂 В ходе активных испытаний приемника был сделано несколько небольших, но полезных доработок схемы приемника:

1. Один из коллег, собравших приемник из набора, написал, что после нескольких дней прослушивания временами стало проявляться самовозбуждение приемника. Мой тестовый экземпляр работает без проблем, поэтому автору пришлось немало попотеть, чтобы добиться этого явления . Оказалось, что при достаточно длинных (40-50 см) проводах подключения выходного трансформатора и при их определённом положении образовывался паразитный контур (на основе этой суррогатной длинной линии) и возбуждалась на СВЧ анодная цепь пентода VL3.2. Для устранения этого был введён плёночный конденсатор С70, который одним выводом монтируется на плате в заземлённое отверстие маркированное как С60, а другим припаивается к выводу С63 (см. фото в инструкции по монтажу и настройке). 2. Большие уровни (до 20 В) переменного напряжения на контурных элементах обоих гетеродинов не способствуют получению хорошей стабильности частоты, поэтому после некоторых экспериментов было решено выполнить цепи стабилизации амплитуды гетеродинов (гридлик) на кремниевых диодах. В результате не только понизилось в 2-3 раза напряжение на контурах, повысилась надёжность работы и стабильность частоты гетеродинов, но и почти в 5 раз!!! увеличилось усиление детектора, так что пришлось излишки усиления «гасить» резисторами R21,R25, уменьшив их сопротивление до 2 кОм, дабы общее усиление приемника и его уровень собственных шумов вернуть к исходным значениям. Припаиваются вновь введённые диоды VD4,VD5 и VD6 поверх, соответственно, резисторов R5 и R15 (см. фото в инструкции по монтажу и настройке). Заменить импортные 1N4148 можно отечественными малоёмкостными КД522,КД521,КД510 и т.п. Все описанные выше изменения отражены в принципиальной схеме версии 3.0 и приведён в соответствие состав деталей в наборе.

Примечания:

Схема подключения двухвходовой ЦШ «A16-PLL» совпадает с показанной на общей схеме приемника, с двумя отличиями:

1. Первый вход подключается к ГПД (разъём FM) через дополнительный гасящий резистор 4,7 кОм.

2. Для оптимальной работы ЦАПЧ ЦШ A16-PLL ёмкость С2 увеличина до 30 пФ.



Очень полезное и информативное видео сборки и настройки приёмника от Володи Карпелянского R2AJI

 

  А также много другого интересного и полезного у Володи на канале здесь 🙂




Заказы можно оформлять через форму обратной связи или по телефону указанному в разделе контакты, доставка и оплата

Всем мирного неба, удачи, добра, 73!

radio-kits.ucoz.ru

Ламповый регенеративный детектор FM диапазона.


 Звук, похожий на позвякивание фужеров и рюмочек, раздающийся из коробки с радиолампами, напоминал подготовку к торжеству. Вот они, похожие на ёлочные игрушки,  радиолампы 6Ж5П 60-х годов…. Пропустим воспоминания. Вернуться к старинной консервации радиодеталей побудил просмотр  комментариев к посту
«Детекторные и прямого усиления приёмники УКВ(FM) диапазона», включающих в себя схему на радиолампах и конструкцию приёмника на этот диапазон. Таким образом, я решил дополнить статью построением лампового регенеративного приёмника УКВ диапазона (87,5 – 108 МГц).

  Ретро-фантастика, таких приёмников прямого усиления, на такие частоты, да ещё на лампе, в промышленном масштабе не делалось! Время вернуться в прошлое и собрать в будущем схему.

                0 – V – 1, детектор на лампе и усилитель для телефона или динамика.

  В юности я собирал на 6Ж5П любительскую радиостанцию диапазона 28 – 29,7  МГц, где использовался приёмник с регенеративным детектором. Помню, отличная получилась конструкция.

 Желание слетать в прошлое было настолько сильным, что я просто решил сделать макет, а уже потом, в будущем оформить всё как следует, а потому прошу простить за ту небрежность в сборке. Очень интересно было узнать, как всё это будет работать на частотах FM диапазона (87,5 – 108 МГц).

 Из всего, что было под рукой, собрал схему, и она заработала! Практически весь приёмник состоит из одной радиолампы, а учитывая, что в настоящее время в диапазоне FM работает более 40 радиостанций, неоценимо и торжество радиоприёма!

Фото1. Макет приёмника.
 Самое трудное, с чем столкнулся, так это питание радиолампы. Получилось сразу несколько блоков питания. От одного источника (12 вольт) питается активная колонка, уровня сигнала хватило для работы динамика. Импульсным блоком питания с постоянным напряжением 6 вольт (подкрутил крутку к этому номиналу) запитал накал. Вместо анодного, подал всего 24 вольта от двух последовательно соединенных  малогабаритных аккумуляторов, думал, хватит для детектора и действительно хватило. В дальнейшем, наверно, будет целая тема – малогабаритный импульсный блок питания  для небольшой ламповой конструкции. Где будут отсутствовать громоздкие сетевые трансформаторы. Похожая тема уже была: «Блок питания лампового усилителя из деталей компьютеров».


Рис.1. Схема радиоприёмника FM диапазона.

 Это пока только проверочная схема, которую я изобразил по памяти из очередной старинной хрестоматии радиолюбителя, по которой когда-то собирал любительскую радиостанцию. Оригинал схемы я так и не нашёл, поэтому в данном эскизе найдёте неточности, но это неважно, практика показала, что отреставрированная конструкция вполне работоспособна.

 Напомню, что детектор называется регенеративным потому, что в нём используется положительная обратная связь (ПОС), которая обеспечивается неполным включением контура к катоду радиолампы (к одному витку по отношению к земле). Обратной связь называется оттого, что часть усиленного сигнала с выхода усилителя (детектора) обратно прикладывается к входу каскада. Положительная связь потому, что фаза обратного сигнала совпадает с фазой входного, что и даёт прирост усиления.  При желании место отвода можно подбирать, меняя влияние ПОС  или повышая анодное напряжение и тем самым усиливая ПОС, что скажется на росте коэффициента передачи детектирующего каскада и громкости, сужением полосы пропускания и лучшей селективности (избирательности), и, как негативный фактор, при более глубокой связи неизбежно приведёт к искажениям, фону и шумам, и в конце концов к самовозбуждению приёмника или превращению его в генератор высокой частоты.

Фото 2. Макет приёмника.

 Настройку на станции осуществляю подстроечным конденсатором 5 – 30 пФ, а это крайне неудобно, поскольку диапазон весь забит радиостанциями. Хорошо, ещё, что не все 40 радиостанций вещают из одной точки и приёмник предпочитает брать только близко расположенные передатчики, ведь его чувствительность  всего 300 мкВ. Для более точной настройки контура, диэлектрической отвёрткой чуть давлю на виток катушки, смещая его по отношению к другому так, чтобы добиться изменения индуктивности, что обеспечивает  дополнительную подстройку на радиостанцию.

 Когда я убедился, что всё работает, то всё разобрал и распихал «кишки» по ящикам стола, однако на следующий день опять всё подсоединил воедино, такая неохота была расставаться с ностальгией, настраиваться на станции диэлектрической отвёрткой, подёргивать головой в такт музыкальных композиций.  Это состояние продолжалось несколько дней, и с каждым днём я старался сделать макет более совершенным или завершённым  для дальнейшего использования.

 Попытка запитать всё от сети принесла первую неудачу. Пока анодное напряжение подавалось от аккумуляторов, фона 50 Гц не было, но стоило подключить сетевой трансформаторный блок питания, фон появился, правда, напряжение вместо 24 теперь возросло до 40 вольт. Пришлось помимо конденсаторов большой ёмкости (470 мкФ) по цепям питания добавить регулятор ПОС, на вторую (экранирующую) сетку радиолампы. Теперь настройка производится двумя ручками, так как уровень обратной связи ещё меняется по диапазону, а для удобства настройки я использовал плату с переменным конденсатором (200 пФ) от предыдущих поделок. При уменьшении обратной связи фон пропадает. В комплект к конденсатору увязалась и старая катушка из предыдущих поделок, большего диаметра (диаметр оправки 1,2 см, диаметр провода 2 мм, 4 витка провода), правда один виток пришлось замкнуть, чтобы точно попасть в диапазон.

Рис.2 В схему радиоприёмника добавил регулировку обратной связи, конденсатор настройки и резистор уровня  громкости.
Фото 3. Совершенствую макет. Добавил регулировку обратной связи и переменный конденсатор.

                                                      Конструкция.

 Изготовление такого макета в моём кругу называется картонной сборкой, правда вместо картона используются пластмассовые крышки, внутри которых приклеивается фольгированный стеклотекстолит с необходимыми площадками вместо опорных столбиков для распайки деталей, он же  в основном является прототипом металлического шасси. Объёмный монтаж не очень красив, но имеет полезное свойство – маленькую паразитную ёмкость монтажа, на достаточно высоких частотах это важно, как и важна короткая длина соединительных выводов радиокомпонентов. Ещё одно важное условие, которое мне не совсем хорошо удалось выполнить, заключается в том, что все соединённые на землю (шасси) детали должны паяться к одной точке.

 В городе приёмник хорошо принимает радиостанции, расположенные в радиусе до 10 километров, как на штыревую антенну, так и провод длиной в 0,75 метра.


 Хотел сделать УНЧ на лампе, но в магазинах не оказалось ламповых панелей. Пришлось вместо готового усилителя на микросхеме TDA7496LK, рассчитанного на 12 вольт, поставить самодельный на микросхеме МС 34119 и запитать его от постоянного напряжения накала.

 Просится ещё усилитель высокой частоты (УВЧ), чтобы уменьшить влияние антенны, что сделает настройку стабильнее,  улучшит соотношение сигнал/шум, тем самым поднимет чувствительность. Хорошо бы УВЧ тоже сделать на лампе.

 Всё пора заканчивать, речь шла только о регенеративном детекторе на диапазон FM.

А если сделать к этому детектору сменные катушки на разъёмах то

           получится всеволновый приёмник прямого усиления как АМ, так и ЧМ.

 Прошла неделя, и я решил сделать приёмник мобильным с помощью простенького преобразователя напряжения на одном транзисторе.

                                                   Мобильный блок питания.

Фото 4. Повышающий преобразователь напряжения для анодного питания.
 Чисто случайно обнаружил, что старый транзистор КТ808А подходит к радиатору от светодиодной лампы. Так родился повышающий преобразователь напряжения, в котором транзистор объединён с импульсным трансформатором от старого компьютерного блока питания. Таким образом, аккумулятор обеспечивает накальное   напряжение 6 вольт, и это же напряжение преобразуется в 90 вольт для анодного питания. Нагруженный блок питания потребляет 350 мА, и ток 450 мА проходит через накал лампы 6Ж5П.  С преобразователем анодного напряжения ламповая конструкция получилась малогабаритной.
Рис. 3. Схем простого мобильного блока питания приёмника. 

Тр.1 – импульсный трансформатор ERL – 35ALJH, L1 – дроссель (намотка на ферритовом кольце проводом 1 мм в один ряд). Эти радиокомпоненты из блока питания системного компьютера. Не указан номинал  47 нФ  (0,047 мкФ) конденсатора между точкой 2 и базой транзистора

 Теперь решил весь приёмник сделать ламповым и уже опробовал работу УНЧ на лампе 6Ж1П, она нормально работает при низком анодном напряжении, а ток накала у неё в 2 раза меньше чем у лампы 6Ж5П.
Фото 6. УНЧ на лампе 6Ж1П
для телефонов и блок питания.
УНЧ и детектор на лампах.
Батарейный приёмник от 6-ти вольт питания.
 Возможно, этот пост ещё не закончен.

                                                   

               P. S.

 Как потом выяснилось, я не ошибся. Это действительно «Хрестоматия радиолюбителя». Изд. 5. Энергия. 1971 год. Массовая радио библиотека. Выпуск 783. Статья называется «Любительская УКВ радиостанция». Автор В. А. Ломанович.

 По этой книжке я собирал когда-то любительскую радиостанцию. Привожу оттуда схему приёмника с регенеративным детектором на 28 – 29,7 МГц и объёмный монтаж всей радиостанции.

Схема радиоприёмника на 28 МГц.

Монтаж радиостанции на 28 МГц.

Дополнение к комментариям.

 Если чуть изменить схему на рис.1, добавив две — три детали, то получится сверхрегенеративный детектор. Да, ему присуще «бешеная» чувствительность, хорошая избирательность по соседнему каналу, что нельзя сказать об «отличном качестве звука». Мне пока не удаётся получить хороший динамический диапазон от сверхрегенеративного детектора, собранного по схеме рис.4,  хотя для сороковых годов прошлого века можно было считать, что  этот приёмник обладает отличным качеством. Но помнить историю радиоприёма надо, а поэтому на очереди сборка суперсверхрегенеративного  приёмника на лампах. 


Рис 4. Схема сверхрегенеративного детектора на лампе 6Ж5П. В качестве дросселя (Др 1) я использовал сетевую обмотку маломощного понижающего трансформатора с активным сопротивлением 500 Ом. 
Рис. 5. Ламповый сверхрегенеративный приёмник диапазона FM (87.5 — 108 МГц).
Да, кстати, по поводу истории.
 Я собрал и продолжаю собирать коллекцию схем довоенных (период 1930 – 1941 г.) сверхрегенеративных приёмников на УКВ диапазон (43 – 75 МГц).
           
  В статье «Ламповый сверхрегенеративный приёмник ЧМ (FM)»

 я повторил редко встречающуюся в настоящее время схему сверхрегенератора 1932 года. В этой же статье собирается коллекция схем сверхрегенеративных УКВ приёмников за период 1930 — 1941 годы.

dedclub.blogspot.com

Ламповые души 2 — Сайт prograham!

1 2 режимы ламп

АМ-передатчик с CLC модуляцией


Одноламповый трансивер на 28 мгц

Трансивер очень прост и содержит минимальное количество деталей. Прием и передача ведется на одной частоте. Настройка на заданную частоту осуществляется конденсатором переменной емкости С1. Переключатель «RX-TX» S1 — сдвоенный тумблер.

Схема трансивера

S1.1 включает телефон Т, а S1.2 закорачивает микрофон. В положении прием лампа работает как сверхрегенеративный детектор. С3 и R3 служат для регулировки обратной связи, необходимой для нормальной работы генератора ВЧ. 

Связь с антенной подбирается изменением расстояния между катушками L1 и L2 так, чтобы сверхрегенерация не срывалась при включении антенны. В трансивере могут быть использованы любые триоды или пентоды, включенные триодам.

Данные катушек, дросселей и трансформатора.

L1 — 10-20 витков провода ПЭЛ-0,8 на каркасе Ø 18 мм.
L2 — 7 витков того-же провода на том-же каркасе.
Др1-Др2 — по 80-100 витков провода ПЭЛ-0,12 на резисторах ВС-1 с сопротивлением не менее 100 К.
Др3 и Тр1 — от лампового радиовещательного приемника 3-2 класса

Конструкция трансивера может быть любой. При конструировании нужно во избежание паразитных связей соблюдать обычные условия. Соединительные проводники должны быть возможно короче, нельзя располагать проводники анодной цепей параллельно сеточной цепи, для накальной цепи следует использовать два свитых проводника.

Из UW3DI-1 приемник

Схема приемника

Легенда гласит, что движение «радиохулиганов» зародилось на рубеже шестидесятых годов, во времена хрущевской оттепели, и пик расцвета пришелся на 1965-75 годы. Для своего вещания и экспериментов был облюбван средневолновый диапазон…

Занимаемые частоты

1600-3000; 3900 — 3950; 5750 — 5840; 6195 — 6400; 6900 — 6985; 7400 — 7500; 9200 — 9300 кГц — 10460 кГц….

Шарманка с УНЧ Вариант шарманки

Стабильные автогенераторы

При затруднениях с генерацией поможет включение дросселя между R катода и шасси. Для 6Н15П Rк – 5,1 ком, для 6Н16Б – 6,2 ком. При замене резистора 10к в аноде Л2 на 51к и увеличении U анода до 150 вольт ток потребления по аноду Л1 увеличивается до 1 ма а общий ток катода достигает 1,5 ма


Каркас контура-высокочастотный материал. L1 и L2 наматываются в одном направлении и L2 является как бы продолжением L1 ее витки расположены со стороны «холодного» конца L1 на расстоянии одного диаметра провода, т.е. практически вплотную. Провод в варианте на 28 МГц желательно взять с диаметром 2…2,5 мм и лучше посеребренный. Расстояние между витками равно (на 28 и 21 МГц) диаметру провода, но оно должно быть одинаковым для обеих катушек. Количество витков (для 28 МГц) L1-6, а для L2-2,5 при диаметре каркаса 22 мм. Катушка обратной связи L2 в любом случае должна содержать не более 1/3 витков от катушки L1. 

Трансивер «Рубин-М»

Контрольный приемник для соревнований «Охота на лис»

Приемник имеет два диапазона: 3,5 — 3,65 Мгц и 28 — 29,7 Мгц. Чувствительность приемника не хуже 2—3 мкв. Модуляция-АМ

»В помощь радиолюбителю» №16 стр 10

Ламповый трансивер прямого преобразования

И.Григоров  UZ3ZK

В журнале английского QRP клуба SPRAT № 67 была опубликована схема лампового приемника прямого преобразования. Собрав и убедившись в отличной работоспособности, я переделал этот приемник в трансивер. Он настолько несложен в настройке, что собрать его может даже начинающий радиолюбитель из «барахла», которое обычно всегда есть под рукой.

Работа трансивера


Усилитель высокой частоты собран на лампе Л1. С него через контур L4 L5 C9 сигнал подается на смеситель, выполненный на лампе Л4. С этого смесителя сигнал низкой частоты через фильтр C18 R11 C19 поступает на УНЧ, выполненный на Л7. Усиление ВЧ и НЧ можно регулировать с помощью потенциометров R5 и R16.

Гетеродин собран по схеме индуктивной трехточки на лампе Л2. Контур L3 C3 C2 настроен на частоту вдвое ниже рабочей, вторая гармоника выделяется на контуре L6 C7.

Драйвер на лампе Л5 усиливает сигнал гетеродина до величины, необходимой для раскачки выходного каскада на лампе Л6 до 10 ватт.
Трансивер работает полудуплексом, т.е. для перехода в режим передачи достаточно только нажать на ключ. При этом катоды ламп Л5 и Л6 заземляются по постоянному току через геркон Г1, который также заземлит антенну приемника.

Настройка трансивера

Правильно собранный из исправных деталей трансивер наладки не требует. Необходимо лишь установить частоты контуров с помощью ГИРа или каким-либо другим способом. При возбуждении УВЧ подбирают резистор R4. При недостаточном усилении УНЧ паралельно R19 подключают электролитический конденсатор емкостью 5 — 10 мкф. Если вы будете работать на нескольких диапазонах, то конденсатор С* подбирают так,чтобы не было заметной разницы в чувствительности при переходе с одного диапазона на другой.
 В этом трансивере не используется специальной цепи смещения частоты при RX/TX. Такое смещение происходит автоматически из-за разности емкостей включенной и отключенной лампы Л5. В моем варианте смещение RX/TX было 200 — 300 Гц на 160 и 80 метров и почти 1000 Гц и более на 28 МГц.

Детали трансивера

В качестве лампы Л1 можно использовать 6Ж2П, 6Ж38П, 6Ж9П, 6Ж8. Лучшая лампа для гетеродина — 6Ж2П. Но с худшими результатами работают и 6Ж1П, 6Ж38, 6Ж9П, 6Ж7, 6Ж8. Вместо Л3 можно использовать любой другой ламповый или полупроводниковый стабилитрон на напряжение 100 — 150 В. Лучшая лампа для смесителя Л4 — 6Н2П, но можно применить и 6Н1П, 6Н14П, 6Н15П. В качестве лампы Л6 можно использовать 6П9. Можно использовать и мощные тетроды без антидинатронной сетки, переключая антенну в режиме RX/TX с помощью реле. В усилителе низкой частоты (Л7) будет хорошо работать 6Н1П.

1 — Катушки выполнены на резисторах МЛТ-2 сопротивлением выше 100 кОм, намотка по всей длине;
2 — Катушки выполнены на резисторах ВС-2 сопротивлением выше 100 кОм;
* — Вверху — количество витков, внизу — длина намотки в мм;
L1 намотана поверх L2, L4 — поверх L5;
L1 и L4 составляют около 30 % витков от соответственно L2 и L5;
Используемый геркон был длиной 30 мм и диаметром 3,5 мм. На нем было намотано 300 витков провода ПЭЛ-0,1.
  Если ваша антенна не постоянна, то постоянные конденсаторы С31 и С32 необходимо заменить переменными. Габариты трансивера в этом случае возрастут. Все блокировочные конденсаторы были типа СГМ. Контурные и переходные конденсаторы типа КТ. Конденсаторы С28, С29, С30 типа МБМ.

Конструкция трансивера

Трансивер был собран на шасси, изготовленном из двухстороннего стеклотекстолита размерами 200 х 240 х 40 мм. Пространственное положение деталей совпадало с их положением на схеме. Съемные катушки индуктивности, выполненные на цоколях от радиоламп октальной серии, позволяли довольно таки оперативно менять диапазон. Монтаж радиоэлементов был выполнен навесным способом.
  При замене С31, С32 переменными конденсаторами, установке измерительного прибора в цепь анода лампы Л6, размеры трансивера увеличатся, но работать станет удобнее.

Приемник для «охоты на лис» на 144 мгц

Журнал «Радио» 1961/№04

Пример использования ламп 6ж1б в любительской аппаратуре

p.s. Однажды, когда не было под рукой ламп 6ж4, 6к4, я снимал железные колпачки с них, запаивал в средину 6ж1б и собирал лампу в первоначальное состояние. Уверяю Вас, аппараты работали не хуже чем с родными «железными».

Ламповый приемник диапазона 1,45-3,8 мгц


  Все лампы, используемые в приемнике-6Н2П. Всю статью можно почитать в журнале «Радиомир» 2005 №5

1 2 режим ламп

Если Вам понравилась страница — поделитесь с друзьями:

prograham.jimdo.com

Ламповый УКВ ЧМ-приёмник в стиле ретро

Р/л технология

Главная  Радиолюбителю  Р/л технология



В последнее время проявляется большой интерес к антикварной и ретро радиотехнической аппаратуре. Предметами коллекций становятся как экземпляры ретро радиоаппаратуры 40-60-х годов, так и настоящие антикварные аппараты 10-30-х годов прошлого века. Помимо коллекционирования оригинальных изделий, растёт интерес к коллекционированию и изготовлению так называемых реплик. Это весьма интересное направление радиолюбительского творчества, но для начала поясним значение этого термина.

Существуют три понятия: оригинал, копия и реплика того или иного антикварного изделия. Термин «оригинал» в описании не нуждается. Копия — это современное повторение какого-либо антикварного изделия, вплоть до мельчайших деталей, применяемых материалов, конструктивных решений и т. д. Реплика — это современное изделие, изготовленное в стиле изделий тех лет и, по возможности, с приближенными конструктивными решениями. Соответственно, чем ближе реплика к оригинальным изделиям по стилистике и деталировке, тем она ценнее.

Сейчас в продаже появилось много так называемых радиосувениров, в основном китайского производства, оформленных в виде ретро и даже антикварной радиоаппаратуры. К сожалению, при ближайшем рассмотрении видно, что ценность её невелика. Пластиковые ручки, крашеная пластмасса, в качестве материала корпуса — оклеенный плёнкой МДФ. Всё это говорит о весьма низкопробном изделии. Что касается их «начинки», то она, как правило, представляет собой печатную плату с современными интегральными элементами. Внутренний монтаж таких изделий в плане качества тоже оставляет желать лучшего. Единственное «достоинство» этих изделий — невысокая цена. Поэтому они могут представлять интерес разве что для тех, кто, не вдаваясь в технические тонкости или попросту не понимая их, хочет иметь у себя на столе в кабинете недорогую «прикольную вещь».

В качестве альтернативы хочу представить конструкцию приёмника, которая вполне отвечает требованиям интересной и качественной реплики. Это — сверхрегенеративный ламповый УКВ ЧМ-приёмник (рис. 1), работающий в диапазоне частот 87…108 МГц. Он собран на радиолампах октальной серии, поскольку применить в этой конструкции лампы со штифтовым цоколем, более старые и подходящие по стилю, не представляется возможным по причине высокой рабочей частоты приёмника.

Рис. 1. Сверхрегенеративный ламповый УКВ ЧМ-приёмник

Бронзовые клеммы, ручки управления и латунные шильдики являются точной копией тех, которые применялись в изделиях 20-х годов прошлого века. Некоторые элементы фурнитуры и оформления — оригинальные. Все радиолампы приёмника открыты, кроме экраны. Все надписи выполнены на немецком языке. Корпус приёмника изготовлен из массива бука. Монтаж, за исключением некоторых высокочастотных узлов, также выполнен в стиле, максимально приближённом к оригинальному тех лет.
На переднюю панель приёмника выведены выключатель питания (ein/aus), ручка установки частоты (Freq. Einst.), частотная шкала со стрелочным указателем настройки. На верхнюю панель выведены регулятор громкости (Lautst.) — справа и регулятор чувствительности (Empf.) — слева. Также на верхней панели расположен стрелочный вольтметр, подсветка шкалы которого является индикацией включения питания приёмника. На левой стороне корпуса расположены клеммы для подключения антенны (Antenne), а на правой — клеммы для подключения внешнего классического или рупорного громкоговорителя (Lautsprecher).

Сразу хочу отметить, что дальнейшее описание устройства приёмника, несмотря на наличие чертежей всех деталей, носит ознакомительный характер, поскольку повторение подобной конструкции доступно опытным радиолюбителям, а также предполагает наличие определённого дерево- и металлообрабатывающего оборудования. К тому же не все элементы являются стандартными и покупными. Вследствие этого некоторые монтажные размеры могут отличаться от приведённых на чертежах, поскольку зависят от тех элементов, которые окажутся в наличии. Тем же, кто захочет повторить данный приёмник «один в один» и кому будет необходима более подробная информация о конструкции тех или иных деталей, по сборке и монтажу, предлагаются чертежи, а также возможность задать вопрос непосредственно автору.

Схема приёмника показана на рис. 2. Антенный вход рассчитан на подключение симметричного кабеля снижения УКВ-антенны. Выход рассчитан на подключение громкоговорителя с сопротивлением 4-8 Ом. Приёмник собран по схеме 1-V-2 и содержит УВЧ на пентоде VL1, сверхрегенеративный детектор и предварительный УЗЧ на двойном триоде VL3, оконечный УЗЧ на пентоде VL6 и блок питания на трансформаторе T1 с выпрямителем на кенотроне VL2. Питается приёмник от сети 230 В.

Рис. 2. Схема приёмника

УВЧ представляет собой диапазонный усилитель с разнесённой настройкой контуров. Его задачи — усиление высокочастотных колебаний, поступающих с антенны, и предотвращение проникновения в неё и излучения в эфир собственных высокочастотных колебаний сверхрегенеративного детектора. УВЧ собран на высокочастотном пентоде 6AC7 (аналог — 6Ж4). Связь антенны с входным контуром L2C1 осуществляется с помощью катушки связи L1. Входное сопротивление каскада — 300 Ом. Входной контур в сеточной цепи лампы VL1 настроен на частоту 90 МГц. Настройка осуществляется подбором конденсатора С1. Контур L3C4 в анодной цепи лампы VL1 настроен на частоту 105 МГц. Настройка осуществляется подбором конденсатора С4. При такой настройке контуров максимальное усиление УВЧ — около 15 дБ, а неравномерность АЧХ в диапазоне частот 87…108 МГц — около 6 дБ. Связь с последующим каскадом (сверхрегенеративным детектором) осуществляется с помощью катушки связи L4. С помощью переменного резистора R3 можно менять напряжение на экранной сетке лампы VL1 от 150 до 20 В и тем самым изменять коэффициент передачи УВЧ от 15 до -20 дБ. Резистор R1 служит для автоматического формирования напряжения смещения (2 В). Конденсатор С2, шунтирующий резистор R1, устраняет обратную связь по переменному току. Конденсаторы С3, С5 и С6 — блокировочные. Напряжения на выводах лампы VL1 указаны для верхнего по схеме положения движка резистора R3.

Сверхрегенеративный детектор собран на левой половине двойного триода VL3 6SN7 (аналог — 6Н8С). Контур сверхрегенератора образован катушкой индуктивности L7 и конденсаторами С10 и С11. Переменный конденсатор С10 служит для перестройки контура в диапазоне 87…108 МГц, а конденсатор С11 — для «укладки» границ этого диапазона. В сеточной цепи триода сверхрегенеративного детектора включён так называемый «гридлик», образованный конденсатором С12 и резистором R6. Подборкой конденсатора С12 устанавливают частоту гашения около 40 кГц. Связь контура сверхрегенератора с УВЧ осуществляется с помощью катушки связи L5. Напряжение питания анодной цепи сверхрегенератора поступает на отвод контурной катушки L7. Дроссель L8 — нагрузка сверхрегенератора по высокой частоте, дроссель L6 — по низкой. Резистор R7 совместно с конденсаторами С7 и С13 образуют фильтр в цепи питания, конденсаторы С8, С14, С15- блокировочные. Сигнал ЗЧ через конденсатор С17 и ФНЧ R11C20 с частотой среза 10 кГц поступает на вход предварительного УЗЧ.

Предварительный УЗЧ собран на правой (по схеме) половине триода VL3. В катодную цепь включены резистор R9 для автоматического формирования напряжения смещения (2,2 В) на сетке и дроссель L10, который снижает усиление на частотах выше 10 кГц и служит для предотвращения проникновения импульсов гашения сверхрегенератора в оконечный УЗЧ. С анода правого триода VL3 через разделительный конденсатор С16 сигнал ЗЧ поступает на переменный резистор R13, выполняющий функцию регулятора громкости.

Оконечный УЗЧ собран на мощном пентоде VL6 6F6G (аналог — 6Ф6С). Низкочастотный сигнал на сетку этой лампы поступает с переменного резистора R13. В катодной цепи VL6 включён резистор R15, служащий для автоматического формирования напряжения смещения 17 В. Для устранения отрицательной обратной связи по переменному току резистор R15 зашунтирован конденсатором С21. Для согласования с низкоомной динамической головкой в анодной цепи лампы VL6 установлен выходной трансформатор T2 с коэффициентом трансформации по напряжению 36:1. При подключении динамической головки сопротивлением 4 Ом эквивалентное сопротивление нагрузки пентода VL6 — около 5 кОм. Анодная обмотка выходного трансформатора зашунтирована конденсатором С22, служащим для выравнивания сопротивления нагрузки лампы VL6, которое увеличивается на высоких частотах из-за паразитной индуктивности рассеяния выходного трансформатора.

Блок питания обеспечивает питанием все узлы приёмника: переменное напряжение 6,3 В — для питания накала ламп, постоянное нестабилизированное напряжение 250 В — для питания анодных цепей УВЧ и оконечного УЗЧ. Выпрямитель собран по двухполупе-риодной схеме на кенотроне VL2 5V4G (аналог — 5Ц4С). Пульсации выпрямленного напряжения сглаживает фильтр C9L9C18. Напряжение питания сверхрегенератора и предварительного УЗЧ стабилизировано параметрическим стабилизатором на резисторе R14 и газоразрядных стабилитронах VL4 и VL5 VR105 (аналог — СГ-3С). RC-фильтр R12C19 дополнительно подавляет пульсации напряжения и шумы стабилитронов.

Конструкция и монтаж. Элементы УВЧ монтируют на основном шасси приёмника вокруг ламповой панели. Для предотвращения самовозбуждения каскада сеточные и анодные цепи разделены латунным экраном. Катушки связи и контурные катушки бескаркасные и смонтированы на текстолитовых монтажных стойках (рис. 3 и рис. 4 ). Катушки L1 и L4 намотаны посеребрённым проводом диаметром 2 мм на оправке диаметром 12 мм с шагом 3 мм.

Рис. 3. Катушки связи и контурные катушки бескаркасные, смонтированые на текстолитовых монтажных стойках

Рис. 4. Катушки связи и контурные катушки бескаркасные, смонтированые на текстолитовых монтажных стойках

L1 содержит 6 витков с отводом посередине, а L4 — 3 витка. Контурные катушки L2 (6 витков) и L3 (7 витков) намотаны посеребрённым проводом диаметром 1,2 мм на оправке диаметром 5,5 мм, шаг намотки — 1,5 мм. Расположены контурные катушки внутри катушек связи.

Напряжение экранной сетки лампы VL1 контролирует стрелочный вольтметр, размещённый на верхней панели приёмника. Вольтметр реализован на миллиамперметре с током полного отклонения 2,5 мА и добавочном резисторе R5. Сверхминиатюрные лампы подсветки шкалы EL1 и EL2 (СМН6,3-20-2) размещены внутри корпуса миллиамперметра.

Рис. 5. Элементы сверхрегенеративного детектора и предварительного УЗЧ, смонтированые в отдельном экранированном блоке

Элементы сверхрегенеративного детектора и предварительного УЗЧ смонтированы в отдельном экранированном блоке (рис. 5) с применением стандартных монтажных стоек (СМ-10-3). Конденсатор переменной ёмкости С10 (1КПВМ-2) закреплён на стенке блока с помощью клея и текстолитовой втулки. Конденсаторы С7, С8, С14 и С15 проходные серии КТП. Через конденсаторы С7 и С8 подключён дроссель L6. Питающее напряжение в экранированный блок поступает через конденсатор С15, а напряжение накала — через конденсатор С14. Оксидный конденсатор С19 — К50-7, дроссель L8 — ДПМ2.4. Дроссель L6 — самодельный, он намотан в двух секциях на магнитопроводе Ш14х20 и содержит 2х8000 витков провода ПЭТВ-2 0,06. Поскольку дроссель чувствителен к электромагнитным наводкам (в частности, от элементов блока питания), он смонтирован на стальной пластине над УВЧ (рис. 6) и закрыт стальным экраном. Его подключают экранированными проводами. Оплётку соединяют с корпусом блока сверхрегенератора. Для изготовления дросселя L10 применён броневой магнитопровод СБ-12а проницаемостью 1000, на его каркасе намотана обмотка — 180 витков провода ПЭЛШО 0,06. Катушки L5 и L7 намотаны посеребрённым проводом диаметром 0,5 мм с шагом 1,5 мм, на ребристом керамическом каркасе диа-метром 10 мм, который приклеен с применением текстолитовой втулки в отверстие ламповой панели. Катушка индуктивности L7 содержит 6 витков с отводом от 3,5 витка, считая от верхнего по схеме вывода, катушка связи L5 — 1, 5 витка.

Рис. 6. Дроссель, смонтированный на стальной пластине над УВЧ

Экранированный блок закреплён на основном шасси приёмника с помощью резьбового фланца. Соединение конденсатора С16 и резистора R13 выполнено экранированным проводом с заземлением экранирующей оплётки около резистора R13. Вращение ротора конденсатора С10 осуществляется с помощью текстолитовой оси. Для обеспечения необходимой прочности и износостойкости шлицевого соединения оси и конденсатора С10 в оси сделан пропил, в который вклеена пластина из стеклотекстолита. Один конец пластины заточен так, чтобы он плотно входил в шлиц конденсатора С10. Фиксация оси и прижим её к шлицу конденсатора осуществляются с помощью пружинной шайбы, проложенной между втулкой кронштейна и ведомым шкивом, зафиксированным на оси (рис. 7).

Рис. 7. Экранированный блок

Верньер собран на двух кронштейнах, закреплённых на передней стенке экранированного блока сверхрегенератора (рис. 8). Кронштейны либо можно изготовить самостоятельно, по прилагаемым чертежам, либо использовать стандартный алюминиевый профиль с небольшими доработками. Для передачи вращения применена капроновая нить диаметром 1,5 мм. Можно применить «суровую» сапожную нить того же диаметра. Один конец нити крепят непосредственно на одном из штифтов ведомого шкива, а другой — на другом штифте через натяжную пружину. В проточке ведущей оси верньера сделаны три витка нити. Ведомый шкивфиксируют на оси так, чтобы в среднем положении переменного конденсатора С10 торцевое отверстие для нити было расположено диаметрально противоположно относительно ведущей оси верньера. На обе оси надеты удлинительные насадки, закреплённые на них стопорными винтами. На насадке ведущей оси установлена ручка настройки частоты, а на насадке ведомой — стрелочный указатель шкалы.

Рис. 8. Верньер

Большинство элементов оконечного УЗЧ монтируют на выводах ламповой панели и монтажных стойках. Выходной трансформатор T2 (ТВЗ-19) установлен на дополнительном шасси и сориентирован под углом 90о по отношению к магнитопроводу дросселя L9 блока питания. Соединение управляющей сетки лампы VL6 с движком резистора R13 выполнено экранированным проводом с заземлением экранирующей оплётки около этого резистора. Оксидный конденсатор С21 — К50-7.

Блок питания (кроме элементов L9, R12 и R14, которые закреплены на дополнительном шасси) смонтирован на основном шасси приёмника. Дроссель L9 унифицированный — Д31-5-0,14, конденсатор С9 — МБГО-2 с фланцами для крепления, оксидные конденсаторы С18, С19 — К50-7. Для изготовления трансформатора T1 с габаритной мощностью 60 В-А применён магнитопровод Ш20х40. Трансформатор снабжён металлическими штампованными крышками. На верхней крышке установлена панель кенотрона VL2 вместе с латунной декоративной насадкой (рис. 9). На нижней крышке установлена монтажная колодка, куда выведены необходимые выводы обмоток трансформатора и вывод катода кенотрона. Крепится силовой трансформатор к основному шасси шпильками, стягивающими его магнитопровод. Гайками шпилек являются четыре резьбовые стойки, на которых закреплено дополнительное шасси (рис. 10).

Рис. 9. Панель кенотрона VL2 вместе с латунной декоративной насадкой

Рис. 10. Дополнительное шасси

Весь монтаж приёмника (рис. 11) проводится медным одножильным проводом диаметром 1,5 мм, помещённым в матерчатую лакированную трубку различного цвета. Её концы фиксируют с помощью капроновой нити или отрезками термоусаживаемой трубки. Собранные в жгуты монтажные провода соединяют между собой медными скобами.

Рис. 11. Смонтированный приёмник

Перед монтажом трансформатор T1 и конденсаторы С13, С18, С19 и С21 окрашивают из краскопульта краской «Hammerite молотковая чёрная». Силовой трансформатор красят в стянутом состоянии. При покраске конденсаторов необходимо защитить нижнюю часть их металлического корпуса, которая прилегает к шасси. Для этого перед покраской конденсаторы можно, например, закрепить на тонком листе фанеры, картона или другого подходящего материала. У силового трансформатора перед покраской необходимо снять декоративную латунную насадку и защитить малярным скотчем от краски панель кенотрона.

Корпус приёмника деревянный и изготовлен из массива бука. Боковые стенки соединены с помощью шипового соединения с шагом 5 мм. В передней части корпуса сделано занижение для размещения лицевой панели. В боковых и задней стенках корпуса сделаны прямоугольные отверстия. Наружные края отверстий обработаны кромочной радиусной фрезой. На внутренних краях отверстий сделаны занижения для крепления панелей. В боковых отверстиях корпуса закреплены панели с контактными входными и выходными клеммами, а в заднем — декоративная решётка. Верхняя и нижняя части корпуса также изготовлены из массива бука и обработаны по краям кромочными фрезами. Все деревянные части тонированы морилкой оттенка «мокко», загрунтованы и лакированы профессиональными лакокрасочными материалами (ЛКМ) фирмы Votteler с промежуточными шлифовками и полировкой согласно прилагаемой к данным ЛКМ инструкции.

Лицевая панель окрашена краской «Hammerite чёрная гладкая» с помощью технологии, дающей крупную явно выраженную шагрень (крупнокапельное распыление на разогретую поверхность). Лицевая панель закреплена на корпусе приёмника латунными винтами-саморезами соответствующих размеров с полукруглой головкой и прямым шлицом. Подобный латунный крепёж имеется в некоторых магазинах, торгующих скобяными изделиями. Все шильдики заказные и изготовлены на станке с ЧПУ лазерной гравировкой на латунных пластинах толщиной 0,5 мм. На лицевую панель их крепят с помощью винтов М2, а на деревянную панель — латунными винтами-саморезами.

После сборки приёмника и проверки монтажа на наличие возможных ошибок можно приступать к регулировке. Для этого потребуются высокочастотный осциллограф с верхней граничной частотой не менее 100 МГц, измеритель ёмкости конденсаторов (от 1 пФ) и в идеальном случае — анализатор спектра с максимальной частотой не менее 110 МГц и выходом генератора качающейся частоты (ГКЧ). При наличии в анализаторе спектра выхода ГКЧ на нём можно наблюдать АЧХ исследуемых объектов. Подобным прибором является, например, анализатор СК4-59. При отсутствии такового потребуется генератор ВЧ с соответствующим частотным диапазоном.

Правильно собранный приёмник начинает работать сразу, но требует регулировки. Сначала проверяют блок питания. Для этого из панелей вынимают лампы VL1, VL3 и VL6. Затем параллельно конденсатору С18 подключают нагрузочный резистор сопротивлением 6,8 кОм и мощностью не менее 10 Вт. После включения блока питания и прогрева кенотрона VL2 должны засветиться газоразрядные стабилитроны VL4 и VL5. Далее измеряют напряжение на конденсаторе С18. При ненагруженной накальной обмотке оно должно быть несколько выше указанного на схеме — около 260 В. На аноде стабилитрона VL4 напряжение должно быть около 210 В. Переменное напряжение накала радиоламп VL1, VL3 и VL6 (при их отсутствии) — около 7 В. Если все приведённые выше величины напряжений в норме, проверку блока питания можно считать законченной.

Отпаивают нагрузочный резистор и устанавливают на свои места лампы VL1, VL3 и VL6. Движок регулятора чувствительности (резистора R3 устанавливают в верхнее по схеме положение, а регулятор громкости (резистор R13) — в положение минимальной громкости. К выходу (клеммы XT3, XT4) подключают динамическую головку сопротивлением 4…8 Ом. После включения приёмника и прогрева всех радиоламп проверяют напряжения на их электродах в соответствии с указанными на схеме. При увеличении громкости поворотом резистора R13 в громкоговорителе должен быть слышен характерный высокочастотный шум работы сверхрегенератора. Прикосновение к антенным клеммам должно сопровождаться усилением шума, что свидетельствует об исправной работе всех каскадов приёмника.

Налаживание начинают со сверхрегенеративного детектора. Для этого с лампы VL3 снимают экран и наматывают на её баллон катушку связи — два витка тонкого изолированного монтажного провода. Затем устанавливают экран обратно, выпустив концы провода через верхнее отверстие экрана и подключив к ним щуп осциллографа. При правильной работе сверхрегенератора на экране осциллографа будут видны характерные вспышки высокочастотных колебаний (рис. 12). Подборкой конденсатора С12 необходимо добиться частоты следования вспышек около 40 кГц. При перестройке приёмника во всём диапазоне частота следования вспышек не должна заметно изменяться. Затем проверяют диапазон перестройки сверхрегенератора, который и определяет диапазон перестройки приёмника, и при необходимости корректируют его. Для этого вместо осциллографа к концам обмотки связи подключают анализатор спектра. Подборкой конденсатора С11 укладывают границы диапазона — 87 и 108 МГц. Если они сильно отличаются от указанных выше, необходимо немного изменить индуктивность катушки L7. На этом настройку сверхрегенератора можно считать законченной.

Рис. 12. Показания осциллографа

После регулировки сверхрегенератора удаляют катушку связи с баллона лампы VL3 и переходят к налаживанию УВЧ. Для этого необходимо отпаять провода, идущие к дросселю L6, асам дроссель и пластину, на которой он закреплён (см. рис. 6), снять с шасси. Так будет открыт доступ к монтажу УВЧ и отключён каскад сверхрегенератора. Отключение сверхрегенератора необходимо, чтобы его собственные колебания не мешали настройке УВЧ. К одному из крайних и среднему выводам катушки индуктивности L1 подключают выход ГКЧ анализатора спектра (или выход генератора ВЧ). К катушке связи L4 подключают вход анализатора спектра или осциллограф. Следует напомнить, что подключение приборов к элементам приёмника необходимо производить коаксиальными кабелями минимальной длины, разделанными с одной стороны под пайку. Концы разделки этих кабелей должны быть как можно короче и припаяны непосредственно к выводам соответствующих элементов. Использовать для подключения приборов осциллографиче-ские щупы, как это часто делается, категорически не рекомендуется.

Подборкой конденсатора С1 настраивают входной контур УВЧ на частоту 90 МГц, а выходной контур подбор-кой конденсатора С4 — на частоту 105 МГц. Это удобно сделать, заменив на время соответствующие конденсаторы малогабаритными подстроечными. Если используется анализатор спектра, настройку выполняют, наблюдая реальную АЧХ на экране анализатора (рис. 13). Если применены генератор ВЧ и осциллограф, сначала настраивают входной контур, а затем выходной по максимальной амплитуде сигнала на экране осциллографа. По окончании настройки необходимо осторожно отпаять подстроечные конденсаторы, измерить их ёмкость и подобрать постоянные конденсаторы с такой же ёмкостью. Затем необходимо заново проверить АЧХ каскада УВЧ. На этом налаживание приёмника можно считать законченным. Необходимо вернуть на место и подключить дроссель L6, проверить работу приёмника во всём частотном диапазоне.

Рис. 13. Показания анализатора

Работу приёмника проверяют, подключив на вход (клеммы XT1, XT2) антенну, а к выходу — громкоговоритель. Следует иметь в виду, что сверхрегене-ративный детектор может принимать ЧМ-сигналы только на склонах резонансной кривой своего контура, поэтому на каждую станцию будут две настройки.

Если в качестве громкоговорителя предполагается использовать аутентичный рупор производства 20-х годов прошлого века, его подключают к выходу приёмника через повышающий трансформатор с коэффициентом трансформации по напряжению около 10. Можно поступить иначе, включив капсюль рупора непосредственно в анодную цепь лампы VL6. Именно так их подключали в приёмниках в 20-е и 30-е годы. Для этого выходной трансформатор T2 удаляют и заменяют клеммы XT3 и XT4 гнездом «Jack» 6 мм. Распайку гнезда и штекера шнура рупора необходимо сделать так, чтобы анодный ток лампы, проходя по катушкам капсюля рупора, усиливал магнитное поле его постоянного магнита.

Чертежи (в авторском исполнении) отдельных элементов приёмника можно найти здесь

Автор: О. Разин, г. Москва

Дата публикации: 18.09.2015

Рекомендуем к данному материалу …


Мнения читателей
  • Alex / 18.01.2019 — 21:19
    Шедевр!!! Я бы купил!!! [email protected]
  • Игорь Казанцев г. Пермь / 23.04.2017 — 23:19
    Проще использовать ТА2003Р — моно, (СХА1238 стерео) в стандартном включении. УНЧ — любой ламповый, с малошумящим транзистором на входе. Регуляция громкости — электронная, на малошумящей микросхеме КА2250, или DC1669. Вообще, суперсверхрегенератор, в рефлексном варианте, более простом, был описан в «Моделисте -Конструкторе». Статья так и называлась — «Суперсверхрегенератор». Вроде 80-е годы.
  • dimka853 / 25.03.2016 — 18:36
    и на кой хрен городить такое.взять готовый блок укв-ип2 от старого лампового приемника. упчз от телека любого и обычный конвертер фм диапазона на к174пс1 использовать любой унч на лампах. собрать в этот же корпус .быстро дешево и сердито

Вы можете оставить свой комментарий, мнение или вопрос по приведенному вышематериалу:


www.radioradar.net

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *