Преобразователь 12-19В.
Приветствую всех читателей и собственно Кота! Хочу поделиться с участниками конкурса (и не только с ними) своими поисками оптимального, на взгляд автора, варианта изготовления преобразователя для ноутбука (или другой мобильной аппаратуры) позволяющего питать его от бортовой сети автомобиля, так как мир становится всё мобильнее, и многие желают брать свои девайсы в дорогу. А, как известно, за всё надо платить, то почему бы ни стать теми, кому это будут делать?
Цели были поставлены такие:
1. В первую очередь автор ставил перед собой коммерческий интерес этого проекта, поэтому себестои-мость должна была стремиться к нулю.
2. Простая схемная и практическая реализация (100% повторяемость).
3. Малые габариты, малый нагрев (никаких торчащих вверх радиаторов и принудительного охлаждения), низкопрофильность (последнее обусловлено наличием у автора корпусов от БП принтеров, сканеров:).
Свои поиски начал с Интернета и вот что он мне родил:
1. Схема неизвестного автора.
Собрав эту схему и подтвердив свои предположения, что выходной драйвер UC3843 на частоте комму-тации в 150 кГц (данная частота соответствует указанным номиналам R2,C2) даёт такие завалы фронтов управляющих импульсов на затворе VT1, что это приводит к недопустимому (по мнению автора) нагреву ключа за счет динамических потерь во время коммутации. Добавив внешний драйвер на дискретных эле-ментах ситуация поправилась но поставленным целям результат всё же не удовлетворял. Из неё при нор-мальной температуре (не выше 60 градусов) больше чем 3,5А не выжать. Да и потери в токоизмерительном резисторе достаточно велики, что придаёт ему не только габариты, но и нагрев, а в закрытом корпусе это будет решать многое. Нельзя не сказать и о плюсах данного схемного решения. Высокая частота коммута-ции автоматически уменьшает значения входных и выходных конденсаторов, хотя в тоже время предъявля-ет высокие требования к их качеству (низкое Эквивалентное Последовательное Сопротивление), да и зна-чение индуктивности относительно не велико, что позволяет уменьшить её габариты при хорошем железе.
Всё бы ничего (кроме заявленного в КПД 96%, хотя ни в одной справочной литературе по проектированию и практической реализации данных преобразователей автор не нашёл таких возможных данных, а везде была указана планка в 89% с чем я абсолютно согласен), но эта схема и особенно её практическая реализация не соответствовала ни одному требованию. Поэтому автор собирать и экспериментировать с ней не стал. Может за границей можно и всё купить или даже заказать, но где это набраться столько конденсаторов, да и габарит дросселя с радиаторами не удовлетворяли.
Было решено делать самому и из того, что есть! А так как автор по совместительству занимается ремонтом компьютеров, то делать из чего — было. Основным направлением построения схемы стало увеличение рабочей частоты входного и выходного фильтра с целью уменьшения их ёмкости и габаритов соответственно, а так же распределение нагрузки а, следовательно, и тепловых потерь, за счет введения второго силового канала. К такой схематехнике подтолкнуло изучение многофазного формирования питания процессоров на материнских платах. Откуда в принципе и были взяты все необходимые детали. Только в качестве ШИМ-контроллера была выбрана изъезженная TL494 (стоит практически в каждом БП для ПК старше 2-3х лет) а, не 4х-фазная SC2643VX c материнской платы. Практически все необходимые компоненты были взяты с материнской платы фирмы EPOX (таких у автора стопка под потолок). Ну и вот что получилось:
Обвязка TL494 практически идентична стандартной обвязке в БП для ПК за исключением того, что осциллятор имеет рабочую частоту около 290кГц (к сожалению, в документации на микросхему указана планка в 300 кГц). Хочется заметить что цепочка плавного пуска (R12,C7) в любом повышающем преобразователе имеющем такую схематехнику просто обязательна, так как преобразователь, работающий в непрерывном режиме тока дросселя (кода запасённая энергия в дросселе сохраняется до следующего такта заряда) имеет медленную переходную характеристику, то вероятность перенапряжения оказывается очень большой. А плавный пуск исключает перенапряжения на T1 и T2, хотя и остаётся вероятность перенапряжения в результате сброса нагрузки, но это беда всех преобразователей такого плана. К счастью этот преобразователь может войти в такой режим только при коэффициенте заполнения от 50% и выше, но это ограниченно самой микросхемой, так что волноваться незачем, но перестраховаться не помешает. Что касается измерения и ограничения тока, то для измерения был использован кусок проволочного шунта от старой Цешки длинной около 10-15мм (10-12 мОм). Верхний по схеме усилитель, входящий в состав IC1, осуществляет токоограничение, а вариацией резисторов R3, R4 можно установить необходимый уровень. Хочется заметить, что в любом гальванически не развязанном повышающем преобразователе, понятие токоограничение, довольно относительное, ведь при коротком замыкании в нагрузке ток с помощью ШИМ-контроллера не ограничить — ведь даже при закрытых ключах T1 и T2 ток КЗ потечёт через диоды D1 и D2, а «уровень токоограничения» подразумевает, что схема будет ограничивать ток через дросселя и ключи и как следствие при непомерной нагрузке просто будет падать выходное напряжение преобразователя. Поэтому предохранитель F1 просто обязателен на экстренные случаи.
Детали.
Как я уже говорил, практически все необходимые детали были взяты с материнских плат. Прилагаю фото донора (материнская плата фирмы Elitegroup модель K7S5A, хотя автор предпочитает использовать платы с драйверами SC1211, просто предполагает, что желающим собрать преобразователь достать такие платы может и не удастся):
Зелёной стрелкой на фото №5 указаны нужные «органы». Данный экземпляр имеет на борту и кольцевые дросселя, ключи, диоды Шотки и входные конденсаторы с хорошим ЭПС (ВНИМАНИЕ! На K7S5A напряжение входного конденсатора в зависимости от версии платы может быть 6,3В), и даже TL494, а зелёными овалами на фото №6 отмечены планарные полевые транзисторы (маркировка на корпусе sSG25 или 702, это всё 2N7002 от разных производителей) для использования в дискретном драйвере. Таких на любой «мамке» валом только присмотреться. Кстати в районе звукового чипа (обычно маркируются ALC668: в зависимости от установленного) есть и стабилизатор 78L05 который можно использовать для формирования питания затворов силовых ключей. Поднять уровень можно с помощью двух диодных сборок с маркировкой A7W до уровня 7-8В, так как во многих источниках указано напряжение 8,5В, как оптимальное для затворов низкоуровневых ключей с точки зрения уменьшения динамических потерь. На схеме этот узел в красном пунктире, его можно реализовать и обычным параметрическим стабилизатором. Делать его выше 8В не рекомендую, так как будет маловата разница между +11В на входе (при наихудшем варианте «аккумулятор разряжен») и +8В, а этот уровень будет использоваться для управления верхним ключом полумоста драйвера.
В схеме с драйверами на дискретных элементах использована классическая парафазная схема на полевых ключах (можно использовать любые современные N-канальные транзисторы малой мощности). Автор намеренно не использовал драйвер на N и Р-канальных ключах, так как Р-канальных на мамках не очень много, да и не основные носители не внушают доверия.
А вот и схема с драйверами на дискретных элементах:
Сборка и наладка
1. Разводим плату разделяя при этом силовые цепи от сигнальнах.
2. Запаиваем все компоненты и проверяем частоту на затворах силовых ключей (около 145кГц), а также смотрим крутизну фронтов.
3. Наматываем дросселя (18-20 витков, но один конец оставляем длинной около 10см).
4. Припаиваем один дроссель, включаем и проверяем выход +19В (подстраиваем с помощью R7-R11.).
5. Находим подходящую нагрузку и нагружаем ампера на 3.
6. Нехитрыми манипуляциями замеряем КПД (при стабильных нагрузке и входном напряжении можно ориентироваться на входной ток) и если оно в пределах 88-89% то всё в норме.
7. Выключаем и доматываем, если есть куда, витка три. Повторяем пункт 6 и делаем вывод что лучше.
Подобрав, таким образом, лучшее значение индуктивности для данной катушки её отпаиваем и проводим такие же манипуляции для другой, уравнивая их показания. Это необходимо для равномерного распределения нагрузки и потерь.
8. Запаиваем обе катушки и включаем, нагружаем, проверяем:
9. После того как мы убедились, что всё работает, настраиваем токоограничение. Делается это подачей максимальной выбранной нагрузки (выходной ток 8А,6А,5А:) и уменьшением номинала R3 до того момента пока не начнёт падать выходное напряжение. Это и будет порогом токоограничения. Если использован совсем короткий и низкоомный шунт, то возможен вариант, когда R3 выкорочен, а выходное напряжение не упало. Тогда необходимо увеличить номинал R4 в два-три раза и повторить настройку.
Тепловой режим
Хочется особо отметить, что основные потери и нагрев достаточно локализованы и ограничены диодами D1 и D2 и собственно потерями в меди катушек. При нагрузке в 6А(19В) происходит постепенный и уверенный подогрев диодов примерно до 40-50 градусов (планарный монтаж), поэтому, припаяв небольшие медные пластинки возле диодов можно немного улучшить их состояние с учётом того, что с увеличение их температуры, потери на них тоже увеличиваются (увеличивается обратный ток утечки, который на такой частоте и при таких токах и без того не мал), откуда и вытекают потери процентов КПД. Надеюсь синхронное выпрямление решит и эти вопросы.
На фото одна из сторон готовой платы. Несмотря на допустимые отклонения от рекомендуемых номиналов и способов изготовления этот экземпляр показал свою полную работоспособность при выходном токе 8А и выходном напряжении 19В. Так же на фото видно те самые пластинки возле одной из диодных сборок. Не удивляётесь что диодная сборка в D2PAC, а ключ в DPAC. При нагрузке менее 100 Вт ключ практически не греется, а той меди, к которой он припаян, вполне хватает для его охлаждения.
Итог
Итак, у нас получилось, что из одной материнской платы с 4х фазным питанием процессора и с применение SC1211 можно собрать два таких преобразователя, даже если во время наладочных работ спалить пару тройку ключей (на плате их минимум 12 штук, по 3 на каждую фазу), да и ещё останется целая куча других деталей. Раздобыть такие платы можно в ближайшем компьютерном сервисе за пару бутылок валерьянки, но автор предпочитает давать объявления о скупке нерабочего компьютерного барахла и их ему доставляют прямо домой по 1,5 — 2 у.е..
Что показывает технико-экономическое сравнение данного варианта? За пару у.е. купив плату и докупив две TL494, два кусочка текстолита 6х10см, два корпуса, две пары разъёмов и около 5м подходящего провода можно собрать за один день два преобразователя которые в ближайшем магазине продаются минимум за 30-35 у.е. каждый. И это притом, что общие затраты на два преобразователя, как правило, не превышают 6-8 у.е. Заработать или прилично сэкономить на этом можно и это для автора уже давно не вопрос. Но сделаете ли это Вы? Это остаётся вопросом.
На фото готовое устройство в корпусе от принтера HP с цепями сигнализации и масштабирующей
зажигалкой. Ради него автору пришлось ехать к одному из клиентов.
Надеюсь, что освятил все возможные вопросы.
Всем большое спасибо за то, что дочитали до конца.
Вопросы, как обычно, складываем тут.
Как вам эта статья? | Заработало ли это устройство у вас? |
www.radiokot.ru
Как самому собрать простой блок питания и мощный источник напряжения.
Порой приходится подключать различные электронные приборы, в том числе самодельные, к источнику постоянного напряжения 12 вольт. Блок питания несложно собрать самостоятельно в течении половины выходного дня. Поэтому нет необходимости приобретать готовый блок, когда интереснее самостоятельно изготовить необходимую вещь для своей лаборатории.
Блок питания 12в
Каждый, кто захочет сможет изготовить 12 — ти вольтовый блок самостоятельно, без особых затруднений.
Кому-то необходим источник для питания усилителя, а кому запитать маленький телевизор или радиоприемник …
Шаг 1: Какие детали необходимы для сборки блока питания …
Для сборки блока, заранее подготовьте электронные компоненты, детали и принадлежности из которого будет собираться сам блок ….
-Монтажная плата.
-Четыре диода 1N4001, или подобные. Мост диодный.
-Стабилизатор напряжения LM7812.
-Маломощный понижающий трансформатор на 220 в, вторичная обмотка должна иметь 14В — 35В переменного напряжения, с током нагрузки от 100 мА до 1А, в зависимости от того какую мощность необходимо получить на выходе.
-Электролитический конденсатор емкостью 1000мкФ — 4700мкФ.
-Конденсатор емкостью 1uF.
-Два конденсатора емкостью 100nF.
-Обрезки монтажного провода.
-Радиатор, при необходимости.
Если необходимо получить максимальную мощность от источника питания, для этого необходимо подготовить соответствующий трансформатор, диоды и радиатор для микросхемы.
Шаг 2: Инструменты ….
Для изготовления блока необходимы инструменты для монтажа:
-Паяльник или паяльная станция
-Кусачки
-Монтажный пинцет
-Кусачки для зачистки проводов
-Устройство для отсоса припоя.
-Отвертка.
И другие инструменты, которые могут оказаться полезными.
Шаг 3: Схема и другие …
Для получения 5 вольтового стабилизированного питания, можно заменить стабилизатор LM7812 на LM7805.
Для увеличения нагрузочной способности более 0,5 ампер, понадобится радиатор для микросхемы, в противном случае он выйдет из строя от перегрева.
Однако, если необходимо получить несколько сотен миллиампер (менее, чем 500 мА) от источника, то можно обойтись без радиатора, нагрев будет незначительным.
Кроме того, в схему добавлен светодиод, чтобы визуально убедиться, что блок питания работает, но можно обойтись и без него.
Схема блока питания 12в 30А.
При применении одного стабилизатора 7812 в качестве регулятора напряжения и нескольких мощных транзисторов, данный блок питания способен обеспечить выходной ток нагрузки до 30 ампер.
Пожалуй, самой дорогой деталью этой схемы является силовой понижающий трансформатор. Напряжение вторичной обмотки трансформатора должно быть на несколько вольт больше, чем стабилизированное напряжение 12в, чтобы обеспечить работу микросхемы. Необходимо иметь в виду, что не стоит стремиться к большей разнице между входным и выходным значением напряжения, так как при таком токе теплоотводящий радиатор выходных транзисторов значительно увеличивается в размерах.
В трансформаторной схеме применяемые диоды должны быть рассчитаны на большой максимальный прямой ток, примерно 100А. Через микросхему 7812 протекающий максимальный ток в схеме не составит больше 1А.
Шесть составных транзисторов Дарлингтона типа TIP2955 включенных параллельно, обеспечивают нагрузочный ток 30А (каждый транзистор рассчитан на ток 5А), такой большой ток требует и соответствующего размера радиатора, каждый транзистор пропускает через себя одну шестую часть тока нагрузки.
Для охлаждения радиатора можно применить небольшой вентилятор.
Проверка блока питания
При первом включении не рекомендуется подключать нагрузку. Проверяем работоспособность схемы: подсоединяем вольтметр к выходным клеммам и измеряем величину напряжения, оно должно составлять 12 вольт, или значение очень близко к нему. Далее подключаем нагрузочный резистор 100 Ом, мощностью рассеивания 3 Вт, или подобную нагрузку — типа лампы накаливания от автомобиля. При этом показание вольтметра не должно изменяться. Если на выходе отсутствует напряжение 12 вольт, отключите питание и проверьте правильность монтажа и исправность элементов.
Перед монтажом проверьте исправность силовых транзисторов, так как при пробитом транзисторе напряжение с выпрямителя прямиком попадает на выход схемы. Чтобы избежать этого, проверьте на короткое замыкание силовые транзисторы, для этого измерьте мультиметром по раздельности сопротивление между коллектором и эмиттером транзисторов. Эту проверку необходимо провести до монтажа их в схему.
Схема блока питания выдает регулируемое напряжение в диапазоне от 3 до 25 вольт, при токе максимальной нагрузки до 2А, если уменьшить токоограничительный резистор 0,3 ом, ток может быть увеличен до 3 ампер и более.
Транзисторы 2N3055 и 2N3053 устанавливаются на соответствующие радиаторы, мощность ограничительного резистора должно быть не менее 3 Вт. Регулировка напряжения контролируется ОУ LM1558 или 1458. При использовании ОУ 1458 необходимо заменить элементы стабилизатора, подающие напряжение с вывода 8 на 3 ОУ с делителя на резисторах номиналом 5.1 K.
Максимальное постоянное напряжение для питания ОУ 1458 и 1558 36 В и 44 В соответственно. Силовой трансформатор должен выдавать напряжение, как минимум на 4 вольт больше, чем стабилизированное выходное напряжение. Силовой трансформатор в схеме имеет на выходе напряжение 25.2 вольт переменного тока с отводом посредине. При переключении обмоток выходное напряжение уменьшается до 15 вольт.
Схема блока питания для получения напряжения 1,5 вольта, используется понижающий трансформатор, мостовой выпрямитель со сглаживающим фильтром и микросхема LM317.
Схема блока питания с регулировкой выходного напряжения для получения напряжения от 1,5 вольта до 12,5 вольт, в качестве регулирующего элемента применяется микросхема LM317. Ее необходимо установить на радиатор, на изолирующей прокладке для исключения замыкания на корпус.
Схема блока питания с фиксированным выходным напряжением напряжением 5 вольт или 12 вольт. В качестве активного элемента применяется микросхема LM 7805, LM7812 она устанавливается на радиатор для охлаждения нагрева корпуса. Выбор трансформатора приведен слева на табличке. По аналогии можно выполнить блок питания и на другие выходные напряжения.
Схема предназначена для небольшого трансивера самодельного изготовления, автор DL6GL. При разработке блока ставилась задача иметь КПД не менее 50%, напряжение питания номинальное 13,8V, максимум 15V, на ток нагрузки 2,7а.
По какой схеме: импульсный источник питания или линейный?
Импульсные блоки питания получается малогабаритный и кпд хороший, но неизвестно как поведет себя в критической ситуации, броски выходного напряжения …
Несмотря на недостатки выбрана схема линейного регулирования: достаточно объемный трансформатор, не высокий КПД, необходимо охлаждение и пр.
Применены детали от самодельного блока питания 1980-х годов: радиатор с двумя 2N3055. Не хватало еще только µA723/LM723-регулятор напряжения и несколько мелких деталей.
Регулятор напряжения напряжения собран на микросхеме µA723/LM723 в стандартная включении. Выходные транзисторы Т2, Т3 типа 2N3055 для охлаждения устанавливаются на радиаторы. При помощи потенциометра R1 устанавливается выходное напряжение в пределах 12-15V. При помощи переменного резистора R2 устанавливается максимальное падение напряжение на резисторе R7, которое составляет 0,7В (между контактами 2 и 3 микросхемы).
Для блока питания применяется тороидальный трансформатор (может быть любой по вашему усмотрению).
На микросхеме MC3423 собрана схема срабатывающая при превышении напряжения (выбросах) на выходе блока питания, регулировкой R3 выставляется порог срабатывания напряжения на ножке 2 с делителя R3/R8/R9 (2,6V опорное напряжение), с выхода 8 подается напряжение открывающее тиристор BT145, вызывающее короткое замыкание приводящее к срабатыванию предохранителя 6,3а.
Для подготовки блока питания к эксплуатации (предохранитель 6,3а пока не участвует) выставить выходное напряжение например, 12.0В. Нагрузите блок нагрузкой, для этого можно подключить галогенную лампу 12В/20W. R2 настройте, что бы падение напряжение было 0,7В (ток должен быть в пределах 3,8А 0,7=0,185Ωх3,8).
Настраиваем срабатывание защиты от перенапряжения, для этого плавно выставляем выходное напряжение 16В и регулируем R3 на срабатывание защиты. Далее выставляем выходное напряжение в норму и устанавливаем предохранитель (до этого ставили перемычку).
Описанный блок питания можно реконструировать для более мощных нагрузок, для этого установите более мощный трансформатор, дополнительно транзисторы, элементы обвязки, выпрямитель по своему усмотрению.
Если необходим мощный блок питания, на 3,3 вольта, то его можно изготовить, переделав старый блок питания от пк или используя выше приведенные схемы. К примеру, в схема блока питания на 1,5 в заменить резистор 47 ом большего номинала, или поставить для удобства потенциометр, отрегулировав на нужное напряжение.
У многих радиолюбителей остались старые советские радиодетали, которые валяются без дела, но которые можно с успехом применить и они верой и правдой вам долго будут служить, одна из известных схем UA1ZH, которая гуляет по просторам интернета. Много копий и стрел сломано на форумах при обсуждении, что лучше полевой транзистор или обычный кремниевый или германиевый, какую температуру нагрева кристалла они выдержат и кто из них надежнее?
У каждой стороны свои доводы, ну а вы можете достать детали и смастерить еще один несложный и надежный блок питания. Схема очень простая, защищена от перегрузки по току и при параллельном включении трех КТ808 может выдать ток 20А, у автора использовался такой блок при 7 параллельных транзисторов и отдавал в нагрузку 50А, при этом емкость конденсатора фильтра была 120 000 мкф, напряжение вторичной обмотки 19в. Необходимо учитывать, что контакты реле должны коммутировать такой большой ток.
При условии правильного монтажа, просадка выходного напряжения не превышает 0.1 вольта
Если нам необходимо иметь источник постоянного напряжения на высокое напряжение для питания лампы выходного каскада передатчика, что для этого применить? В интернете имеется много различных схем блоков питания на 600в, 1000в, 2000в, 3000в.
Первое: на высокое напряжение используют схемы с трансформаторов как на одну фазу, так и на три фазы (если имеется в доме источник трехфазного напряжения).
Второе: для уменьшения габаритов и веса используют бестрансформаторную схему питания, непосредственно сеть 220 вольт с умножением напряжения. Самый большой недостаток этой схемы — отсутствует гальваническая развязка между сетью и нагрузкой, как выход подключают данный источник напряжения соблюдая фазу и ноль.
В схеме имеется повышающий анодный трансформатор Т1 (на нужную мощность, к примеру 2500 ВА, 2400В, ток 0,8 А ) и понижающий накальный трансформатор Т2 — ТН-46, ТН-36 и др. Для исключения бросков по току при включении и защите диодов при заряде конденсаторов, применяется включение через гасящие резисторы R21 и R22.
Диоды в высоковольтной цепи зашунтированы резисторами с целью равномерного распределения Uобр. Расчет номинала по формуле R(Ом)=PIVх500. С1-С20 для устранения белого шума и уменьшения импульсных перенапряжений. В качестве диодов можно использовать и мосты типа KBU-810 соединив их по указанной схеме и, соответственно, взяв нужное количество не забывая про шунтирование.
R23-R26 для разряда конденсаторов после отключения сети. Для выравнивания напряжения на последовательно соединенных конденсаторах параллельно ставятся выравнивающие резисторы, которые рассчитываются из соотношения на каждые 1 вольт приходится 100 ом, но при высоком напряжении резисторы получаются достаточно большой мощности и здесь приходится лавировать, учитывая при этом, что напряжение холостого хода больше на 1,41.
Трансформаторный блок питания 13,8 вольта 25 а для КВ трансивера своими руками.
Трансформаторный блок питания
Ремонт и доработка китайского блока питания для питания адаптера.
Доработка блока питания
Схемы. Самодельный блок питания на 1,5 вольта, 3 вольта, 5 вольт, 9 вольт, 12 вольт, 24 вольта. Стабилизатор 7812, 7805
www.110volt.ru
Автолюбители часто используют ноутбуки в своих железных конях, в частности по прямому назначению либо как проигрыватель. Почти все ноутбуки питаются/заряжаются от напряжения, которое выше, чем напряжение бортовой сети автомобиля, поэтому есть необходимость в использовании повышающих преобразователей DC-DC типа.
Этот преобразователь особо простой, но имеет ряд особенностей.
1) Использование специализированного ШИМ контроллера в качестве задающего генератора
2) Стабилизация выходного напряжения и возможность ее регулировки
3) Высокая выходная мощность с учетом простых схематических решений
Преобразователь однотактный, построен на ШИМ контроллере из семейства UC38XX, советую использовать UC3843/45 — оба отлично справлялись с задачей.
Силовой транзистор может быт заменен на любой N-канальный, с током от 20 Ампер и с напряжением не менее 30 Вольт, лучше взять на 60-100 Вольт.
В моем варианте использован полевой транзистор IRFZ44, не смотря на то, что преобразователь импульсных, без нагрева никак , поэтому полевой транзистор и выходной диод устанавливают на радиатор, притом изолировать их корпуса от радиатора не нужно…
Вращением подстроечного резистора нужно выставить нужное выходное напряжение, оно индивидуально для каждого ноутбука и в первую очередь нужно смотреть на адаптер вашего ноутбука и выставить именно такое напряжение.
Дроссель — можно взять готовый от компьютерных блоков питания, либо мотать самому. Оптимальный материал — желтое кольцо с того же блока питания. Обмотка содержит 20 витков провода 1,2-1,5мм, диаметр обмотки естественно влияет на выходной ток.
Электролитический конденсатор должен иметь емкость не менее 680мкФ (лучше 2200) и расчетное напряжение 25-35 Вольт.
Именно эту схему можно доработать защитой от коротких замыканий, но об этом поговорим в другой раз.
На выходе преобразователя легко можно получить ток около 5 Ампер, что дает возможность питать ноутбук даже если в последнем не установлен аккумулятор.
P.S. печатная плата находиться в архиве, она отличается от той, что на фото, но изначально делал эксперименты, а конечную плату разработал только в конце, она тоже проверена, так, что смело можете повторить, если имеются прямые руки и базовые знания в электронике. Всем творческих успехов!
Архив; скачать…
Автор; АКА КАСЬЯН
xn--100—j4dau4ec0ao.xn--p1ai
Сразу после первого вояжа на машине с семьёй на море возникла идея сделать в автомобиле стационарную разводу розеток под USB для зарядки мобильных устройств. Кстати сейчас новые автомобили стали уже комплектовать с инверторами на 220В и соответственно розетками на 5В.
Я таких машин ещё не встречал.
Да, в продаже если и есть адаптеры на для мобильных ПК то они предназначены для зарядки одного, максимум двух устройств при условии, что второе устройство не такое уж мощное. У меня в машине и так постоянно подключены 3 адаптера, но спрятаны они под колодкой предохранителей.
А пассажиры пользуются адаптером, который втыкается в разъём в пепельнице, что мне не очень удобно, так как его постоянно задеваю при переключении передач. После дня пути обычно у пассажиров разрежаются все устройства и начинается возня с зарядками мобильников. Приходится даже свой навигатор отключать, чтобы зарядить чьё-нибудь устройство.
Можно было сделать, как делают многие, покупают колодку на несколько адаптеров и сопли проводов тянутся по всему салону. И так требуется устройство выдающие положенные 5 вольт и мощностью 10 А. Много? Прикинем: 4 телефона, потребляют около 1 А каждый, планшет порядка 2 А, навигатор больше 0,5 А видеорегистратор тоже 0,5 А и радар-детектор около 0,5 А. И того 7, 5 А.
В процессе было собрано 3 преобразователя, но не один не мог выдерживать и 3 А продолжительное время. Один так вообще загорелся.
Нормально заработала только эта схема.
Схема преобразователя DC/DC на MC34063
Плата устройства
Сборочный чертёж
Да, моя плата далека от идеала, умение разводить плату сравнимо с талантом. Полевик с диодом расположил так, чтобы можно было прицепить практически любой радиатор, сделав плату чуть длиннее, а крепёж уже по месту. Специально подгонять плату под корпус не стал в виду отсутствия такового. Все детали нашлись в первом раскуроченном блоке питания компьютера.
Для изготовления устройства понадобилось:
1. Конденсатор керамический С1 470 пФ (1шт)
2. Конденсатор электролитический С3,С5,С6 1000 мкФ, 16В (3шт)
3. Конденсатор электролитический С2 100 мкФ, 16В (1шт)
4. Конденсатор электролитический С4 470 мкФ, 25В лучше 50В(1шт)
5. Индуктивности DR1, DR2 типа гантелька (2шт)
6. Трансформатор импульсный DR3 кольцевой (1шт)
7. Индуктивность типа пенёк DR4 (1шт)
8. Винтовой клемник J1 (1шт)
9. Резистор R1 1,2 кОм (1шт)
10. Резистор R2 3,6 кОм (1шт)
11. Резистор R3 5,6 кОм (1шт)
12. Резистор R4 2,2 кОм (1шт)
13. Резистор R5 2,2 кОм или 1 кОм на 1ват (1шт)
14. Микроконтроллер U1 MC34063
15. Диод VD1, VD3 FR155 (2шт)
16. Диод VD2 SBL25L25CT (1шт)
17. Транзистор биполярный VT1 2SC1846 (1шт)
18. Полевой транзистор IRL3302 (1шт)
19. Панелька DIP8 (1шт)
20. Корпус по произвольным размерам
Основные компоненты: это сама микросхема U1, импульсный трансформатор DR3, мощный N канальный полевик VT2(может быть любым используемый в цепях питания) и диодная сборка VD2. Трансформатор VD3 изготовил из такого же трансформатора с того самого БП. Кольцо из пресспермалоя, желтого цвета. 27мм. Первичную обмотку набил проводом 2мм 22 витка, вторичную обмотку намотал проводом тоньше, 0,55 мм 44 витка.
Индуктивности DR1 DR2 типа гантелька взял как есть из БП. Индуктивность типа пенёк DR4 тоже самое. Транзистор и диод разместил на радиаторе от того же БП.
Всё собрал на печатной плате собственной разработки. В ходе лабораторных испытаний пришлось внести изменения в предложенную автором схему. Дело в том что сам автор указывает на то что резистор R5 греется, даже замена на более мощный резистор проблему не решает. В течении часа резистор этот у меня почернел и обуглился.
Решил попробовать увеличить сопротивление до 2,2кОм и всё греться он перестал. Транзистор VT1, перестраховался, заменил на более мощный. Трансформатор DR3 тоже сначала не много грелся, перемотал, добавил количество витков в первичную и во вторичную обмотки, стало 30 и 60.
Не знаю, что там с фронтами открытия полевого транзистора но схема работает нормально, при нагрузке в 2А устройство остаётся холодным. Радиаторы на транзистор и диод можно большие не ставить. Поставил на выходе +5В ферритовое кольцо, для уменьшения помех.
Вот мой первый, рабочий, испытательный прототип.
Испытание на сопротивление 1Ом сопротивление быстро нагрелось сила тока на фото.
И последние, кипятильник на 5В в работе. Смотрите силу тока на фото. Да вот тут уже начали греться транзистор с диодом.
Испытывал свой преобразователь на 5 А работал почти весь день так немного тёплый. Потом нашёл старый блок питания от монитора которого уже нет. Плату пустил в разбор, в корпус уместил свою схему. Транзистор и диод расположил на кулере от старого ноутбука. В противоположной стороне коробки просверлил ряд отверстий. Очень даже получилось ничего. Воздух будет прокачиваться через всю схему.
Готовое устройство на установку в автомобиль.
Розетки двойные под USB планирую врезать в одну в переднюю панель вместо кнопки-зглушки и вторую к задним пассажирам в подлокотник передних сидений. Также думаю одинарную розетку в панель передней левой стойки и подвести питание к видеорегистратору который находится у зеркала. По данной схеме можно собрать вообще универсальный блок питания, то есть добавить каскад преобразования из 12В в 19В для питания ноутбука, что планирую в будущем.
Архив к статье: скачать…
Автор; Максим Батурин г.Мурманск
xn—-7sbgjfsnhxbk7a.xn--p1ai
Вновь про 18 вольт из 12.
Любому Коту свойственны любопытсво, творческий подход и здоровая лень. Рассказ об этом я и хочу преподнести в качестве подарка на День рождения.
Доводится мне изредка закручивать ну очень много шурупов в месте, далеком от цивилизации и «централизованного электропитания». Вроде раньше и руками особо не напрягало — все-таки изредка, — но досталась мне по случаю… э-э-э… скажем, электроотвертка — далее ЭО. Кормилась она от аккумулятора, и его вполне хватало на «комплект шурупов». Сначала хватало… Но настал момент… Руки к тому моменту крутить уже ничего особо не хотели — к халяве быстро привыкаешь, поэтому пришлось задуматься — «что делать?»
Исследования показали, что ЭО согласна на любое напряжение… Ну почти… По крайней мере, предложенные ей 12 вольт (а ничего другого вот так просто я ей предложить и не мог) она есть согласилась, но работала при этом столь неохотно и ме-е-едленно… В итоге мы с ней сошлись на 18 вольтах с током до 2 ампер, и я начал думать, где их добывать вдали от…
И тут… На глаза мне попалась интересная схема:
(отсюда: https://radiokot.ru/forum/viewtopic.php?t=7484&postdays=0&postorder=asc&start=0 (с)Borodach)
Особенно привлекательной в этой схеме была возможность использовать детали, легко извлекающиеся из хлама на столе.
Собранный в виде «ежика» макет в общем работал… Но вот выходное напряжение…
Оно стабилизировалось как-то не очень… То ли детальки были использованы не совсем «правильные», то ли звезды в тот момент не способствовали… В итоге прочувствовавший всю степень моего неудовлетворения коллега, сидящий за соседним столом, внес в схему «косметические» изменения… Потом еще раз… И еще… В результате родилось это:
«Это» давало вполне сносные 18 вольт, начиная примерно с 7 вольт на входе, и держало эти 18 вольт «мертвой хваткой» при повышении входного напряжения.
Нет, свои «мобильные» 12 вольт до 7 я стараюсь не опускать, но вдруг…
Было решено превратить макет в «железку», больше подходящую для использования «на выезде», и получилась такая плата:
Миниатюризация — в данном случае, — показалась мне излишней, тем более эта
плата очень удачно вписалась в имеющуюся коробочку из алюминия. Которая по
совместительству станет играть роль радиатора — испытания показали, что он будет
не лишним. На картинке роль радиатора выполняет подручная железка.
Детали на плате слегка отличаются от указанных на схеме. Конденсатор на входе
всего 2200 мкФ, от 1000 мкФ выходного осталось где-то две трети — усох, в
«гейте» полевого транзистора стоит 2,4 Ома, в качестве диода используется
половинка 12-вольтной пары из компьютерного блока питания (один диод в ней стал
«гвоздем»). Дроссель намотан «канатиком» из 7 свитых жил ПЭЛ(В)-0,3…0,4 мм.
Светодиод последовательно со стабилитроном служит не столько индикатором,
сколько дает возможность получить 18 вольт с имеющимся КС515А -
«высоковольтный» стабилитрон оказался самой труднонаходимой деталью.
«Прогон» платы показал, что при примерно 18 В на выходе и токе нагрузки 2,383А
от источника 12 В потребляется 4,17А — то есть вполне приличный КПД около 86
процентов, и это с довольно длинными и тонкими подводящими проводами.
Остальные 14 процентов довольно солидно грели радиатор и дроссель, но,
поскольку режим работы ЭО «повторно-кратковременный», было принято решение -
«сойдет», и, после упаковки в корпус, готовое изделие отправилось на натурные
испытания.
В заключение, несколько слов об отличии «получившейся» схемы от оригинальной.
Собственно, в оригинальной схеме мы имеем «чистый ШИМ» — при постоянной частоте
таймера изменяется время открытого состояния транзистора. В «получившейся» -
время открытого состояния транзистора примерно одинаково, а длительность
закрытого зависит от нагрузки. Так что, возможно, оригинальная схема у меня
работала не очень хорошо из-за «плохой» для нее частотной характеристики
использованного транзистора, а звезды и карма здесь совсем ни при чем.
И еще — в оригинальной схеме, как мне кажется, дело с пульсациями выходного
напряжения должно обстоять несколько лучше, чем в «получившейся». Но поскольку
ЭО пульсации волнуют мало, то и я ими особенно не заморачивался.
Файлы:
Печатная плата в формате ACCEL P-CAD 14.
Вопросы, как обычно, складываем тут.
Как вам эта статья? | Заработало ли это устройство у вас? |
www.radiokot.ru
Мне кажется, что лучше купить зарядное для авто. <a rel=»nofollow» href=»http://www.mobyservice.ru/products/1397″ target=»_blank» >Ссылка. </a> По напряжению и току подходит, надо ещё знать размеры разъёма в ноутбуке.
Самое простое — купить преобразователь 12/220 В, и спокойно заряжать
тебе нужно купить ферритовое кольцо с ладонь) и сделать из него трансформатор) 2 мотка провода на первый моток подаешь 12 вольт второй моток должен быть по кол- ву витков больше для усиления вольтажа! а сколько витков это надо измерять вольтметром! пока не покажет стабильно 19 вольт) ) сечение провода нормальное бери чтоб меньше сопротивления мощности было больше)!! ! а так еще кондеров можно напаять для стабильности) вообще ищи в инете все схемы) напряжение это важно всегда) не важно сила тока в каком смысле? нагрузка всегда возьмет стока силы тока сколько ей нужно даже если источник дает больше ( будет просто в запасе) а вольтаж и полярность всегда важно соблюдать)
двенадцать тоже будет заряжать, только немного медленнее, зато заряд будет плотнее
про закон сохранения энергии слышал? какая разница во сколько вольт преобразовывать — важно не напряжение, а мощность. наприер, в машине с розетки обычно снимается 100 ватт. Тебе надо всего 50.
можеш сам сделать преобразователь (инвертор) на любое напряжение, а есть готовые на 12/24 24 поидут на зарядку
Автомобильный преобразователь напряжения с 12-220 Вольт (инвертер) предназначен для питания различных устройств, таких как: ноутбук, принтер, телевизор, видеомагнитофон. Автомобильный преобразователь напряжения, представляет собой бестрансформаторное устройство, подключаемое к аккумулятору через гнездо прикуривателя автомобиля. Модель мощностью 100 Ватт имеет так же стрелочные индикаторы входного и выходного напряжения. Устройство содержит многоуровневую защиту: предохранитель на входе, внутренние плавкие элементы схемы (термозащита, защита от перегрузки и короткого замыкания) . Так как преобразователь во время своей работы выделяет тепло — в нём есть вентилятор принудительного охлаждения. Большинство автомобильных аккумуляторов имеют внутреннюю емкость не более 55-60Ач, что обеспечивает работу большинства подключаемых к преобразователю электроприборов в течении 10-15 часов без завода двигателя. С заведенным же двигателем время работы электроприборов практически не ограничено. <img src=»//otvet.imgsmail.ru/download/f2f858024b41ad2d785b40f9f72712f7_i-55.jpg» >
touch.otvet.mail.ru
Детали для преобразователяДля сборки преобразователя своими руками понадобится минимум деталей: два транзистора КТ837К, электролитический конденсатор ёмкостью 10-100 мкФ и с рабочим напряжением 16-50 В, ферритовое кольцо с размерами 16x8x5 мм, радиаторы для транзисторов и примерно два метра эмалированного провода диаметром 0,5 мм. | |
Схема устройстваПреобразователь представляет собой однокаскадный двухтактный генератор, поэтому желательно, чтобы транзисторы имели максимально близкие параметры — максимально допустимые напряжения и токи, а также — коэффициент усиления. Данные обмоток трансформатора: I и II — 6 витков провода диаметром 0,5 мм. Обмотки наматываются проводом, сложенным вдвое. III и IV — 10-11 витков того же провода, что и в обмотках I и II, способ намотки — тот же. Катушки наматываются на ферритовом кольце с предварительно сточенными надфилем острыми гранями. Можно использовать близкие по габаритам кольца от неисправных материнских плат или блоков питания компьютеров — такие детали острых граней, способных повредить изоляцию провода, не имеют. | |
Намотка трансформатораНа снимке изображён только что намотанный трансформатор. Первичные обмотки — I и II — имеют более длинные отводы. | |
Вызваниваем обмотки, начало I-й соединяем с концом II-й; начало IV-й — с концом III-й. Чтобы при дальнейшей сборке не запутаться, на выводы надеваем цветные кембрики (изоляция от проводов) — первичные обмотки — синие трубки, вторичные — красные. Кроме того, начало обмоток отмечено длинной трубкой, отвод от середины — средней и конец — короткой. | |
Выводы трансформатора нужно зачистить и облудить, после чего обрезать излишки с таким расчётом, чтобы залуженная часть провода составляла 4-7 мм. Для предотвращения излишней вибрации проводов обмоток трансформатор можно обмотать несколькими слоями изоленты или пропитать лаком либо эпоксидной смолой. | |
Подготовка транзисторовТранзисторы устанавливаем на радиаторы. В случае сборки схемы с целью эксперимента можно обойтись радиаторами небольших размеров, если предстоит «настоящая» эксплуатация преобразователя — радиаторы должны иметь площадь не менее 25 см2. | |
Припаиваем выводы трансформатора к транзисторам так, как указано на фото. | |
Теперь очередь за проводами подвода питающего напряжения и выхода на нагрузку. Припаиваем и последнюю оставшуюся деталь — электролитический конденсатор. | |
Проверка работы преобразователяДля проверки работоспособности преобразователя подготавливаем источник питания с напряжением 5-6 В (например, аккумулятор от фонаря) и автомобильную лампу 12 В 10-12 Вт. В моём случае использована лампа 12 В 21 Вт, что превышает допустимую мощность нагрузки почти в два раза. | |
Подключаем лампу, питание и — да будет свет! Несмотря на чрезмерную нагрузку, напряжение на лампе составляет 11,19 В. | |
Сила тока, протекающего через лампу — 1,72 А. Переходы транзисторов КТ837 способны выдержать и более высокие токи, но злоупотреблять тут не стоит — через несколько десятков секунд радиаторы уже ощутимо нагрелись. | |
Как видно на снимке, напряжение нового, но ещё не бывавшего на зарядке аккумулятора просело до 5,78 В. | |
Измеряем потребляемый устройством ток. Учитывая, что преобразователь работает с почти двойной перегрузкой, то 6,25 А — вполне ожидаемый результат. | |
При снятии нагрузки потребляемый устройством ток ничтожно мал. Интересная особенность такого преобразователя напряжения — при отсутствии нагрузки он запускается уверенно; если при работе на холостом ходу подключить нагрузку, генерация не срывается. Для читателей, решивших повторить конструкцию, добавлю, что можно обойтись одним общим большим радиатором, но в этом случае металлические части транзисторов должны быть от него надёжно изолированы. |
www.sami-svoimi-rukami.ru