Я, субъект персональных данных, в соответствии с Федеральным законом от 27 июля 2006 года № 152 «О персональных данных» предоставляю ООО «Мега групп» (далее — Оператор), расположенному по адресу 115191, г. Москва, Духовской переулок, дом 17, стр. 15, согласие на обработку персональных данных, указанных мной в форме веб-чата и/или в форме заказа обратного звонка на сайте в сети «Интернет», владельцем которого является Оператор.
Состав предоставляемых мной персональных данных является следующим: ФИО, адрес электронной почты и номер телефона.
Целями обработки моих персональных данных являются: обеспечение обмена короткими текстовыми сообщениями в режиме онлайн-диалога и обеспечение функционирования обратного звонка.
Согласие предоставляется на совершение следующих действий (операций) с указанными в настоящем согласии персональными данными: сбор, систематизацию, накопление, хранение, уточнение (обновление, изменение), использование, передачу (предоставление, доступ), блокирование, удаление, уничтожение, осуществляемых как с использованием средств автоматизации (автоматизированная обработка), так и без использования таких средств (неавтоматизированная обработка).
Начнем с того, что резкая остановка разогретого двигателя после активной езды на высоких оборотах или эксплуатации мотора в нагруженном режиме может стать причиной серьезных поломок силового агрегата. Глушить двигатель сразу в подобной ситуации не рекомендуется как в случае с атмосферными ДВС, так и в случае необходимости быстрой остановки бензинового или дизельного двигателя с турбонаддувом.
Рекомендуем также прочитать статью о том, какой срок службы турбины на дизеле. Из этой статьи вы узнаете о том, от чего зависит ресурс турбины и какие поломки актуальны применительно к турбокомпрессору на дизелях и бензиновых турбомоторах.Содержание статьи
Давайте представим стандартную ситуацию, когда поездка завершилась и водитель принял решение заглушить двигатель автомобиля. Общий алгоритм действий прост и понятен: после снижения скорости выжать сцепление на МКПП, перевести рычаг выбора передачи в нейтраль, нажать на педаль тормоза, дернуть «ручник». Все, теперь можно глушить двигатель. В случае с коробкой «автомат» достаточно нажать на тормоз и остановить машину, после чего перевести рычаг КПП в положение «P» и поставить авто на стояночный тормоз. Мотор теперь может быть остановлен. Данные действия у многих водителей доведены до автоматизма, на их выполнение требуется всего несколько секунд.
Если учесть, что двигатель испытывал до этого серьезные нагрузки и максимально разогрелся до рабочей температуры, тогда вполне очевидно, что пары секунд работы на «холостых» не достаточно. Другими словами, система охлаждения не успевает эффективно отвести избытки тепла от ДВС.Достаточно вспомнить принцип работы системы охлаждения: ОЖ в каналах циркулирует тогда, когда мотор работает. Охлаждающая жидкость перемещается по каналам рубашки охлаждения благодаря работе водяного насоса (помпы), который, в свою очередь, приводится в действие от двигателя. По этой причине следует глушить атмосферный двигатель не ранее, чем через 10-30 секунд после работы на холостых.
Если силовой агрегат оснащен системой турбонаддува, тогда глушить такой двигатель сразу крайне нежелательно. Данное требование справедливо как для дизелей, так и для бензиновых авто. Более того, режим нагрузок на ДВС не имеет большого значения.
Игнорирование данного правила приводит не только к локальным перегревам мотора, но и добавляются возможные поломки турбокомпрессора, значительное сокращение его ресурса и т.д. Проблема заключается в том, что турбина работает за счет потока выхлопных газов и сильно разогревается от контакта с ними. Если резко заглушить двигатель, произойдет остановка горячего турбокомпрессора. В результате подача моторного масла, которое смазывает и охлаждает подшипники турбины, полностью прекращается. Инерционного вращения турбокомпрессора после остановки мотора достаточно для работы практически «на сухую». Получается, температура турбины сильно повышается, смазка подшипников турбины происходит только за счет остаточного масла в самом турбокомпрессоре. Под воздействием высоких температур и нагрузок остаточное масло коксуется, страдают от износа механические элементы турбонагнетателя.
Рекомендуем также прочитать статью об устройстве турбины на дизеле. Из этой статьи вы узнаете о принципах работы и конструктивных особенностях турбокомпрессора на моторах данного типа.С учетом вышесказанного турбомоторы нужно глушить только после того, как двигатель поработает в режиме холостого хода от 60 секунд до 2-3 минут. За это время температура турбины снижается, так как интенсивность и температура потока выхлопных газов на холостом ходу минимальна. Любой автомобиль рекомендуют глушить не ранее десяти секунд после полной остановки транспортного средства, это относится к любым типам двигателей и автомобилям.
На профильных автофорумах многие интересуются, почему на заглушенном двигателе работает вентилятор. Также новоиспеченные обладатели турбомоторов часто поднимают тему: «не могу заглушить двигатель ключом». Чтобы было понятно, большинство современных авто имеют штатную защиту. Например, если сразу остановить горячий двигатель, тогда:
Как перегрев, так и быстрое неравномерное охлаждение может привести к повреждениям различных деталей агрегата (поршни, кольца, ГБЦ и т.д.). По этой причине вентилятор системы охлаждения двигателя может работать некоторое время после остановки мотора, питаясь от АКБ. Данное решение позволяет охладить двигатель, минимизируя возможные последствия.
Что касается турбированных агрегатов, на многих автомобилях стоит так называемый турботаймер. Простыми словами, данное устройство позволяет автоматически глушить двигатель с турбиной через заданный промежуток времени.
Если иначе, мотор будет остановлен не сразу после того, как ключ был вынут из замка зажигания. Такое решение является «страховкой» на тот случай, если водитель после езды забыл дать поработать дизельному мотору или бензиновому агрегату на холостых. Также установка турботаймера позволяет водителю сразу выйти из автомобиля и поставить его в режим охраны, не дожидаясь определенного времени, чтобы охладить турбину. Главным недостатком можно считать необходимость ставить автомобиль на «ручник» на авто с МКПП, что может привести к подмерзанию задних тормозных колодок в зимний период после длительной стоянки.
Хотелось бы отметить, что различные производители могут усложнять описанные выше системы защиты, комбинируя тот или иной способ, дорабатывая охлаждение двигателя и турбокомпрессора. При этом нужно всегда помнить, что опасность после резкой остановки мотора присутствует всегда. По этой причине целесообразно не глушить агрегат сразу после остановки при такой возможности. Особенно это актуально для всех ДВС применительно к зимнему периоду эксплуатации, а также для агрегатов с турбиной без турботаймера. Также не рекомендуется глушить двигатель при работающем вентиляторе, так как это указывает на значительный нагрев и стремление системы охлаждения снизить температуру.Еще одним нюансом является аварийная остановка мотора в случае перегрева. Нельзя сразу глушить такой агрегат, так как это может привести к заклиниванию, деформации ГБЦ и т.д.
Если вы заметили в движении, что мотор перегрелся (температура выше нормы, но не на критической отметке), тогда автомобиль нужно остановить при помощи тормозной системы (крайне желательно избежать торможения двигателем в том случае, если позволяет дорожная ситуация) и позволить силовой установке поработать еще около 30 сек. на холостом ходу. Этого времени будет достаточно, чтобы снизить опасный нагрев ЦПГ перед полной остановкой ДВС.
Если этого не сделать, тогда возможными последствиями может стать ситуация, когда водитель остановил машину, заглушил двигатель, завелся и мотор заклинило. Еще одним вариантом является такой, когда после немедленной остановки перегретого двигателя мотор стартером больше не проворачивается.
Читайте также
Автопроизводители утверждают, что современные турбины надежно защищены от перегрева. На самом деле погонять турбомотор на холостом ходу после поездки нужно. Но есть исключения.
Материалы по теме
Владельцам автомобилей с турбированными двигателями всегда советовали не глушить мотор сразу после поездки и тем самым охлаждать турбину. В результате перегрева в ней могут появляться задиры, а смазка на раскаленных поверхностях склонна закоксовываться. Все это влияет на срок службы дорогостоящего агрегата.
Но сегодня автопроизводители утверждают, что охлаждать турбину после поездки больше не нужно — новые материалы, масла и технологии автономного охлаждения надежно защищают ее от перегрева. При этом принципиально в турбине ничего не изменилось.
Современные турбины, благодаря новейшим смазочным материалам и улучшенным сплавам, способны работать на протяжении всего срока службы двигателя. Но здесь необходимо оговориться, что немногие из современных моторов имеют ресурс более 300 000 км. Некоторые агрегаты, согласно описанию автопроизводителей, рассчитаны всего на двести с небольшим тысяч пробега. Соответственно, дальнейшее состояние турбины, да и двигателя в целом, уже не является проблемой автопроизводителя.
Из топ-25 самых популярных в России автомобилей турбомоторами оснащаются пять, а из этих пяти дополнительный электрический насос, охлаждающий турбокомпрессор, устанавливается лишь на Skoda Kodiaq, Skoda Octavia A7 и VW Tiguan. После остановки мотора компрессор прокачивает охлаждающую жидкость в течение пары минут, чтобы охладить турбину.
Вывод эксперта:
«Если ваш автомобиль не оборудован электрическим насосом, качающим охлаждающую жидкость после остановки, настоятельно рекомендуем выдерживать паузы в одну-две минуты, прежде чем глушить мотор, поработавший на пределе».
Подробности расследования и другие выводы — в майском выпуске журнала «За рулем» (уже в продаже).
Двигатели с наддувом нельзя глушить сразу — им надо дать поработать минуту-другую на минимальных оборотах холостого хода, чтобы остыл турбокомпрессор. Это утверждение пришло из конца прошлого века. Справедливо ли оно сегодня? Нет! Если, конечно, производитель не сэкономил, а такие примеры тоже есть.
Материалы по теме
Источником энергии турбокомпрессора являются раскаленные выхлопные газы ДВС: чем выше их температура и давление, тем интенсивнее крутится ротор турбокомпрессора. Турбокомпрессор нагревается по трем причинам: от горячих газов, поступающих в турбинную часть, от сжатия воздуха в компрессоре и от трения в подшипниках. Максимальный нагрев происходит при работе двигателя на пике мощности. Это проявляется при движении на высоких скоростях по магистрали. Одно из самых провокационных мест — бензоколонка на скоростной магистрали. Всего несколько десятков метров от трассы — и мотор надо глушить.Другая возможность сильно нагреть турбокомпрессор — это езда в тяжелых условиях: по бездорожью и т. п. Максимальную мощность мотор при этом не разовьет, поскольку колеса сорвутся в пробуксовку. Однако отсутствие встречного воздушного потока способствует росту температуры двигателя, а заодно и турбокомпрессора. Перегрев возможен и при движении в горах с большим количеством подъемов, а также с прицепом.
Но пик неприятностей наступает не во время работы, а потом! После остановки двигателя охлаждение раскаленного турбокомпрессора резко ухудшается. Масло уже не подается, тепло уходит в подшипниковый узел, остатки смазки в подшипнике и его уплотнениях начинают закоксовываться. Со временем это приводит к ухудшению уплотнения и нарушению расчетного режима работы подшипника. А вращение ротора без подачи масла под давлением провоцирует появление задиров.
Системы жидкостного охлаждения турбокомпрессора также прекращали работу после остановки мотора и, соответственно, не отводили тепло от агрегата наддува. Поэтому и появились рекомендации не глушить моторы сразу, а дать им поработать какое-то время на минимальных оборотах холостого хода. Масло и охлаждающая жидкость при этом будут циркулировать, температура выпускных газов, поступающих в турбинную часть, понизится — в итоге турбокомпрессор остывает, а затем мотор можно безбоязненно глушить.
Турбокомпрессор с «рубашкой» охлаждения: 1. Корпус компрессора 2. Подшипниковый узел 3. Колесо компрессора; 4. Пневмокамера управления давлением наддува 5. Корпус подшипников 6. Подвод охлаждающей жидкости 7. Клапан регулировки давления наддува 8. Корпус турбины 9. Колесо турбины 10. Отвод охлаждающей жидкости.Турбокомпрессор с «рубашкой» охлаждения: 1. Корпус компрессора 2. Подшипниковый узел 3. Колесо компрессора; 4. Пневмокамера управления давлением наддува 5. Корпус подшипников 6. Подвод охлаждающей жидкости 7. Клапан регулировки давления наддува 8. Корпус турбины 9. Колесо турбины 10. Отвод охлаждающей жидкости.
Материалы по теме
Рекомендация тут же породила появление новых электронных примочек — турботаймеров. После поворота ключа зажигания двигатель будет пару-тройку минут работать на минимальных оборотах, чтобы охладить турбину и продлить срок ее службы. Одними из первых турботаймеры предложили разработчики охранных систем, добавив в сигнализацию новую функцию для владельцев автомобилей с турбонаддувом. Предложение стало пользоваться спросом, а потому появились отдельные электронные блоки, выполняющие функцию отложенного выключения двигателя.Штатно же турботаймеры не устанавливают даже на автомобили с заряженными двигателями. И не потому, что проблема куда-то пропала — принципиально в ДВС ничего не поменялось. Да, изменились и стали более совершенными конструкции, материалы и смазки, но перегрева турбокомпрессоры по-прежнему не любят. Может, автопроизводители применяют иные средства защиты турбокомпрессоров от перегрева?
Некоторые компании (в частности, Porsche, Volkswagen, Skoda, Jaguar) на многие модели с турбонаддувом устанавливают электрические циркуляционные насосы, которые при необходимости подают к турбокомпрессору охлаждающую жидкость. В том числе и после остановки двигателя — антифриз некоторое время циркулирует через агрегат, препятствуя его перегреву. Напоминает аналогичный режим работы электровентиляторов системы охлаждения, реализованный на большинстве современных автомобилей. Мотор выключен, а вентилятор продолжает крутиться. Понятно, что в этом случае в турботаймере нет необходимости.
Многие автопроизводители перекладывают функцию интеллектуального турботаймера на водителя! В большинстве инструкций отмечено, что после эксплуатации автомобиля в режимах, близких к предельно допустимым, рекомендуется перед выключением мотора дать ему поработать без нагрузки в течение нескольких минут. То есть советы остались теми же, что и десятилетия назад.
В прошлом году из 25 самых продаваемых в России моделей турбокомпрессорами были оснащены пять. При этом дополнительный электрический насос, охлаждающий турбокомпрессор, используют в трех моделях — это Skoda Kodiaq, Skoda Octavia A7 и VW Tiguan. Выходит, большинство производителей сравнительно доступных автомобилей не заморачивается подобными проблемами. Логика проста: удорожания не происходит, а гарантийный срок автомобиль, скорее всего, и так выходит. Что дальше — забота владельца.
Если вы позволите турбине слишком долго работать без обслуживания, вы можете рассчитывать на замену некоторых очень дорогих внутренних деталей. В случае этого турбонагнетателя дополнительное тепло, создаваемое трением крыльчатки о теплозащитный экран, заставляло втулки фактически вращаться в своем движении. Ремонт этого будет очень дорогим.
Три основных причины этого типа коксования и износа внутри Garrett Turbo заключаются в следующем:
При проведении досрочного ремонта турбокомпрессора обычно требуется только очистка и замена втулок, упорных шайб и динамических уплотнительных колец.Это может снизить стоимость до 100 долларов. Турбины следует снимать каждые 80 000–100 000 миль для этого типа профилактического обслуживания. Когда вы сделаете это, вы продляете срок службы турбонагнетателя, увеличите экономию топлива и выходную мощность двигателя.
Если вы думаете, что предыдущий турбо был плохим. Взгляните на один, который я разобрал два дня спустя:
Накопление углерода было настолько сильным, что необратимо повредило наконечники крыльчатки выхлопной турбины. Это тост.Вот что происходит, когда вы слишком долго не проводите никакого технического обслуживания с турбонаддувом. На этом двигателе было 205 000 миль пробега, а турбина никогда не открывалась.
Мы предлагаем все, что вам нужно, вплоть до прокладок, уплотнений и инструментов, которые вам понадобятся для правильного выполнения этой работы!
Ознакомьтесь с нашими сопутствующими продуктами. И обязательно посмотрите это короткое видео о внутренней проверке: Garrett T3 Turbo Charger Internal Inspection
, Что такое аэронавтика? | динамика
полета | Самолеты | Двигатели
| История полета | какой
такое UEET?
Словарь | Весело
и игры | Образовательные ссылки | Урок
ланы | Индекс сайта | Дом
Двигатели |
НОВИНКА! Мы считаем само собой разумеющимся, насколько легко самолет весом более половины
миллион фунтов отрывается от земли с такой легкостью. Как это бывает?
Ответ прост. Это двигатели. Пусть Тереза Беньо из Исследовательского центра Гленна НАСА объяснит подробнее … Как показано на НАСА Пункт назначения завтра. |
Реактивные двигатели перемещают самолет вперед с большой силой, создаваемой огромная тяга и заставляет самолет лететь очень быстро.
Все реактивные двигатели, которые еще называют газовые турбины, работают по тому же принципу. Двигатель всасывает воздух спереди с помощью вентилятора. Компрессор повышает давление воздуха. Компрессор сделан с множеством лезвий, прикрепленных к валу. Лезвия вращаются на высокой скорости и сжимают или сжимают воздух. Сжатый затем воздух распыляется с топливом, и электрическая искра зажигает смесь. горящие газы расширяются и выбрасываются через сопло в задней части двигателя.Когда струи газа летят назад, двигатель и самолет движутся вперед. Когда горячий воздух попадает в сопло, он проходит через другую группу лопастей. называется турбина. Турбина прикреплена к тому же валу, что и компрессор. Вращение турбины вызывает вращение компрессора.
На изображении ниже показано, как воздух проходит через двигатель. Воздух проходит ядро двигателя, а также вокруг ядра.Это вызывает некоторую часть воздуха чтобы было очень жарко, а некоторым было прохладнее. Затем более холодный воздух смешивается с горячим воздух на выходе из двигателя.
Это изображение того, как воздух проходит через двигатель
Тяга это передовая сила, которая толкает двигатель и, следовательно, самолет вперед. Сэр Исаак Ньютон обнаружил, что «каждому действию соответствует и противоположная реакция «. Двигатель использует этот принцип. Двигатель принимает в большом объеме воздуха. Воздух нагревается, сжимается и замедляется. Воздух проходит через множество вращающихся лопастей. Смешивая этот воздух со струей топлива, температура воздуха может достигать трех тысяч градусов. мощность воздуха используется для вращения турбины. Наконец, когда воздух уходит, он выталкивает назад из двигателя.Это заставляет самолет двигаться вперед.
Поклонник — Вентилятор — это первый компонент в ТРДД. Большой вращающийся вентилятор всасывает большое количество воздуха. Большинство лезвий Вентиляторы выполнены из титана. Затем он ускоряет этот воздух и разбивает его на две части. Одна часть продолжается через «ядро» или центр двигателя, где на него действуют другие компоненты двигателя.
Вторая часть «в обход» ядра двигателя. Проходит через воздуховод который окружает ядро к задней части двигателя, где он производит большую часть сила, которая толкает самолет вперед. Этот более прохладный воздух помогает успокоить двигатель, а также добавление тяги к двигателю.
Компрессор — Компрессор первый компонент в ядре двигателя. Компрессор состоит из вентиляторов с множеством лопастей. и прикреплен к валу.Компрессор сжимает попадающий в него воздух в постепенно уменьшаются площади, что приводит к увеличению давления воздуха. это приводит к увеличению энергетического потенциала воздуха. Сдавленный воздух попадает в камеру сгорания.
Камера сгорания — В камере сгорания воздух перемешивается с топливом, а затем воспламеняется. Имеется до 20 форсунок для распыления топлива. воздушный поток. Смесь воздуха и топлива загорается.Это обеспечивает высокую температура, высокоэнергетический воздушный поток. Топливо горит вместе с кислородом в сжатом состоянии. воздух, выделяющий горячие расширяющиеся газы. Внутри камеры сгорания часто делают керамических материалов для создания термостойкой камеры. Жара может достигать 2700 °.
Турбина — Приближается высокоэнергетический воздушный поток из камеры сгорания попадает в турбину, вызывая вращение лопаток турбины. Турбины связаны валом для вращения лопаток компрессора и вращать впускной вентилятор спереди.Это вращение забирает некоторую энергию из поток высокой энергии, который используется для привода вентилятора и компрессора. Газы вырабатываемые в камере сгорания движутся через турбину и вращают ее лопатки. Турбины реактивного самолета вращаются тысячи раз. Они закреплены на валах между которыми установлено несколько комплектов шарикоподшипников.
Сопло — Форсунка — вытяжной канал двигатель. Это та часть двигателя, которая на самом деле создает тягу для самолет.Поток воздуха с пониженным энергопотреблением, который проходил через турбину, в дополнение к более холодный воздух, проходящий мимо сердечника двигателя, создает силу при выходе из сопло, которое толкает двигатель и, следовательно, самолет вперед. Комбинация горячего и холодного воздуха удаляется и производит выхлоп, который вызывает прямую тягу. Соплу может предшествовать смеситель , который сочетает в себе высокотемпературный воздух, поступающий из сердечника двигателя, с более низкая температура воздуха, который был обойден вентилятором.Миксер помогает сделать двигатель тише.
Сэр Исаак Ньютон в 18 веке был первым предположил, что взрыв, направленный назад, может привести в движение машину вперед с большой скоростью. Эта теория была основана на его третьем законе движение. Когда горячий воздух проходит через сопло назад, самолет движется вперед.
Анри Жиффар построил дирижабль, который первым авиадвигателем — паровым двигателем мощностью три лошадиные силы. Это было очень тяжелый, слишком тяжелый, чтобы летать.
В 1874 году Феликс де Темпл построил моноплан. который пролетел всего лишь короткий прыжок вниз с холма с помощью угольного парового двигателя.
Отто Даймлер , в конце 1800-х изобрел первый бензиновый двигатель.
В 1894 году американец Хирам Максим попытался привести свой трехместный биплан в движение двумя угольными паровыми двигателями.Это только пролетел несколько секунд.
Первые паровые машины приводились в действие нагретым углем и, как правило, слишком тяжелый для полета.
Американец Samuel Langley изготовил модель самолетов которые приводились в действие паровыми двигателями. В 1896 году он успешно пилотировал беспилотный самолет с паровым двигателем, получивший название Aerodrome . Он пролетел около 1 мили, прежде чем выдохся. Затем он попытался построить полную размерный самолет Aerodrome A, с газовым двигателем.В 1903 г. разбился сразу после спуска с плавучего дома.
В 1903 году братьев Райт летал, Flyer , с бензиновым двигателем мощностью 12 л.с. двигатель.
С 1903 года, года первого полета братьев Райт, до конца 1930-х гг. газовый поршневой двигатель внутреннего сгорания с воздушным винтом был единственное средство, используемое для приведения в движение самолетов.
Это был Фрэнк Уиттл, , британский пилот, который разработал и запатентовал первый турбореактивный двигатель в 1930 году.Двигатель Уиттла впервые успешно полетел в мае 1941 года. Этот двигатель имел многоступенчатый компрессор и систему внутреннего сгорания. камера, одноступенчатая турбина и сопло.
В то время, когда Уиттл работал в Англии, Ганс фон Охайн работал над подобным дизайном в Германии. Первый самолет, который успешно использовать газотурбинный двигатель был немецкий Heinkel He 178, август 1939 года. Это был первый в мире турбореактивный двигатель. рейс.
General Electric построила первый американский реактивный двигатель для ВВС США Реактивный самолет . Опытный самолет XP-59A впервые поднялся в воздух в октябре 1942 года.
Основная идея турбореактивный двигатель просто.Воздух забирается из отверстия в передней части двигателя сжимается до 3-12 раз от исходного давления в компрессоре. Топливо добавляется в воздух и сжигается в камере сгорания, чтобы повысить температуру жидкой смеси примерно до 1100-1300 ° F. Образующийся горячий воздух проходит через турбину, которая приводит в действие компрессор. Если турбина и компрессор эффективны, давление на выходе из турбины будет почти вдвое выше атмосферного давления, и это избыточное давление отправляется к соплу, чтобы создать высокоскоростной поток газа, который создает тягу.Существенного увеличения тяги можно добиться, используя форсаже. Это вторая камера сгорания, расположенная после турбины и перед сопло. Форсажная камера увеличивает температуру газа перед соплом. Результатом этого повышения температуры является увеличение примерно на 40 процентов. тяги на взлете и гораздо больший процент на высоких скоростях, когда самолет в воздухе.
Турбореактивный двигатель — реактивный двигатель.В реактивном двигателе расширяющиеся газы сильно надавите на переднюю часть двигателя. Турбореактивный двигатель всасывает воздух и сжимает или сжимает его. Газы проходят через турбину и заставляют ее вращаться. Эти газы отскочить назад и выстрелить из задней части выхлопной трубы, толкая самолет вперед.
Изображение турбореактивного двигателя
А турбовинтовой двигатель представляет собой реактивный двигатель, прикрепленный к пропеллеру.Турбина на спина поворачивается горячими газами, и это вращает вал, который приводит в движение пропеллер. Некоторые малые авиалайнеры и транспортные самолеты оснащены турбовинтовыми двигателями.
Как и турбореактивный, турбовинтовой двигатель состоит из компрессора, камеры и турбины, давление воздуха и газа используется для запуска турбины, которая затем создает мощность для привода компрессора. По сравнению с турбореактивным двигателем, турбовинтовой имеет лучшую тяговую эффективность на скоростях полета ниже примерно 500 миль в час.Современные турбовинтовые двигатели оснащены гребными винтами, которые иметь меньший диаметр, но большее количество лопастей для эффективной работы на гораздо более высоких скоростях полета. Чтобы приспособиться к более высоким скоростям полета, лопасти имеют форму ятагана со стреловидными передними кромками на концах лопастей. Двигатели с такими винтами называются пропеллеры пропеллеры .
Изображение турбовинтового двигателя
А турбовентиляторный двигатель спереди есть большой вентилятор, который всасывает воздух.Большая часть воздуха обтекает двигатель снаружи, что делает его тише. и дает большую тягу на низких скоростях. Большинство современных авиалайнеров оснащены двигателями турбовентиляторными двигателями. В турбореактивном двигателе весь воздух, поступающий во впускное отверстие, проходит через газогенератор, состоящий из компрессора, камеры сгорания и турбины. В турбовентиляторном двигателе только часть поступающего воздуха попадает в камера сгорания. Остальное проходит через вентилятор или компрессор низкого давления, и выбрасывается непосредственно в виде «холодной» струи или смешивается с выхлопом газогенератора. для получения «горячей» струи.Цель такой системы байпаса — увеличить тяга без увеличения расхода топлива. Это достигается за счет увеличения общий массовый расход воздуха и снижение скорости при той же общей подаче энергии.
Изображение турбовентиляторного двигателя
Это еще один вид газотурбинного двигателя, который работает как турбовинтовой. система.Он не управляет пропеллером. Вместо этого он обеспечивает питание вертолета. ротор. Турбовальный двигатель устроен так, чтобы скорость вертолета ротор не зависит от скорости вращения газогенератора. Это позволяет скорость ротора должна оставаться постоянной, даже если скорость генератора варьируется, чтобы регулировать количество производимой мощности.
Изображение турбовального двигателя
г. ПВРД — это Самый простой реактивный двигатель и не имеет движущихся частей.Скорость реактивного «тарана» или нагнетает воздух в двигатель. По сути, это турбореактивный двигатель, в котором вращающийся оборудование было опущено. Его применение ограничено тем, что его степень сжатия полностью зависит от скорости движения. ПВРД не создает статического электричества. тяга и тяга вообще очень маленькая ниже скорости звука. Как следствие, ПВРД требует некоторой формы вспомогательного взлета, например другого самолета. Он использовался в основном в системах управляемых ракет.Космические аппараты используют это тип струи.
Изображение ПВРД
К началу
Что такое аэронавтика? | Динамика полета | самолеты | Двигатели | история полета | Что такое UEET?
Словарь | Весело и игры | Образовательные ссылки | Урок Планы | Индекс сайта | Дом
Сердцевиной двигателя является цилиндр, поршень которого движется вверх и вниз внутри цилиндра. Одноцилиндровые двигатели типичны для большинства газонокосилок, но обычно автомобили имеют более одного цилиндра (обычно четыре, шесть и восемь цилиндров). В многоцилиндровом двигателе цилиндры обычно располагаются одним из трех способов: рядный , V или плоский (также известный как горизонтально противоположный или боксерский), как показано на рисунках слева.
Итак, рядная четверка, о которой мы говорили в начале, — это двигатель с четырьмя цилиндрами, расположенными в одну линию. Различные конфигурации имеют разные преимущества и недостатки с точки зрения гладкости, стоимости изготовления и характеристик формы. Эти преимущества и недостатки делают их более подходящими для определенных автомобилей.
Рассмотрим некоторые ключевые детали двигателя более подробно.
Свеча зажигания подает искру, которая воспламеняет топливно-воздушную смесь, так что может произойти возгорание.Искра должна произойти в нужный момент, чтобы все заработало правильно.
Впускной и выпускной клапаны открываются в нужное время, чтобы впустить воздух и топливо и выпустить выхлоп. Обратите внимание, что оба клапана закрыты во время сжатия и сгорания, так что камера сгорания герметична.
Поршень — это металлический цилиндр, который движется вверх и вниз внутри цилиндра.
Поршневые кольца обеспечивают скользящее уплотнение между внешним краем поршня и внутренним краем цилиндра.Кольца служат двум целям:
Большинство автомобилей, которые «сжигают масло» и которым нужно добавлять кварту каждые 1000 миль, сжигают его, потому что двигатель старый, а кольца больше не герметизируют.Многие современные автомобили используют более современные материалы для изготовления поршневых колец. Это одна из причин, по которой двигатели служат дольше и могут дольше работать между заменами масла.
Шатун соединяет поршень с коленчатым валом. Он может вращаться с обоих концов, так что его угол может изменяться по мере движения поршня и вращения коленчатого вала.
Коленчатый вал преобразует движение поршня вверх и вниз в круговое движение, как это делает кривошип на домкрате.
Картер окружает коленчатый вал. В нем содержится некоторое количество масла, которое скапливается на дне поддона картера.
Далее мы узнаем, что может пойти не так с двигателями.
,(PhysOrg.com) — Дизельные двигатели, которые давно используются в грузовиках и кораблях, вызывают больший интерес из-за их топливной экономичности и снижения выбросов углекислого газа по сравнению с бензиновыми двигателями.Аргоннский инженер-механик Стив Чиатти развенчивает некоторые из наиболее устойчивых мифов, связанных с этой технологией.
Миф №1: Дизель грязный.
«У всех нас есть этот образ грузовиков, извергающих грязный черный дым», — сказал Чиатти.Этот дым представляет собой твердые частицы выхлопных газов дизельного двигателя: сажу и небольшие количества других химических веществ, производимых двигателем.
Но требования EPA по выбросам значительно ужесточились, и теперь дизельные двигатели должны соответствовать тем же критериям, что и бензиновые двигатели. Они делают это, добавляя дизельный сажевый фильтр (DPF), который удаляет видимый дым. «DPF очень эффективны», — сказал Чиатти. «Они удаляют 95 с лишним процентов дыма».
Дым, захваченный керамической матрицей, накапливается до тех пор, пока компьютер автомобиля не определит, что пора его очистить в процессе, называемом «циклом регенерации».«
Во время работы в камеры сгорания двигателя добавляется небольшое количество дополнительного топлива; образующиеся тепло и кислород активируют катализатор в сажевом фильтре, чтобы сжечь накопившуюся сажу. Это снижает расход топлива.
«Согласно правилам 2007-2010 гг. Видимого дыма практически нет», — сказал Чиатти. «Если вы покупаете дизельный автомобиль 2007 года выпуска или позже, он не грязнее, чем автомобиль с бензиновым двигателем».
И в невидимом диапазоне — дизельные двигатели действительно выделяют меньше углекислого газа, чем бензиновые.
Миф № 2: Дизельные двигатели зимой не заводятся.
«Современные технологии холодного пуска очень эффективны», — сказал Чиатти. «Современные дизельные двигатели запускаются в холодную погоду с минимальными усилиями».
Проблема в том, что дизельное топливо загустевает при низких температурах. При температуре ниже 40 ° F некоторые углеводороды в дизельном топливе становятся гелеобразными. «Поскольку двигатель зависит от аэрозольного топлива, вам не нужно липкое топливо», — пояснил Чиатти.
Часто это устраняется с помощью свечей накаливания, которые нагреваются аккумулятором и помогают подогреть топливо, чтобы оно могло испаряться.
Низкие температуры не являются проблемой для бензиновых двигателей, потому что бензин гораздо горюче, чем дизельное топливо. Даже при комнатной температуре и давлении бензин частично является паром. «Бросьте спичку в лужу с бензином, и она никогда не коснется поверхности жидкости; она воспламенит слой пара над бассейном», — сказал Чиатти.«Вот почему с бензином нужно обращаться с особой осторожностью в районе любого источника возгорания. Дизель не такой летучий; если вы бросите эту спичку в лужу с дизельным топливом, она погаснет».
Свечи накаливания и другие средства эффективно испаряют дизельное топливо, чтобы подготовить его к сгоранию.
Миф № 3: Дизельные автомобили не работают.
Поскольку дизельные двигатели по-прежнему наиболее распространены в грузовиках, многие люди предполагают, что автомобили с дизельным двигателем будут вести себя так же, как грузовик: медленные и вялые.«Но имейте в виду, что этот грузовик, вероятно, будет перевозить около 50 тонн», — сказал Чиатти. «Фактически, в некоторой степени, некоторые люди, которые водят дизельные двигатели, обнаруживают, что они работают лучше, чем бензиновые двигатели».
Это потому, что дизельные двигатели получают максимальную мощность при низких оборотах двигателя в минуту (об / мин), то есть на скоростях ниже 65 миль в час, где происходит большая часть движения. Бензиновые двигатели, напротив, достигают максимальной мощности за счет очень высокой и быстрой работы двигателя; бензиновый автомобиль достигает максимальной мощности только тогда, когда педаль акселератора опущена в пол, а двигатель работает со скоростью 5000 об / мин.
«Характеристики дизельного автомобиля намного лучше, чем предполагаемая мощность в лошадиных силах, потому что вы получаете всю эту мощность на скоростях, на которых вы фактически ведете автомобиль», — сказал Чиатти. «У вас больше тягового усилия и больше ускорения на этих скоростях».
Миф №4: Вы не можете найти дизельное топливо на заправке.
Пикапы и автомобили с дизельным двигателем достаточно популярны, чтобы заинтересовать рынок; на большинстве соседних заправок теперь есть автомобильные дизельные насосы.
«Сам ездил на дизельной машине 10 лет.Я могу сосчитать по пальцам, сколько раз мне приходилось искать помпу », — сказал Чиатти.
Миф № 5: Дизельное топливо дороже бензина.
Хотя цены на дизельное топливо в Чикаго, как правило, выше, чем на бензин, в большинстве регионов страны цены на дизельное топливо и бензин сопоставимы. Сегодня в Иллинойсе налог на дизельное топливо выше, чем на бензин.
«Производство дизельного топлива не дороже бензина», — пояснил Чиатти. «Его цена обычно связана с местной налоговой структурой.«
Бонус: одна вещь, которую вы можете не знать о дизеле!
Дизельные двигатели действительно лучше работают на большой высоте, чем бензиновые.
Почему? Бензиновые двигатели работают с очень специфическим соотношением топлива и воздуха. На больших высотах воздух тоньше — буквально: на кубический фут меньше молекул воздуха. Таким образом, в горах бензиновые двигатели должны добавлять меньше топлива, чтобы поддерживать идеальное передаточное число, что влияет на производительность.
«Но дизельный двигатель работает на обедненном топливе; вам не нужно поддерживать идеальное соотношение», — сказал Чиатти.Дизельные двигатели имеют турбонагнетатели — насосы, приводимые в действие выхлопными газами. Они добавляют больше воздуха в камеру сгорания, и больше воздуха означает, что можно добавить больше топлива. На высоте он может втянуть больше воздуха и топлива и, таким образом, получить больше мощности, чем бензиновые двигатели. Турбокомпрессоры не потребляют лишнюю энергию; они отводят термодинамически «свободную» энергию, которая, если ее не использовать, теряется в виде выхлопных газов.
«Управляйте дизелем на высоте, и вы увидите, как другие машины борются, пока вы проноситесь мимо», — сказал Чиатти.«Эффект очень заметен».
Ссылка : Пять мифов о дизелях (2011, 14 июня) получено 11 августа 2020 с https: // физ.орг / Новости / 2011-06-мифы-diesel.html
Этот документ защищен авторским правом. За исключением честных сделок с целью частного изучения или исследования, никакие часть может быть воспроизведена без письменного разрешения. Контент предоставляется только в информационных целях.
,