Двигатель — это сердце любой машины, будь то автомобиль, самолёт или ракета, летящая в космос. Соответственно, для каждого типа техники понятие «большой двигатель» будет отличаться. В этой подборке мы расскажем и покажем как выглядят самые большие двигатели у всего, что только способно двигаться. Поехали.
Если говорить о серийных моделях, то здесь безусловный лидер — Triumph Rocket III от британской компании Triumph Motorcycles. В движение этого монстра приводит 3-цилиндровый 140-сильный двигатель объёмом 2,3 литра.
Если же брать в расчёт кастомы и мотоциклы, собранные в единственном экземпляре, то первенство принадлежит американскому Dodge Tomahawk. Этот мотоцикл был создан в 2003 году. Инженеры решили не мудрствуя лукаво поставить на байк оригинальный 10-цилиндровый движок от Dodge Viper мощностью 500 лошадиных сил и объёмом 8,3 литра. Томогавк по совместительству является ещё и самым быстрым мотоциклом, его максимальная скорость составляет 468 км/ч.
Самый большой двигатель из тех, которые когда-либо устанавливали на легковые автомобили, имел объём 28,2 л. Его поставили в 1911 году на автомобиль Fiat Blitzen Benz, который был специально построен для автогонок. Интересно, что при таком гигантском объёме двигатель выдавал всего 300 лошадиных сил, что по современным меркам не так уж и много, особенно для гоночного авто.
В современных серийных автомобилях самой большой двигатель у Dodge SRT Viper. У него под капотом находится зверский агрегат мощностью 650 лошадиных сил и объёмом 8,4 литра. Этот движок позволяет Вайперу с места разогнаться до 100 км/ч всего за 3 секунды, а впоследствии набрать максималку 330 км/ч.
В этом классе просто вне конкуренции были локомотивы серии GTEL, созданные для американской сети Union Pacific. Эти монстры выпускались с 1952 по 1969 года и успели пережить несколько «ревизий». Так, в последней из них, мощность гозотурбинных двигателей была увеличена до рекордных 10 000 лошадиных сил. О масштабах этого силового агрегата можно судить лишь по тому факту, что топливный бак локомотива был объёмом 9500 литров.
С 1949 по 1959 годы у американской авиации находился на вооружении тяжёлый межконтинентальный бомбардировщик Convair B-36. Обычно на них ставили 6 поршневых двигателей с толкающими винтами. Но для парочки экземпляров было разработано нечто особенное. Это были 36-цилиндровые поршневые двигатели объёмом 127 литров. Каждый из них весил по 2700 кг и выдавал 5000 лошадиных сил.
Современные реактивные двигатели не поражают объёмами или размерами, но могут очень удивить выдаваемой мощностью. Самый крупный ракетный двигатель из всех, что были запущены в эксплуатацию, не считая прототипов и экспериментальных образцов, был тот, что запускал ракеты миссий «Аполлон». Этот двигатель 5,5 метров в высоту и развивает сумасшедшую мощность 190 000 000 лошадиных сил. Для сравнения: этот двигатель производит там много энергии, что её хватило бы на то, чтобы освещать весь Нью-Йорк в речение 75 минут.
На одной из атомных электростанций во Франции находится этот монстр, способный производить 1750 Мегаватт энергии. Это самый крупный турбогенератор из всех когда-либо построенных. Это понятно хотя бы потому факту, что одни только роторные диски внутри него весят 120 тонн. Этот двигатель преобразует влажный пар от атомного реактора в электроэнергию. Если мерить привычными нам лошадиными силами, то его мощность равняется 2 300 000 л.с.
Ещё один способ получать электрическую энергию — из ветра. Однако, по сравнению с атомом он не такой уж эффективный. Но об этом позже, а пока, для того, чтобы вы понимали масштаб, взгляните на Boeing A380, это действительно очень большой самолёт.
А вот он же в сравнении с тем самым ветрогенератором. Его мощность 8 000 лошадиных сил, а диаметр лопастей 154 метра. Они делают 12 оборотов в минуту и вырабатывают 6500 кВт энергии. В десятки раз меньше, чем атомная турбина.
Пожалуй, самые интересные, а заодно и самые большие в физическом плане двигатели, у морских судов. Вот, например, двухтактный дизельный двигатель с турбонаддувом RT-flex96C. Его размеры действительно впечатляют: 26,5 метров в высоту и 13,5 в длину. Выдаёт этот здоровяк без малого 108 тысяч лошадиных сил.
Ставится этот двигатель вот на такой огромный контейнеровоз Emma Maersk. Расход топлива у двигателя составляет 6,3 тонны мазута в час.
nlo-mir.ru
Работа многих приборов и агрегатов обеспечивается функционированием встроенного в них электродвигателя. Чаще всего к жилым домам и участкам подводится электросеть с напряжением 220 В. Поэтому необходимо выбирать модели однофазного типа.
Однофазный электродвигатель функционирует за счет подключения к сети с переменным током двухпроводного типа. Сеть представлена потенциалом фазного и нулевого характера. При этом число обмоток статора не является определяющим.
В процессе выбора агрегата нужно четко различать типы однофазных двигателей, а также отделять асинхронные конструкции от коллекторных. На шильдике есть вся информация о типе, но она становится доступной, если вы начнете разбирать двигатель. А идентифицировать требуется гораздо раньше.
Если вы хотите определить, коллекторный вариант или асинхронный перед вами, то следует обратить внимание на строение. Первый тип двигателя оснащен щетками, находящимися непосредственно рядом с коллектором, а также имеет секционный барабан из меди. Эта модификация однофазная.
Коллекторные двигатели отличаются возможностью выдачи многочисленных запускающих оборотов, а также в процессе разгона. Поэтому их применяют в бытовых приборах. А простая смена полярности позволит изменить направленность вращения.
Характерно и еще одно преимущество – возможность смены вращательной скорости. Это делается регулированием амплитуды напряжения, которое поступает на вход.
Но при этом не следует забывать и о ключевых недостатках, к которым относятся:
Такие двигатели конструктивно включают:
При этом такие агрегаты могут быть не только однофазными, но и трехфазными. Помимо указанных составных элементов, в конструкции выделяются вал, клеммная колодка и вентилятор для охлаждения, что видно на фото однофазного двигателя.
Рассматриваемые агрегаты могут быть бифилярного и конденсаторного вида. В устройствах, сконструированных по первому варианту, пусковая обмотка активизируется и функционирует исключительно до момента разгона мотора. Затем выключатель центробежного типа или реле деактивируют ее. Поскольку работа после разгона приводила бы к резкому падению КПД.
Принцип однофазного двигателя конденсаторного вида предполагает постоянную работу конденсаторной обмотки. При этом существуют две смещенные обмотки – основная и вспомогательная.
Это смещение составляет 90 градусов, что обеспечивает возможность регулирования направления, по которому вращается вал. Наличие конденсатора на поверхности корпуса позволяет идентифицировать эту модель двигателя.
Чтобы точно выбрать нужную модификацию, вам придется замерить сопротивление. У бифилярных движков сопротивление обмотки вспомогательного уровня не менее чем в 2 раза меньше значения основной. Поэтому она выполняет все функции пусковой. В конструкции можно обнаружить также реле или соответствующий выключатель.
Мощность однофазного двигателя варьируется в обширном диапазоне. Она может быть как в несколько ватт, так и достигать 10 кВт. Этот параметр, равно как КПД с пусковым моментом, будут меньше, чем в трехфазных моделях аналогичных габаритов.
Подключение однофазного двигателя выполняется путем задействования кнопки, размыкающей контактный элемент после запуска. Он присоединен к обмотке, которая является пусковой. Например, в ПНВС-кнопке при удержании происходит замыкание среднего контакта, а крайние сохраняют замкнутое положение.
Чтобы идентифицировать, является ли обмотка пусковой или рабочей, следует произвести замеры. А для обустройства вывода мотора выделяется несколько проводов. Обычно их или 3, или 4 штуки.
Если проводов три, то две обмотки предварительно находятся в объединенном виде. А поэтому один провод будет общим. Получается три пары, в каждой из которых тестером нужно замерить сопротивление. У обмотки рабочего вида будет наименьшая величина сопротивления, а у выхода общего типа – наибольшее. Для пусковой же сохранится средний показатель.
При наличии четырех проводов нужно протестировать две пары. Та, у которой сопротивление меньшее, считается рабочей. Пара с идентифицированным большим сопротивлением будет пусковой. Провода, идущие от каждой обмотки, надо объединить с выводом от общего провода.
В результате образуются три выхода – общий, пусковой и рабочий. Их и надо подключить к кнопке с контактами. Пусковой вывод крепится к среднему контакту кнопки, который крепится при помощи перемычки с рабочим контактом. А вот на крайние контакты выводятся остальные, не пусковые выводы. К ним будет идти силовой кабель.
Чтобы подключить такой движок, используют несколько вариантов.
Во-первых, можно задействовать пусковой конденсатор. Такой агрегат будет быстро запускаться, но в процессе функционирования выдается мощность ниже номинальной.
Во-вторых, допустимо воспользоваться рабочим конденсатором. Тогда запитка производится с рабочей обмотки. Показатели пуска будут недостаточно высокими, а вот параметры функционирования – отличными.
В процессе организации запуска используется также и схема подключения однофазного двигателя на базе двух конденсаторов сразу.
Кнопка ПНВС запускает конденсатор на этапе включения до момента требуемого разгона, после чего активными остаются только две обмотки. Вспомогательная же в процессе работы будет подключена посредством конденсатора.
Для движков важно правильно подобрать нужный конденсатор. Рабочий требует параметр 0,7-0,8 мкФ в расчете на киловатт мощности. А пусковому требуется двух или трехкратное превышение заданного значения.
И, конечно же, величина рабочего напряжения у используемых конденсаторов должна превышать сетевой уровень в 1,5 раза. При этом эффективность старта обеспечивается пусковым конденсатором, что позволит задать оптимальные параметры работы.
Также рекомендуем посетить:
mojdominfo.ru
Паровые машины и двигатели внутреннего сгорания обладают одним общим недостатком — возвратно-поступательное движение поршня должно быть преобразовано во вращательное движение колёс. Отсюда и заведомо низкий КПД, и высокая изнашиваемость элементов механизма. Многим хотелось построить двигатель внутреннего сгорания так, чтобы все подвижные части в нём только вращались — как это происходит в электромоторах.
Однако задача оказалась не простой, успешно решить её удалось только механику-самоучке, который за всю свою жизнь так и не получил ни высшего образования, ни даже рабочей специальности.
Феликс Генрих Ванкель (Felix Heinrich Wankel, 1902–1988) родился 13 августа 1902 года в небольшом немецком городке Лар. Во время Первой мировой войны погиб отец Феликса, из-за чего будущему изобретателю пришлось бросить гимназию и пойти работать учеником продавца в книжной лавке при издательстве. Благодаря этой работе Ванкель пристрастился к чтению книг, по которым он самостоятельно изучал технические дисциплины, механику и автомобилестроение.
Существует легенда, что решение задачи пришло семнадцатилетнему Феликсу во сне. Правда это или нет — неизвестно. Зато очевидно, что Феликс обладал весьма незаурядными способностями к механике и «незамыленным» взглядом на вещи. Он понял, как все четыре цикла работы обычного двигателя внутреннего сгорания (впрыск, сжатие, сгорание, выхлоп) можно осуществить при вращении.
Довольно быстро Ванкель пришёл к первой конструкции двигателя, и в 1924 году он организовал небольшую мастерскую, которая также служила и импровизированной «лабораторией». Здесь Феликс и начал проводить первые серьёзные исследования в области роторно-поршневых ДВС.
С 1921 года Ванкель был активным членом НСДАП. Он выступал за партийные идеалы, был основателем всегерманского военного юношеского объединения и юнгфюрером различных организаций. В 1932 году он вышел из партии, обвинив одного из своих бывших коллег в политической коррупции. Однако по встречному обвинению ему самому пришлось провести в тюрьме шесть месяцев. Освободившись из заключения благодаря заступничеству Вильгельма Кепплера (Wilhelm Keppler), он продолжил работы над двигателем. В 1934 он создал первый опытный образец и получил на него патент. Он сконструировал новые клапаны и камеры сгорания для своего мотора, создал несколько различных его вариантов, разработал классификацию кинематических схем различных роторно-поршневых машин.
В 1936 году прототип двигателя Ванкеля заинтересовал BMW — Феликс получил деньги и собственную лабораторию в Линдау для разработки опытных авиадвигателей.
Впрочем, до самого разгрома фашистской Германии ни один двигатель Ванкеля в серию не пошёл. Возможно, на доведение конструкции до ума и создания массового производства требовалось слишком много времени.
После войны лаборатория была закрыта, оборудование вывезено во Францию, а Феликс остался без работы (сказалось былое членство в национал-социалистической партии). Однако вскоре Ванкель всё же получил должность инженера-конструктора в компании NSU Motorenwerke AG, являющейся одним из старейших производителей мотоциклов и автомобилей.
В 1957 году совместными усилиями Феликса Ванкеля и ведущего инженера NSU Вальтера Фрёде (Walter Froede) роторно-поршневой двигатель впервые был установлен на автомобиль NSU Prinz. Первоначальная конструкция оказалась далека от совершенства: даже для замены свечей требовалось разбирать почти весь «движок», надёжность оставляла желать лучшего, а про экономичность на данном этапе разработки и вовсе говорить было грешно. В результате испытаний в серию пошёл всё же автомобиль с традиционным ДВС. Тем не менее первый роторно-поршневой двигатель DKM-54 доказал свою принципиальную работоспособность, открыл направления для дальнейшей доводки и продемонстрировал колоссальный потенциал «роторников».
Таким образом, новый тип ДВС получил, наконец, свою путёвку в жизнь. В дальнейшем его ждёт ещё немало усовершенствований и доработок. Но перспективы роторно-поршневого двигателя настолько привлекательны, что инженеров уже ничто не могло остановить в деле доведения конструкции до эксплуатационного совершенства.
Прежде чем разбирать достоинства и недостатки роторно-поршневых ДВС, стоит всё-таки подробней рассмотреть их конструкцию.
В центре ротора проделано круглое отверстие, изнутри покрытое зубцами как у шестерёнки. В это отверстие вставлен вращающийся вал меньшего диаметра, также с зубцами, что обеспечивает отсутствие проскальзывания между ним и ротором. Отношения диаметров отверстия и вала подобраны так, чтобы вершины треугольника двигались по одной и той же замкнутой кривой, которая называется «эпитрохоида», — искусство Ванкеля как инженера заключалось в том, чтобы сначала понять, что это возможно, а потом всё точно рассчитать. В итоге, поршень, имеющий форму треугольника Рело, отсекает в камере, повторяющей форму найденной Ванкелем кривой, три камеры переменного объёма и положения.
Конструкция роторно-поршневого ДВС позволяет реализовать любой четырехтактный цикл без применения специального механизма газораспределения. Благодаря этому факту «роторник» оказывается значительно проще обычного четырёхтактного поршневого двигателя, в котором в среднем почти на тысячу деталей больше.
Герметизация рабочих камер в роторно-поршневом ДВС обеспечивается радиальными и торцевыми уплотнительными пластинами, прижимаемыми к «цилиндру» ленточными пружинами, а также центробежными силами и давлением газа.
Ещё одна его техническая особенность — это высокая «производительность труда». За один полный оборот ротора (то есть за цикл «впрыск, сжатие, воспламенение, выхлоп»), выходной вал совершает три полных оборота. В обычном поршневом двигателе таких результатов можно добиться только используя шестицилиндровый ДВС.
После первой же успешной демонстрации роторного ДВС в 1957 году крупнейшие автогиганты стали проявлять к разработке повышенный интерес. Сначала лицензию на двигатель, получивший неформальное название «ванкель», купила корпорация Curtiss-Wright, через год, Daimler-Benz, MAN, Friedrich Krupp и Mazda. Всего за весьма короткий промежуток времени лицензии на новую технологию приобрели около ста компаний во всём мире, включая таких монстров как Rolls-Royce, Porsche, BMW и Ford.Такой интерес к «ванкелю» столь крупных игроков автомобильного рынка объясняется его большим потенциалом и значительными достоинствами — в роторно-поршневом двигателе на 40% меньше деталей, он проще в ремонте и производстве.
К тому же «ванкель» почти в два раза компактней и легче традиционного поршневого ДВС, что в свою очередь улучшает управляемость автомобиля, облегчает оптимальное расположение трансмиссии и позволяет сделать более просторный и удобный салон.
Роторно-поршневой двигатель развивает высокую мощность при довольно скромном расходе топлива. Например, современный «ванкель» объёмом всего 1300 смі развивает мощность в 220 л.с., а с турбокомпрессором — все 350. Ещё один пример — миниатюрный двигатель OSMG 1400 весом 335 г (рабочий объем 5 смі) развивает мощность в 1,27 л.с. Фактически, эта кроха на 27% сильнее лошади.
Ещё одно важное преимущество — низкий уровень шумов и вибраций. Роторно-поршневой двигатель отлично уравновешен механически, кроме того масса движущихся частей (и их количество) в нём значительно меньше, благодаря чему «ванкель» работает гораздо тише и не вибрирует.
И, наконец, роторно-поршневой двигатель отличается великолепными динамическими характеристиками. На низкой передаче можно без особой нагрузки на движок разогнать автомобиль до 100 км/ч на высоких оборотах двигателя. Кроме того, сама конструкция «ванкеля» за счёт отсутствия механизма преобразования возвратно-поступательного движения во вращательное, способна выдержать большие обороты, чем традиционный ДВС.
После вышедшего в 1964 году NSU Spyder последовали легендарная модель NSU Ro 80 (в мире до сих пор существует множество клубов владельцев этих машин), Citroen M35 (1970), Mercedes C-111 (1969), Corvette XP (1973). Но единственным массовым производителем стала японская Mazda, выпускавшая с 1967 года порой по 2-3 новые модели с РПД. Роторные двигатели ставили на катера, снегоходы и легкие самолеты. Конец эйфории пришел в 1973 году, в разгар нефтяного кризиса. Тут-то и проявился основной недостаток роторных двигателей — неэкономичность. За исключением Mazda, все автопроизводители свернули роторные программы, а у японской компании продажи по Америке сократились со 104960 проданных машин в 1973 году до 61192 — в 1974-м. Наряду с неоспоримыми достоинствами, «ванкель» также обладал и целым рядом очень серьёзных недостатков. Во-первых, долговечность. Один из первых прототипов роторно-поршневых двигателей на испытаниях выработал свой ресурс всего за два часа. Следующий, более успешный DKM-54 уже выдержал сто часов, но этого для нормальной эксплуатации автомобиля всё равно было недостаточно. Основная проблема крылась в неравномерном износе внутренней поверхности рабочей камеры. На ней в процессе эксплуатации появлялись поперечные борозды, которые получили говорящее имя «метки дьявола».
В компании Mazda после приобретения лицензии на «ванкель» был сформирован целый отдел, занимавшийся усовершенствованием роторно-поршневого двигателя. Довольно скоро выяснилось, что при вращении треугольного ротора, заглушки на его вершинах начинают вибрировать, в результате чего и образуются «метки дьявола».
В настоящее время проблему надежности и долговечности окончательно решили, применив высококачественные износостойкие покрытия, в том числе керамические.
Другая серьезная проблема — повышенная токсичность выхлопа «ванкеля». По сравнению с обычным поршневым ДВС «роторник» выделяет в атмосферу меньше окислов азота, но гораздо больше углеводородов, за счёт неполного сгорания топлива. Довольно быстро инженеры Mazda, уверовавшие в блестящее будущее «ванкеля», нашли простое и эффективное решение и этой проблемы. Они создали так называемый термальный реактор, в котором остатки углеводородов в выхлопных газах просто «дожигались». Первым автомобилем, реализовавшим такую схему, стал Mazda R100, также называемый Familia Presto Rotary, выпущенный в 1968 году. Эта машина, одна из немногих, сразу прошла весьма жёсткие экологические требования, выдвинутые США в 1970 году для импортируемых авто.
Следующая проблема роторно-поршневых двигателей частично вытекает из предыдущей. Это экономичность. Расход топлива стандартного «ванкеля» из-за неполного сгорания смеси существенно выше, чем у стандартного ДВС. И снова инженеры Mazda принялись за работу. При помощи целого комплекса мер, включающих переработку термореактора и карбюратора, добавление теплообменника в выхлопную систему, разработку каталитического конвертера и внедрение новой системы зажигания, компания добилась снижения потребления топлива на 40%. В результате этого несомненного успеха в 1978 году был выпущен спортивный автомобиль Mazda RX-7.
Стоит отметить, что в это время во всём мире машины с роторно-поршневыми двигателями выпускала только Mazda и… АвтоВАЗ.
Именно в провальном 1974 году советское правительство создает на Волжском автозаводе специальное конструкторское бюро РПД (СКБ РПД) — социалистическая экономика непредсказуема. В Тольятти начались работы по строительству цехов для серийного производства «ванкелей». Поскольку ВАЗ изначально планировался как простой копировальщик западных технологий (в частности, фиатовских), заводскими специалистами было принято решение воспроизводить двигатель Mazda, напрочь откинув все десятилетние наработки отечественных двигателестроительных институтов.
Советские чиновники довольно долго вели переговоры с Феликсом Ванкелем на предмет покупки лицензий, причем некоторые из них проходили прямо в Москве. Денег, правда, не нашли, и поэтому воспользоваться некоторыми фирменными технологиями не удалось. В 1976 году заработал первый волжский односекционный двигатель ВАЗ-311 мощностью 65 л.с., еще пять лет ушло на доводку конструкции, после чего была выпущена опытная партия в 50 штук роторных «единичек» ВАЗ-21018, мгновенно разошедшихся среди работников ВАЗа. Тут же выяснилось, что двигатель только внешне напоминал японский — сыпаться он стал очень даже по-советски. Руководство завода было вынуждено за полгода заменить все двигатели на серийные поршневые, сократить на половину штат СКБ РПД и приостановить строительство цехов. Спасение отечественного роторного двигателестроения пришло от спецслужб: их не очень интересовал расход топлива и ресурс двигателя, зато сильно — динамические характеристики. Тут же из двух двигателей ВАЗ-311 был сделан двухсекционный РПД мощностью 120 л.с., который стал устанавливаться на «спецединичку» — ВАЗ-21019. Именно этой модели, получившей неофициальное название «Аркан», мы обязаны бесчисленным количеством баек про милицейские «Запорожцы», догоняющие навороченные «Мерседесы», а многие стражи порядка — орденами и медалями. До 90-х годов внешне непритязательный «Аркан» действительно легко догонял все машины. Помимо ВАЗ-21019 на АвтоВАЗе также выпускаются малые партии автомобилей ВАЗ-2105, -2107, -2108, -2109, -21099. Максимальная скорость роторной «восьмерки» составляет около 210 км/ч, а до сотни она разгоняется всего за 8 секунд.
Оживший на спецзаказах СКБ РПД стал делать двигатели для водного и автоспорта, где машины с роторными двигателями стали настолько часто завоевывать призовые места, что спортивные чиновники были вынуждены запретить применение РПД.
В 1987 году умер руководитель СКБ РПД Борис Поспелов и на общем собрании был выбран Владимир Шнякин — человек, пришедший в автомобилестроение из авиации и недолюбливающий наземный транспорт. Главным направлением СКБ РПД становится создание двигателей для авиации. Это была первая стратегическая ошибка: самолетов у нас выпускается несоизмеримо меньше автомобилей, а завод живет с проданных двигателей.
Второй ошибкой стала ориентация в сохранившемся производстве автомобильных РПД на маломощные двигатели ВАЗ-1185 в 42 л.с. для «Оки», хотя более прожорливые, но более динамичные роторные двигатели так и просятся на самые быстроходные отечественные машины — например, на «восьмерки». Те же японцы устанавливают «ванкели» только на спортивные модели. В итоге на российских дорогах оказалось всего несколько роторных микролитражек «Ока». В 1998 году был наконец-то подготовлен гражданский вариант двухцилиндрового роторного 1,3-литрового двигателя ВАЗ-415, который стали устанавливать на ВАЗ-2105, 2107, 2108 и 2109.
В мае 1998 г был омологирован кольцевой ВАЗ-110 «РПД-спорт» (190 л. с., 8500 об/мин, 960 кг, 240 км/ч). Увы, дальше одного-единственного образца, чаще демонстрируемого на выставках, чем стартующего в гонках, дело не пошло. 110-я была самой мощной в пелотоне, но откровенно сырая конструкция всякий раз не давала ей продемонстрировать весь свой потенциал. Однако обидней всего то, что на «ВАЗе» быстро охладели к роторному направлению, а уникальную «Ладу» переделали в ралли-кар с обычным ДВС.
Так почему же все ведущие производители автомобилей ещё не пересели на «ванкели»? Дело в том, что для производства роторно-поршневых двигателей требуется, во-первых, отточенная технология со множеством самых разнообразных нюансов и далеко не каждая компания готова пройти путь той же Mazda, попутно наступая на многочисленные «грабли». А во-вторых, нужны специальные высокоточные станки, способные вытачивать поверхности, описанные такой хитрой кривой как эпитрохоида.
Mazda RX-7 — это один из первых автомобилей, на котором ставился роторно-поршневой двигатель Ванкеля. За всю историю Mazda RX-7 было четыре поколения. Первое поколение с 1978 по 1985 год. Второе поколение — с 1985 по 1991. Третье поколение — с 1992 по 1999. Последнее, четвёртое поколение — с 1999 по 2002 год. Первое поколение RX-7 появилось в 1978 году. Оно имело среднемоторную компоновку и оснащалось роторным двигателем мощностью всего 130 л. с.
В настоящее время только Mazda занимается серьёзными исследованиями в области роторно-поршневых двигателей, постепенно совершенствуя их конструкцию, и большая часть подводных камней в этой области уже пройдена. «Ванкели» вполне соответствуют мировым стандартам по уровню токсичности выхлопа, потреблению топлива и надёжности. Для современных станков поверхности описанные эпитрохоидой не являются проблемой (как не являются проблемой и куда более сложные кривые), новые конструкционные материалы позволяют увеличить срок службы роторно-поршневого двигателя, а его стоимость уже сейчас оказывается ниже, чем у стандартного ДВС за счёт меньшего количества используемых деталей.
Как и NSU, Mazda в 60-е гг. была небольшой компанией с ограниченными техническими и финансовыми ресурсами. Основу ее модельного ряда составляли развозные грузовички да семейные малолитражки. Поэтому нет ничего удивительного, что спорт-купеMazda 110S Cosmo (982 см куб., 110 л. с., 185 км/ч) создавалось более 6 лет и оказалось весьма капризным и дорогим. Да и подпорченная NSU Ro80 репутация не способствовала ажиотажу (в 1967–1972 гг. нашли своих владельцев только 1175 «космосов»), но мировой интерес к 110S способствовал увеличению продаж всей остальной продукции фирмы!
Чтобы доказать, что РПД столь же надежен (его превосходство в мощности уже стало для всех очевидным), Mazda чуть ли не впервые в жизни приняла участие в соревнованиях, причем выбрала самую трудную и продолжительную гонку – 84-часовой Marathon De La Route, проходивший на Нюрбургринге. Как экипажу из Бельгии удалось занять 4-е место (вторая машина сошла с дистанции за три часа до финиша из-за заклинивших тормозов), уступив только «выросшим» на «Нордшляйфе» Porsche 911, похоже, так и останется загадкой.
Мастерская Ванкеля в Линдау
Хотя с тех пор японские «роторники» стали завсегдатаями гоночных трасс, крупного успеха в Европе им пришлось ждать 16 лет. В 1984-м британцы на RX-7 выиграли престижную суточную гонку в Спа-Франкошамп. А вот в США, на главном рынке «семерки», ее гоночная карьера складывалась куда успешнее: с момента дебюта в чемпионате IMSA GT в 1978 году и по 1992-й она выиграла в своем классе более сотни этапов, причем с 1982 по 1992 гг. первенствовала в главной гонке серии – 24 hours of Daytona.
В ралли у «Мазд» все шло не так гладко. Как это часто бывало с японскими командами (Toyota, Datsun, Mitsubishi), они выступали только на отдельных этапах раллийного чемпионата мира (Новая Зеландия, Великобритания, Греция, Швеция), интересующих в первую очередь маркетинговые отделы концернов. Национальных титулов хватало: так, в 1975–1980 гг. Род Миллен выиграл целых пять в Новой Зеландии и США. А вот в WRC успехи были исключительно локальными: лучшее, что показали RX-7, – 3-е и 6-е места в греческом «Акрополисе» 1985 года.
Ну а самым громким успехом Mazda вообще и РПД в частности стала победа ее спортпрототипа 787B (2612 см куб., 700 л. с., 607 Нм, 377 км/ч) в Ле Мане в 1991 году. Причем одолеть заводскиеPorsche, Peugeot и Jaguar помогли не только быстрые пилоты и конкурентоспособная техника: свою роль сыграла и настойчивость японских менеджеров, регулярно «выбивавших» для роторников всевозможные послабления в регламенте. Так, накануне победы 787-го организаторы гонки согласились компенсировать прожорливость «роторников» 170-килограммовым (830 против 1000) снижением массы. Парадокс заключался в том, что, в отличие от бензиновых моторов, «аппетит» РПД при дальнейшей форсировке рос куда более скромными темпами, чем у обычных поршневых моторов, и 787-й оказался экономичней своих основных конкурентов!
Это был шок. Mercedes, который журнал Stern за консерватизм называл не иначе как «производитель авто для 50-летних господ в шляпах», в 1969 году презентовал супер-кар, поражавший воображение даже цветом. Вызывающая ярко-оранжевая окраска, подчеркнуто клиновидная форма, среднемоторная компоновка, двери «крыло чайки» и сверхмощный трехсекционный РПД (3600 см куб., 280 л. с., 260 км/час) – для консервативного Mercedes это было нечто!
А поскольку в компании не строили концептов, все считали, что у С111 только один путь: мелкосерийная (омологационная) сборка и большое гоночное будущее, ведь с 1966 года ФИА допустила РПД к официальным соревнованиям. И в штаб-квартиру Mercedes посыпались чеки с просьбой вписать нужную сумму за право обладать С111. Штутгартцы же еще больше подогрели интерес к «эске», в 1970 г. представив вторую генерацию купе с еще более фантастическим дизайном, 4-секционным ротором и умопомрачительными характеристиками (4800 см куб., 350 л. с., 300 км/час). Для доводки Mercedes построил пять макетов, которые дневали и ночевали на Хокенхаймринге и Нюрбургринге, готовясь установить серию рекордов скорости. Пресса смаковала предстоящую «битву титанов» между роторным Mercedes, атмосферным Ferrari и наддувным Porsche в чемпионате мира по гонкам на выносливость. Увы, возвращение в большой спорт не состоялось. Во-первых, С111 был очень дорогим даже для Mercedes, во- вторых, немцы не могли пустить в продажу столь сырую конструкцию. А после карибского нефтяного кризиса они вообще прикрыли проект, сосредоточившись на дизельных двигателях. Ими и оборудовали последние версии C111, установившие несколько мировых рекордов.
Не имеющий законченного технического образования, под конец жизни Феликс Ванкель достиг мирового признания в области двигателестроения и уплотнительной техники, завоевав массу наград и титулов. Его именем названы улицы и площади немецких городов (Felix-Wankel-Strasse, Felix-Wankel-Ring). Помимо двигателей, Ванкель разработал новую концепцию скоростных судов и самостоятельно построил несколько лодок.
Самое интересное, что роторный двигатель, который сделал его миллионером и принес ему всемирную славу, Ванкель не любил, считая его «гадким утенком». Реальные работающие РПД были сделаны по так называемой «концепции ККМ», предусматривающей планетарное вращение ротора и требующей введения внешних противовесов. Немалую роль сыграл и тот факт, что эту схему предложил не Ванкель, а инженер NSU Вальтер Фройде. Сам же Ванкель до последних дней считал идеальной схему двигателя «с вращающимися поршнями без неравномерно вращающихся частей» (Drehkolbenmasine — DKM), концептуально гораздо более красивую, но технически сложную, требующую, в частности, установки свечей зажигания на вращающемся роторе. Тем не менее, роторные двигатели во всем мире связывают именно с именем Ванкеля, поскольку все, кто близко знал изобрателя, в один голос утверждают, что что без неуемной энергии немецкого инженера мир так и не увидел бы этого удивительного устройства. Фелик Ванкель ушел из жизни в 1988 году.
Любопытна история с Mercedes 350 SL. Ванкель очень хотел иметь роторный Mercedes С-111. Но фирма Mercedes не пошла ему навстречу. Тогда изобретатель взял серийный 350 SL, выкинул оттуда «родной» двигатель и установил ротор от С-111, который был легче прежнего 8-цилиндрового на 60 кг, но развивал существенно большую мощность (320 л.с. при 6500 об/мин). В 1972 году, когда инженерный гений закончил работу над своим очередным чудом, он мог бы сидеть за рулем самого быстрого на тот момент «Мерседеса» SL-класса. Ирония заключалась в том, что водительские права Ванкель до конца жизни так и не получил.
Возрождением интереса к РПД мы обязаны новому двигателю Mazda Renesis (от RE — Rotary Engine — и Genesis). За прошедшее десятилетие японским инженерам удалось решить все основные проблемы РПД — токсичность выхлопа и неэкономичность. По сравнению с предшественником, удалось сократить потребление масла на 50%, бензина на 40% и довести выброс вредных окисей до норм, соответствующих Euro IV. Двухцилиндровый двигатель объемом всего 1,3 л выдает мощность в 250 л.с. и занимает гораздо меньше места в двигательном отсеке.
Специально под новый двигатель был разработан автомобиль Mazda RX-8, который, по словам брэнд-менеджера Mazda Motor Europe Мартина Бринка, создавался по новой концепции — автомобиль «строился» вокруг двигателя. В итоге развесовка по осям RX-8 идеальна — 50 на 50. Использование уникальной формы и маленьких размеров двигателя позволило поместить центр тяжести очень низко. «RX-8 не явяляется гоночным монстром, но это лучшая в управлении машина, которую я когда-либо водил», — с восторгом рассказывал Popular Mechanics Мартин Бринк.
Бочка меда…
Вне всяких сомнений, с первого взгляда роторно-поршневой двигатель имеет массу преимуществ перед традиционными двигателями внутреннего сгорания:
— Меньшим на 30-40% количеством деталей;
— Меньшими в 2-3 раза габаритами и массой, по сравнению с соответствующим по мощности стандартным ДВС;
— Плавная характеристика крутящего момента во всем диапазоне оборотов;
— Отсутствие кривошипно-шатунного механизма, а, следовательно, гораздо меньший уровень вибрации и шума;
— Высокий уровень оборотов (до 15000 об/мин!).
Ложка дегтя…
Казалось бы, если «Ванкель» имеет такие превосходства над поршневым двигателем, то кому нужны эти громоздкие, тяжелые, гремящие и вибрирующие поршневые двигатели? Но, как это часто бывает, на практике все далеко не так шоколадно. Ни одно гениальное изобретение, выйдя за порог лаборатории, отправлялось в корзину с пометкой «для мусора». Серийное производство нашло не на один камень, а на целую россыпь гранита:
— Отработка процесса сгорания в камере неблагоприятной формы;
— Обеспечение герметичности уплотнений;
— Обеспечение работы без коробления корпуса в условиях неравномерного нагрева;
— Низкий термический КПД ввиду того, что камера сгорания РПД намного больше, чем у традиционного ДВС;
— Высокий расход топлива;
— Высокая токсичность газообразных продуктов сгорания;
— Узкая зона температур для работы РПД: при низких температурах мощность двигателя резко падает, при высоких — быстрый износ уплотнений ротора.
fishki.net
Говорят, что Феликс Ванкель придумал роторный двигатель, будучи 17-летним юнцом. Тем не менее, первые чертежи двигателя были представлены Ванкелем лишь в 1924 году, когда он закончил школу и начал работать в издательстве технической литературы. Позднее он открыл свою собственную мастерскую и в 1927 году представил первый двигатель с вращающимися поршнями. С этого момента его двигатель начинает свой долгий путь по подкапотным пространствам автомобилей многих марок.
NSU Spider
К сожалению, во время Второй мировой роторный двигатель был никому не нужен, так как не прошел достаточную «обкатку» в автомобильном сообществе и лишь после ее окончания чудо-мотор начинает «выбиваться в люди». В послевоенной Германии первой компанией, которая обратила внимание на интересный агрегат, была NSU. Именно двигатель Ванкеля должен был стать ключевой «фишкой» модели. В 1958 году начались разработки первого проекта, а в 1960 уже готовый автомобиль был показан на конференции немецких конструкторов.
NSU Spider сначала вызвал у конструкторов лишь смех и легкое недоумение. По заявленным характеристикам двигатель Ванкеля развивал всего 54 л.с . и многие усмехались над этим, пока не узнали, что разгон до 100км/ч у этой 700-килограммовой малютки составляет 14,7 секунды, а максимальная скорость — 150 километров в час. Такие характеристики повергли многих разработчиков автомобилей в шок. Определенно двигатель произвел фурор в автомобильной среде, но Ванкель не остановился на достигнутом.
NSU Ro-80
Интересно, что не NSU Spider принес Феликсу Ванкелю популярность, а его второй автомобиль — NSU Ro-80. Его представили в 1967 году, сразу после прекращения выпуска предыдущей модели. В компании решили не медлить и как можно быстрее развивать «роторный рынок». Седан оснастили 1,0-литровым мотором, который развивал мощность в 115 лошадиных сил. Автомобиль, который весил всего 1,2 тонны разгонялся до «сотни» за 12,8 секунды и имел максимальную скорость в 180 км/ч. Сразу же после выхода машина получила статус «Авто года», о роторном двигателе стали говорить, как о моторе будущего, и огромное множество автопроизводителей купили лицензии на производство роторных двигателей Феликса Ванкеля.
Впрочем, сам NSU Ro-80 обладал рядом отрицательных качеств, которые были без преувеличения масштабны. Расход топлива у Ro-80 составлял от 15 до 17,5 литров на 100 км, и в период топливного кризиса это было просто ужасно. Мало того, неопытные водители очень часто «убивали» эти хрупкие двигатели настолько быстро, что даже не успевали проехать и двух тысяч километров. Но, даже не смотря на это, автомобиль пользовался бешеной популярностью, и роторный двигатель укреплял свои позиции.
Mercedes C111
В 1970 году на Женевском автошоу «Мерседес» представили модель С111 с роторным двигателем. Правда, анонсировали его годом ранее, но то был лишь опытный образец, который, впрочем, имел просто заоблачные характеристики. Автомобиль оснащался трехсекционным двигателем объемом 1,8 литра и мощностью в 280 лошадиных сил. Mercedes C111 разгонялся до 100км/ч за 5 секунд и имел максимальную скорость 275 км/ч.
Представленная в Женеве версия даже превысила эти показатели: максимальная скорость составляла 300 километров в час, а добраться до отметки в 100 км/ч можно было за 4,8 секунды. При этом роторный двигатель выдавал аж 370 лошадиных сил. Этот автомобиль был по своей природе уникален и имел просто колоссальную популярность среди автолюбителей, но в Mercedes не собирались пускать C111 на конвейер опять же из-за сверх прожорливого мотора. К сожалению, автомобиль так и остался на стадии опытного образца, тем самым почти похоронив роторный двигатель.
Mazda Cosmo Sport
Казалось бы, роторный двигатель канул в небытие и окончательно пропал из виду, если бы не японцы, который пристально наблюдали за детищем Ванкеля. Mazda Cosmo Sport стал первым авто компании из Страны восходящего солнца, который оснащался этим чудо-мотором. В 1967 году началось серийное производство этого автомобиля, и оно не увенчалось успехом – свет увидели всего 343 машины. Всему виной ошибки в проектировке автомобиля: изначально Cosmo Sport имел 1,3–литровый двигатель мощностью в 110 лошадиных сил, разгонялся до 185 км/ч при помощи 4-ступенчатой ручной коробки передач, но имел обычную тормозную систему и, как казалось разработчикам, слишком короткую колесную базу.
В 1968 году японцы выпускают вторую серию Mazda Cosmo Sport, которая получает 128-сильный роторный двигатель, 5-ступенчатую ручную коробку передач, улучшенные 15-дюймовые тормоза и увеличенную колесную базу. Теперь автомобиль лучше чувствовал себя на дороге, разгонялся до 190 км/ч и имел неплохие продажи. Всего же было выпущено порядка 1200 машин.
Mazda Parkway Rotary 26
«Мазде» настолько понравился двигатель Феликса Ванкеля, что в 1974 году на свет появилась модель Parkway Rotary 26 – единственный в мире автобус с роторным двигателем. Он оснащался 1,3–литровым агрегатом, который выдавал 135 л. с. и, что немаловажно, обладал низким уровнем содержания вредных веществ в выхлопных газах.
Вместе с 4-ступенчатой ручной коробкой передач 3-тонный автобус мог легко набрать скорость в 160 км/ч и имел достаточно вместительный салон. Число 26 в названии означало количество посадочных мест в автобусе, но имелась также и люксовая версия на 13 человек. Модель отличалась низким уровнем вибраций и тишиной в салоне, что было обеспечено гладкостью работы роторного двигателя. Производство модели было завершено в 1976 году, но, к слову, автомобиль был довольно популярен.
Mazda RX-8
С производством автомобилей с роторным двигателем «Мазда» не унималась вплоть до XXI века. А спортивное четырехместное заднеприводное купе с распашными дверями без стойки Mazda RX-8 и вовсе стал настоящей иконой для автолюбителей. Последняя версия автомобиля оснащалась 1,3-литровым двигателем мощностью 215 л. с. и 6-ступенчатым автоматом, а также 1,3-литровым мотором мощностью 231 л. с. с крутящим моментом в 211 Нм и 6-ступенчатой механикой. Кроме того, это бесспорно самый красивый представитель роторного семейства.
Казалось, что пришедшая на смену RX-7 единственная серийная модель с роторным двигателем будет оставаться живым символом этого изобретения, но начиная с 2004 года продажи купе начали падать. Да так, что к 2010 году сократилить с 25 000 машин до 1500 в год. «Мазда» пыталась спасти положение, но инженеры компании не смогли устранить все проблемы — улучшить экологичность, снизить вес, уменьшить расход топлива и улучшить крутящий момент. К тому же грянувший кризис заставил японцев отказаться от вложения денег в не приносящий отдачи проект. Поэтому в августе 2011 года было объявлено о снятии Mazda RX-8 с производства.
«ВАЗ-2109-90»
Когда-то ходила байка: мол, на скорости в 200 км/ч «девятка» ДПС догоняет летящий «Мерседес». И многие воспринимали эту историю, как шутку. Но в каждой шутке есть доля правды. И определенно в этой смешной истории правды гораздо больше, чем лжи. В России тоже производили автомобили с роторным двигателем. В 1996 году был разработан опытный образец «ВАЗ-2109-90» с роторно-поршневым двигателем повышенной мощности. Указывалось, что по динамическим и скоростным качествам автомобиль должен превосходить все модели автомобилей отечественного производства. И действительно, под капот «девятки» установили 140-сильный роторный двигатель, который разгонял машину до 100 км/ч всего за 8 секунд и имел максимальную скорость 200 км/ч. Вдобавок ко всему в багажник устанавливали топливный бак емкостью 39 литра, ибо расход бензина был огромный. Благодаря этому без дозаправки можно было доехать из Москвы в Смоленск и обратно.
Позднее были представлены еще 2 «заряженные» модификации «девятки»: роторный двигатель, развивающий 150 лошадиных сил и форсированный вариант с 250 «кобылами». Но из-за такой избыточной мощности агрегаты очень быстро приходили в негодность – всего 40 тысяч километров пробега. Правда, такой вид автомобилей в России не прижился из-за высокой цены на автомобиль, высокого потребления топлива и высокой стоимости на содержание.
fishki.net
Двигатель внутреннего сгорания — это одно из тех изобретений, которые в корне перевернули нашу жизнь — с лошадиных повозок люди смогли пересесть на быстрые и мощные автомобили.
Первые ДВС обладали малой мощностью, а коэффициент полезного действия не доходил даже до десяти процентов, но неутомимые изобретатели — Ленуар, Отто, Даймлер, Майбах, Дизель, Бенц и множество других — привносили что-то новое, благодаря чему имена многих увековечены в названиях известных автомобильных компаний.
ДВС прошли длительный путь развития от коптящих и часто ломающихся примитивных моторов, до сверхсовременных битурбированных двигателей, но принцип их работы остался все тот же — теплота сгорания топлива преобразуется в механическую энергию.
Название «двигатель внутреннего сгорания» используется потому, что топливо сгорает в середине двигателя, а не снаружи, как в двигателях внешнего сгорания — паровых турбинах и паровых машинах.
Благодаря этому ДВС получили множество положительных характеристик:
Устройство ДВС
Вне зависимости от того, на каком топливе работает двигатель — бензин, дизель, пропан-бутан или экотопливо на основе растительных масел — главным действующим элементом является поршень, который находится внутри цилиндра. Поршень похож на металлический перевернутый стакан (скорее подойдет сравнение с бокалом для виски — с плоским толстым дном и прямыми стенками), а цилиндр — на небольшой кусок трубы, внутри которой и ходит поршень.
В верхней плоской части поршня имеется камера сгорания — углубление круглой формы, именно в нее попадает топливно воздушная смесь и здесь же детонирует, приводя поршень в движение. Это движение передается на коленчатый вал с помощью шатунов. Шатуны верхней своей частью прикреплены к поршню с помощью поршневого пальца, который просовывается в два отверстия по бокам поршня, а нижней — к шатунной шейке коленчатого вала.
Первые ДВС имели всего один поршень, но и этого было достаточно, чтобы развить мощность в несколько десятков лошадиных сил.
В наше время тоже применяются двигатели с одним поршнем, например пусковые двигатели для тракторов, которые выполняют роль стартера. Однако больше всего распространены 2-х, 3-х, 4-х, 6-и и 8-цилиндровые двигатели, хотя выпускаются двигатели на 16 цилиндров и более.
Поршни и цилиндры находятся в блоке цилиндров. От того, как расположены цилиндры по отношению к друг другу и к другим элементам двигателя, выделяют несколько видов ДВС:
Важным элементом двигателя является коленчатый вал, на который передается возвратно-поступательное движение поршня, коленвал преобразует его во вращение.
Когда на тахометре отображаются обороты двигателя, то это как раз и есть количество вращений коленвала в минуту, то есть он даже на самых низких оборотах вращается со скоростью 2000 оборотов в минуту. С одной стороны коленвал соединен с маховиком, от которого вращение через сцепление подается на коробку передач, с другой стороны — шкив коленвала, связанный с генератором и газораспределительным механизмом через ременную передачу. В более современных авто шкив коленвала связан также со шкивами кондиционера и гидроусилителя руля.
Топливо подается в двигатель через карбюратор или инжектор. Карбюраторные ДВС уже отживают свое из-за несовершенства конструкции. В таких ДВС идет сплошной поток бензина через карбюратор, затем топливо смешивается во впускном коллекторе и подается в камеры сгорания поршней, где детонирует под действием искры зажигания.
В инжекторных двигателях непосредственного впрыска топливо смешивается с воздухом в блоке цилиндров, куда подается искра от свечи зажигания.
Газораспределительный механизм отвечает за согласованную работу системы клапанов. Впускные клапаны обеспечивают своевременное поступление топливновоздушной смеси, а выпускные отвечают за выведение продуктов сгорания. Как мы уже писали раньше, такая система используется в четырехтактных двигателях, тогда как в двухтактных необходимость в клапанах отпадает.
На данном видео показано как устроен двигатель внутреннего сгорания, какие функции выполняет и как он это делает.
Устройство четырехтактного ДВС
Поделиться в социальных сетях
vodi.su