Menu

Давление в впускном коллекторе – чистка инжектора ,компютерна диагностика — Анализ разряжения во впускном коллекторе

Содержание

Высокое давление во впускном коллекторе

По каким причинам может быть высокое давление во впускном коллекторе при работе двигателя на холостом ходу?

Периодически приходится высказывать своё мнение по этому поводу. И дабы не тратить каждый раз время и не изнашивать клавиатуру, решил изложить свои мысли в одном посте и в будущем просто давать ссылку на него.

Много бытует мифов по этому поводу, много предположений и заблуждений. Основная масса обладателей данной проблемы уверены, что это подсос воздуха во впускной коллектор в обход дроссельной заслонки. Так ли это? Или бывают и другие причины? Попробуем на этой странице с этим разобраться.


Какое должно быть давление во впускном коллекторе

Давление во впускном коллекторе на прогретом двигателе в режиме работы на холостом ходу должно составлять 30-33 кПа. При этом должны быть выключены все мощные потребители.

Если на Вашем авто давление во впускном коллекторе явно выше этих значений, тогда стоит обязательно разобраться в причине таких показаний.

Причины завышенного давления во впускном коллекторе

При любой диагностике всегда неизбежно возникает первый и самый главный вопрос — исправен ли датчик? Реально ли там такое давление или датчик даёт неверные показания? Ответив на этот вопрос мы пройдём половину пути к решению данной проблемы.

На странице Как проверить ДАД изложено, как проверить датчик, проводку датчика, напряжения питания датчика и имеется видео проверки.

Но хочу в очередной раз отметить, что по моему мнению эти датчики очень надёжны и редко выходят из строя.

Если у Вас совершенно нет никакого желания тягаться в моторном отсеке с мультиметром, то работоспособность датчика примерно можно оценить по логам диагностики. Если нажать педаль газа на холостом ходу и удерживать её примерно на 2000-3000 об/мин, то сигнал датчика должен слегка подскочить, а затем опуститься до 23-25 кПа и оставаться на этих значениях, пока Вы не отпустите педаль

И если при выжатой педали газа при нагрузке на двигатель (интенсивный разгон, движение в гору), показания абсолютного давления в коллекторе стали практически равны барометрическому давлению, то значит датчик скорее всего исправен

Если датчик исправен, значит давление во впускном коллекторе действительно завышено и будем дальше искать причину данного явления.

Будем разбираться на примере вот такой ситуации. Работу двигателя можно назвать нормальной, только значительно возрос расход топлива

Как видим, обороты в норме, а давление во впускном коллекторе составляет аж 42 кПа, что практически превышает норму на 10 кПа.

Основная масса советчиков в интернете сразу и безоговорочно заставляют искать подсос воздуха. Мотивируя это тем, что больше воздуха попадает в коллектор и, соответственно, повышается давление. Но, по моему мнению, это полная ерунда. Не стоит сразу и сломя голову искать подсосы. Лучше потратьте это время на более полезные занятия, о которых я напишу дальше.

Давайте объясню. Двигатель работает на воздухе с небольшим добавлением массы топлива. Когда мы открываем дроссельную заслонку, то мы даём двигателю больше воздуха, чтобы он увеличивал обороты. Из этого следует, что если во впускной коллектор будет подсос воздуха, то неизбежно возрастут обороты холостого хода!

ЭБУ видит завышенные обороты и пытается их понизить, прикрывая прохождение воздуха через регулятор холостого хода (РХХ). Поэтому я определяю подсос воздуха даже без дымогенераторов и прочих приспособлений. Для этого достаточно глянуть на шаги РХХ. А на двигателях Лачетти 1,4 и 1,6, вообще, достаточно глянуть на положение ДЗ, так как на них РХХ управляет непосредственно дроссельной заслонкой.

Пытался как-то вступить в дискуссию и высказать свою точку зрения, но фанатики подсосов не сильно прониклись предоставленной мной теорией. Поэтому решил показать всё наглядно на практике.

Вот внизу два графика. На первом работа двигателя без подсоса во впускной коллектор

А на втором я снял шланг с клапана вентиляции картера, чем обеспечил довольно не плохой подсос воздуха во впускной коллектор в обход дроссельной заслонки

И что же мы видим:

  • Положение ДЗ было 2.7, стало 0.4 — это ЭБУ прикрыл заслонку, чтобы уменьшить подачу воздуха в двигатель
  • Обороты были 798, стали 841
  • Положение РХХ было 24, стало 4 — это ЭБУ прикрыл подачу воздуха
  • Давление в коллекторе было 34, стало 34. То есть, не изменилось!

Из этого могу сделать три вывода:

  • Если давление в коллекторе возросло, а шаги РХХ не снизились практически до нуля, то не стоит тратить время на поиск мифических подсосов
  • Если шаги РХХ упали почти в ноль, то это означает, что имеется довольно сильный подсос. В данном случае подсос был через штуцер вентиляции картерных газов, а он довольно не маленький. Поэтому и в данной ситуации нет особого смысла искать микроскопические подсосы через уплотнители форсунок и прочих мелочей, которые советуют проверить почти все советчики в интернете.
  • Давление в коллекторе может возрасти тогда, когда РХХ закроется уже полностью и ЭБУ просто не сможет уже регулировать подачу воздуха. Но это будет уже не слабый подсос, который, опять же, не стоит искать в микротрещинах. Это будет уже большая «дырка», которую теоретически можно будет найти даже по звуку всасываемого большого количества воздуха. Для примера я отключил ещё и трубку от адсорбера, устроив этим уже мега подсос. РХХ закрыт уже полностью (4-5 шагов) и не может скомпенсировать подсос, что неизбежно приведёт к повышению оборотов холостого хода. Даже таким подсосом я смог добиться повышения давления во впускном коллекторе только до 40 кПа. А обороты поднялись до 1000!  

В общем, если РХХ не уменьшил шаги до очень низкого значения, а обороты хх не выросли, то подсоса воздуха, по моему мнению, нет. И не стоит тратить время на его поиск.

Отвлекусь ещё на подсосы воздуха. Соединения через прокладки не возможно сделать 100% герметичными, поэтому подсосы воздуха есть у всех, вопрос лишь в их количестве. Если они не значительны, то их влияние на работу системы управления двигателем, основанной на датчике давления в коллекторе, практически не заметно и они не приводят к каким-либо проблемам. Проблемы начинаются, как мы поняли, когда подсос становится уже более чем значительный. Даже если у Вас нет диагностического адаптера и Вы не можете посмотреть шаги РХХ и положение ДЗ, то и это не беда. Косвенно можно оценить ситуацию следующим образом. При работе двигателя на холостом ходу отключите шланг вентиляции картера от впускного коллектора.

При этом обороты должны резко возрасти и плавно вернуться в норму. Это означает, что у РХХ ещё есть запас регулировки и критического подсоса скорее всего нет.

В особо запущенных случаях можно снять гофру с дроссельного узла…

…и перекрыть доступ воздуха в дроссель. Если двигатель на это не отреагирует и продолжит стабильно работать, значит воздух он всё-таки где-то берёт.

Пойдём дальше.

Так почему же высокое давление во впускном коллекторе?

Можно услышать ещё несколько вариантов причин данной проблемы:

  • Проблемы с впускным клапаном (зависание, заедание, прогар, поломка пружины и т.п.) — очень редкая ситуация, с которой я, слава Богу не сталкивался. По идее, линия графика тогда должна быть не ровной, а «пульсирующей». И про нормальную работу двигателя в этой ситуации можно забыть. Но в нашей истории двигатель работает нормально. Только увеличен расход топлива.
  • Затруднён выход отработанных газов. Но в данной ситуации о нормальной работе двигателя тоже говорить не приходится.

Остаётся только одна и самая вероятная причина — не правильно работает механизм ГРМ. Именно в этой ситуации оказалось, что метки на шестернях распредвалов не совпадают на один зуб.

Работа двигателя сильно не изменилась при этом, но значительно возрос расход топлива и повысилось давление в коллекторе до 42 кПа.

Так что в такой ситуации первым делом проверяйте метки на распредвалах и коленвале. Особенно если Вы недавно меняли ремень ГРМ.

В конце хочется ещё добавить про ситуацию, когда давление во впускном коллекторе повысилось незначительно (до 35-36 кПа). В такой ситуации довольно часто помогает промывка клапанов

Вот видео про подсос воздуха и завышенное давление во впускном коллекторе

Если у Вас есть мысли или дополнения по вопросу давления во впускном коллекторе, тогда милости прошу в комментарии ниже.

Всем Мира и ровных дорог

По теме:

 

 

Мне нравится 19+

Участники, которые лайкнули этот пост:

moylacetti.ru

Проверка разрежения во впускном коллекторе

Проверка разряжения во впускном коллекторе

                                                                                              

Прежде чем приступать к проверке разряжения во впускном коллекторе, рассмотрим работу 4-х тактного двигателя.

 

1. Такт сжатия. Поршень идет вверх, рабочая смесь сжимается. Растет давление, повышается температура. Клапана закрыты.
Степень сжатия в бензиновом двигателе  подбирается так, что бы температура  в конце   такта  сжатия  не превышала  температуру  самовоспламенения  рабочей смеси. Примерная температура составляет 300-400 градусов Цельсия.
В дизельном  двигателе сжимается  не рабочая смесь, а чистый воздух. Степень сжатия здесь подбирается таким образом, чтобы температура  в конце  такта сжатия  превышала  температуру  самовоспламенения топлива. После чего происходит  его впрыск  и начало  самовоспламенения.

Примерная температура составляет порядка 700 градусов Цельсия.

2. Рабочий ход. Смесь воспламенилась. Растет температура, но так как горение происходит в замкнутом объеме, так же повышается давление. Скорость горения составляет порядка 20-40 м/сек (в зависимости от качества смеси).  Поэтому воспламенение должно произойти  раньше ВМТ (верхней мертвой точки) – так называемый  угол  опережения зажигания (для бензиновых двигателей)  или угол опережения впрыска (для дизельных двигателей). Обычно этот угол составляет порядка 10 градусов до ВМТ. При этом  пик максимального давления возникает (за счет конечного времени горения смеси) через 10-12 градусов после ВМТ. Делается это для предотвращения перегрузок  цилиндропоршневой группы и защиты от детонации.
Давление  Р  в камере сгорания  создает усилие  F   на поршень.

 

F=P*Sп     
где   Sп  — площадь поршня Получаемая работа равна:
AF*L
где A – получаемая работа
F – сила, действующая на поршень
L –перемещение поршня

Итак, получаемая работа на рабочем такте равна:
A= P*L*S
п
 
При увеличении объема (поршень двигается вниз) давление падает. Зависимость получаемой работы приобретает интегральную зависимость от перемещения поршня, но расчет данной зависимости выходит за рамки данной статьи.
Как видим, чем больше давление в цилиндре, тем больше мы получаем механической работы при одном и том же количестве сжигаемого топлива. Высокофорсированные двигателя  имеют большую мощность  (а соответственно экономичность), чем низко форсированные. 

Дизельные двигатели превосходят бензиновые по этим параметрам из-за более высокой степени сжатия и соответственно  более высоких давлений.


3.Такт выпуска (продувки)

 

Открывается  выпускной клапан, поршень двигается вверх, выталкивая отработанные газы.  Они выходят через ограниченное отверстие, поэтому давление на такте выпуска  превышает атмосферное. Сопротивление на выходе  создают: ограниченное отверстие в клапанах, наличие элементов выпускного тракта.

При этом создается противодавление движению поршня  и часть энергии, запасенной в маховике, расходуется на преодоление этого  противодавления.


4. Такт впуска

Открыт впускной клапан, поршень идет вниз. Свежая смесь поступает в цилиндр  через ограниченное сечение впускного клапана  и на холостом ходу (ХХ)  также через прикрытую дроссельную заслонку. Создается разряжение (давление ниже атмосферного). При движении поршня вниз это создает усилие, мешающее перемещению поршня.

Еще одна часть энергии, запасенная в маховике, уходит на преодоление  этого усилия.


Снова наступает такт сжатия. Поршень движется вверх, сжимая смесь. Необходимая для  этого энергия опять берется из энергии вращения маховика, запасенной во время рабочего хода.
Таким образом, энергетический баланс неутешителен:  мы получаем механическую работу только в одном такте. В трех других мы эту работу тратим.

Способы  повышения получаемой работы.


Способ только один – повышение давления в цилиндре. При его повышении  мы получаем большую работу, но рискуем получить  детонацию. Поэтому степень сжатия, угол зажигания (впрыска) ограничено. Дизельное топливо более стойко к детонации, поэтому  дизеля способны работать  при больших давлениях (получать большую механическую работу при равных затратах топлива) Способы минимизации потерь.
1. Такт выпуска.

Необходимо уменьшить гидростатическое сопротивление выходу газов. Применение много клапанных двигателей и содержание в порядке выхлопного тракта  позволяет частично решить эту проблему.

2. Такт впуска.


Уменьшение гидростатического сопротивления  можно получить  путем применения много клапанных двигателей.

3. Такт сжатия.


Неизбежные потери.

Рассмотрим поподробнее, что происходит во впускном коллекторе во время рабочего цикла на  холостом ходу. Когда закрыт впускной клапан, давление в нем равно атмосферному. На такте впуска смесь поступает в цилиндр  через ограниченное отверстие в дроссельной заслонке. Во впускном коллекторе возникает разряжение (абсолютное давление ниже атмосферного). Впускной клапан  закрывается, давление снова возрастает. Мы можем видеть пульсации  давления. Но так как одноцилиндровые двигателя встречаются достаточно редко, пульсации давления (разряжения) от разных цилиндров накладываются друг на друга и во впускном коллекторе возникает  какое то среднее давление, которое ниже атмосферного (т.н. «разряжение»).

Термины «абсолютное давление» и «разряжение» вызывают путаницу даже у производителей  приборов  для измерения разряжения (вакуумметров). Очень часто приходиться слышать фразу «отрицательное давление». Это неверно — давление либо есть, либо его нет (абсолютный вакуум). Давление отрицательным быть не может! Абсолютное давление в вакууме равно нулю, а атмосферное давление равно 100 кРа (100 кило Паскалей). Во впускном коллекторе на холостом ходу (дроссельная заслонка прикрыта)  ниже атмосферного (т.е. ниже 100 кРа), но выше абсолютного вакуума (0 кРа). Разряжением называют разницу между  атмосферным давлением  и фактическим давлением во впускном коллекторе.

Производители автомобилей  нормируют абсолютное давление во впускном коллекторе на холостом ходу при исправном двигателе на уровне  20 кРа (автомобили типа  ВАЗ – на уровне 40 кРа). Разряжение при этом составляет 80 кРа (100 кРа  — 20 кРа = 80 кРа). Для ВАЗов  соответственно 60 кРа (увы, технология изготовления не позволяет получить разряжение, соответствующее уровню мировых производителей).

Абсолютное давление в 20 кРа (разряжение 80 кРа) считается нормой, но на практике для исправного двигателя можно считать допустимым  абсолютное давление 30 кРа (разряжение 70 кРа).  Автору данной статьи всего несколько раз попадались автомобили с идеальным абсолютным давлением (разряжением). Давление в 40 кРа (разряжение 60 кРа) допустимо только для ВАЗов. При давлении в 50 кРа – имеют место серьезные проблемы в двигателе.


Факторы, влияющие на абсолютное давление (разряжение)  будут рассмотрены в следующей части.

       

 Рязанов Федор
© Легион-Автодата

autodata.ru

чистка инжектора ,компютерна диагностика — Анализ разряжения во впускном коллекторе

Анализ разряжения во впускном коллекторе

Прежде чем приступать к проверке разряжения во впускном коллекторе, рассмотрим работу 4-х тактного двигателя.

1. Такт сжатия

Поршень идет вверх, рабочая смесь сжимается. Растет давление, повышается температура. Клапана закрыты. Степень сжатия в бензиновом двигателе подбирается так, что бы температура в конце такта сжатия не превышала температуру самовоспламенения рабочей смеси. Примерная температура составляет 300-400 градусов Цельсия. В дизельном двигателе сжимается не рабочая смесь, а чистый воздух. Степень сжатия здесь подбирается таким образом, чтобы температура в конце такта сжатия превышала температуру самовоспламенения топлива. После чего происходит его впрыск и начало самовоспламения. Примерная температура составляет порядка 700 градусов Цельсия.

                             

2. Рабочий ход

Смесь воспламенилась. Растет температура, но так как горение происходит в замкнутом объеме, так же повышается давление. Скорость горения составляет порядка 20-40 м/сек (в зависимости от качества смеси). Поэтому воспламенение должно произойти раньше ВМТ (верхней мертвой точки) – так называемый угол опережения зажигания (для бензиновых двигателей) или угол опережения впрыска (для дизельных двигателей). Обычно этот угол составляет порядка 10 градусов до ВМТ. При этом пик максимального давления возникает (за счет конечного времени горения смеси) через 10-12 градусов после ВМТ. Делается это для предотвращения перегрузок цилиндропоршневой группы и защиты от детонации. Давление Р в камере сгорания создает усилие F на поршень.

          F=P*Sп
где Sп — площадь поршня

Получаемая работа равна:

          A= F*L
где A – получаемая работа
      F – сила, действующая на поршень
      L – перемещение поршня

Итак, получаемая работа на рабочем такте равна:

          A= P*L*Sп

При увеличении объема (поршень двигается вниз) давление падает. Зависимость получаемой работы приобретает интегральную зависимость от перемещения поршня, но расчет данной зависимости выходит за рамки данной статьи. Как видим, чем больше давление в цилиндре, тем больше мы получаем механической работы при одном и том же количестве сжигаемого топлива. Высокофорсированные двигателя имеют большую мощность (а соответственно экономичность), чем низко форсированные. Дизельные двигатели превосходят бензиновые по этим параметрам из-за более высокой степени сжатия и соответственно более высоких давлений.

                                                                          

3. Такт выпуска (продувки)

Открывается выпускной клапан, поршень двигается вверх, выталкивая отработанные газы. Они выходят через ограниченное отверстие, поэтому давление на такте выпуска превышает атмосферное. Сопротивление на выходе создают: ограниченное отверстие в клапанах, наличие элементов выпускного тракта. При этом создается противодавление движению поршня и часть энергии, запасенной в маховике, расходуется на преодоление этого противодавления.

                               

4. Такт впуска

Открыт впускной клапан, поршень идет вниз. Свежая смесь поступает в цилиндр через ограниченное сечение впускного клапана и на холостом ходу (ХХ) также через прикрытую дроссельную заслонку. Создается разряжение (давление ниже атмосферного). При движении поршня вниз это создает усилие, мешающее перемещению поршня. Еще одна часть энергии, запасенная в маховике, уходит на преодоление этого усилия.

                           

Снова наступает такт сжатия. Поршень движется вверх, сжимая смесь. Необходимая для этого энергия опять берется из энергии вращения маховика, запасенной во время рабочего хода. Таким образом, энергетический баланс неутешителен: мы получаем механическую работу только в одном такте. В трех других мы эту работу тратим.

Способы повышения получаемой работы

Способ только один – повышение давления в цилиндре. При его повышении мы получаем большую работу, но рискуем получить детонацию. Поэтому степень сжатия, угол зажигания (впрыска) ограничено. Дизельное топливо более стойко к детонации, поэтому дизеля способны работать при больших давлениях (получать большую механическую работу при равных затратах топлива).

Способы минимизации потерь

1. Такт выпуска
Необходимо уменьшить гидростатическое сопротивление выходу газов. Применение много клапанных двигателей и содержание в порядке выхлопного тракта позволяет частично решить эту проблему.

2. Такт впуска
Уменьшение гидростатического сопротивления можно получить путем применения много клапанных двигателей.

3. Такт сжатия
Неизбежные потери.

Рассмотрим поподробнее, что происходит во впускном коллекторе во время рабочего цикла на холостом ходу. Когда закрыт впускной клапан, давление в нем равно атмосферному. На такте впуска смесь поступает в цилиндр через ограниченное отверстие в дроссельной заслонке. Во впускном коллекторе возникает разряжение (абсолютное давление ниже атмосферного). Впускной клапан закрывается, давление снова возрастает. Мы можем видеть пульсации давления. Но так как одноцилиндровые двигателя встречаются достаточно редко, пульсации давления (разряжения) от разных цилиндров накладываются друг на друга и во впускном коллекторе возникает какое то среднее давление, которое ниже атмосферного (т.н. «разряжение»). Термины «абсолютное давление» и «разряжение» вызывают путаницу даже у производителей приборов для измерения разряжения (вакуумметров). Очень часто приходиться слышать фразу «отрицательное давление». Это неверно — давление либо есть, либо его нет (абсолютный вакуум). Давление отрицательным быть не может! Абсолютное давление в вакууме равно нулю, а атмосферное давление равно 100 кРа (100 кило Паскалей). Во впускном коллекторе на холостом ходу (дроссельная заслонка прикрыта) ниже атмосферного (т.е. ниже 100 кРа), но выше абсолютного вакуума (0 кРа). Разряжением называют разницу между атмосферным давлением и фактическим давлением во впускном коллекторе. Производители автомобилей нормируют абсолютное давление во впускном коллекторе на холостом ходу при исправном двигателе на уровне 20 кРа (автомобили типа ВАЗ – на уровне 40 кРа). Разряжение при этом составляет 80 кРа (100 кРа — 20 кРа = 80 кРа). Для ВАЗов соответственно 60 кРа (увы, технология изготовления не позволяет получить разряжение, соответствующее уровню мировых производителей). Абсолютное давление в 20 кРа (разряжение 80 кРа) считается нормой, но на практике для исправного двигателя можно считать допустимым абсолютное давление 30 кРа (разряжение 70 кРа). Автору данной статьи всего несколько раз попадались автомобили с идеальным абсолютным давлением (разряжением). Давление в 40 кРа (разряжение 60 кРа) допустимо только для ВАЗов. При давлении в 50 кРа – имеют место серьезные проблемы в двигателе.

Факторы, влияющие на разряжение во впускном коллекторе

1. Пониженная компрессия

Износ поршневых колец

На такте впуска в цилиндр поступает дополнительный воздух из картера через увеличенный зазор между поршнем и цилиндром. Давление повышается, разряжение уменьшается.

Неплотность выпускных клапанов

Часть отработанных газов из выхлопного коллекторе засасывается обратно в цилиндр. Повышается давление в цилиндре, меньшее количество смеси забирается из впускного коллектора – разряжение уменьшается.

Неплотность впускного клапана

На такте впуска впускной клапан открыт, на разряжение влияния не оказывает.. Но на такте сжатия часть смеси, находящаяся в цилиндре, выталкивается обратно во впускной коллектор под давлением. Среднее давление в коллекторе возрастает (разряжение падает). Стрелка вакуумметра начинает «дрожать», при снятии воздушного фильтра слышно характерное «бубнение» во впускном коллекторе.

2. Подсос воздуха во впускной коллектор

Дополнительный воздух поступает в коллектор, минуя дроссельную заслонку. Давление возрастает, разряжение уменьшается.

3. Неправильные фазы газораспределения

Увеличенные зазоры в клапанах

При увеличении зазоров в клапанах они открываются позже, открываются раньше. Это приводит к уменьшению времени продувки (выпускной клапан) и уменьшению времени всасывания (впускной клапан). Уменьшение времени продувки приводит к тому, что отработанные газы (ОГ) выходят не полностью. Часть их остается в цилиндре. Наполняемость цилиндра свежей смесью уменьшается. Уменьшение времени всасывания так же приводит к уменьшенной наполняемости цилиндра. В обоих случаях меньше смеси поступает в цилиндр, разряжение во впускном коллекторе падает.

Уменьшенные зазоры в клапанах

Картина явно противоположная – клапана открываются раньше, закрываются позже. Раннее открытие выпускного клапана приводит к тому, что на такте рабочего хода часть давления сбрасывается в выпускной коллектор, не производя механической работы. Позднее закрытие приводит к тому, что такт всасывания происходит при большем открытии выпускного клапана (т.н. перекрытие клапанов увеличивается). Часть ОГ, вышедших в выпускной коллектор, возвращается обратно в цилиндр. Раннее открытие впускного клапана на такте продувки приводит к тому, что часть ОГ «выталкиваются» во впускной коллектор. Наполняемость цилиндра свежей смесью уменьшается, что приводит к уменьшению разряжения во впускном коллекторе.

Смещение ремня ГРМ

При смещении распредвала относительно коленвала в раннюю сторону мы можем наблюдать следующую картину. Клапана открываются раньше, закрываются тоже раньше. Раннее открытие выпускного клапана приводит к сбросу давления на такте рабочего хода и соответственно, к недополучению механической работы (падение мощности двигателя при том же расходе топлива). А вот его раннее закрытие вызывает подъем давления в цилиндре на конце такта продувки), ршень идет еще вверх, выталкивая ОГ, а выпускной клапан уже закрыт). Свежая смесь начнет поступать в цилиндр только тогда, когда это давление упадет до значения, равного давлению во впускном коллекторе – т.е. с задержкой. Точка перехода давления на выпуске к разряжению на впуске смещается в позднюю сторону.

Раннее закрытие впускного клапана так же уменьшает время всасывания. Наполняемость цилиндра свежей смесью падает. Наблюдается нестабильная работа двигателя на холостом ходу, разряжение во впускном коллекторе падает. Аналогичные процессы происходят при смещении распредвала относительно коленвала в позднюю сторону.

                                                                          

Анализ графика давления в цилиндре позволяет с большой степенью достоверности оценить состояние механической части двигателя. К сожалению, применение датчика давления в цилиндре сопряжено с рядом технологических трудностей:

1. На такте сжатия давление (а соответственно температура) повышается. Происходит перегрев датчика, что вызывает его неверные показания.
2. На двухвальных двигателях установка датчика вместо свечи невозможна – требуются переходники, которые увеличивают объем камеры сгорания – и как следствие, неверные показания.
3. Цена.

И ряд других…..

Поэтому доступным является метод проверки разряжения (абсолютного давления) во впускном коллекторе. Факторы, влияющие на этот параметр, мы уже рассмотрели. Однозначная локализация дефекта затруднена, но данный метод позволяет с достаточной степенью точности оценить состояние механической части двигателя. При наличии отклонений (абсолютное давление на автомобилях – более 30 кРа, на ВАЗах – более 40 кРа) локализация дефекта (цилиндропоршневая группа или механизм газораспределения) не составляет большого труда. Проверка компрессии (а лучше использование тестера утечек в цилиндре) позволяет уточнить место дефекта. Напомню, что проблемы в цилиндропоршневой группе, равно как и прогоревший (неплотно сидящий клапан) вызывает резкое падение компрессии. Нарушения в фазах ГРМ вызывает падение компрессии в значительно в меньшей степени (к примеру, по замерам автора, смещение меток на 1-2 зуба снижает компрессию всего на 0,5- 1,0 кг/см2), а вот влияние на разряжение во впускном коллекторе очень велико. При отсутствии отклонений в разряжении во впускном коллекторе дальнейшие проверки механической части двигателя просто не нужны.

ingektor.at.ua

Высокое давление во впускном коллекторе — Aiki-group.ru

Как проверить датчик абсолютного давления во впускном коллекторе.

Как проверить датчик абсолютного давления во впускном коллекторе.

После того как вы открыли в первый раз капот, вы увидели много проводов, датчиков, разъемов. Вы, возможно, испугались предстоящей работе. Но пугаться не стоит, попробую объяснить, какие датчики есть на впускном коллекторе, дроссельной заслонке, а так же их особенности в двигателях D14 и D14. Датчик абсолютного давления впускного коллектора, он же ДМРВ.
Диапазон измеряемого давления в впускном коллекторе от 10 до 170 кПа. Рассоединить электрический разъем MAP датчика. Включить зажигание, двигатель не запускать!Вывернуть винты датчика MAP. Отсоединить датчик от дроссельной заслонки. Подключить разъем, включить зажигание, двигатель не запускать!Глубина разрежения, мм рт.
Итог: 3 провода, питание от 5 вольт. Двухконтактный датчик по измерению температуры воздуха во впускном тракте, благодаря его измерениям, контрольный блок ECU вносит характеристики в режим холостого хода. Крепится либо в коробе фильтра, либо непосредственно в трубке впуска.
Значения такие же, как и на TA. Крепился в задней нижней части впускного коллектора на 2х винтах. Винты обычно закислены, шляпки срезаются дремелем.
Можно менять с разных моделей Honda. Итог: 2 провода, полярность не важна. Необходимы для распыления топлива под действием высокого давления.
Благодаря току в обмотке, сердечник открывает или закрывает канал. Были случаи установки неправильных форсунок, и сгорала часть блока ECU. Более подробнее в статье. Все четыре форсунки одним контактом соединены на сплиттере. По другому контакту, проходит сигнал на форсунку.
Приведите свой двигатель в порядок, а не меняйте на контрактный. Можете поменять шило на мыло.

datchik-vaz.ru

Как проверить датчик абсолютного давления

Все современные автомобили оснащены электронной системой управления двигателем, которая регулирует работу силового агрегата при помощи информации, снимаемой со специальных датчиков. Одним их таких устройств выступает датчик давления воздуха или МАР-сенсор, установленный во впускном коллекторе. Он реагирует на все изменения давления во впускном такте, а ЭБУ двигателя, в зависимости от показаний прибора, обеспечивает приготовление оптимальной горючей смеси.

Назначение и принцип работы датчика абсолютного давления

Датчик давления предназначен для измерения абсолютного давления, то есть давления воздуха относительно вакуума. Полученные данные используются системой управления двигателем для вычисления плотности воздуха и его расхода при оптимизации приготовления воздушно-топливной смеси. Прибор выступает альтернативой расходомера воздуха, а в некоторых моделях авто работает совместно с расходомером.

В современных датчиках применяют две технологии измерения: микромеханическую и тонкопленочную. Первая – более прогрессивная, так как производит более точные измерения, и большинство датчиков изготовлены именно по ней. При наличии в двигателе турбонаддува, между компрессором и коллектором ставят дополнительный датчик, регулирующий давление наддува в зависимости от потребности двигателя, который конструктивно идентичен ДАД.

В конструкции датчика давления воздуха присутствует 2 камеры – атмосферная, связанная со впускным коллектором, и вакуумная. Там же расположены 4 тензорезистора, прикрепленных к диафрагме, и электронный чип. Давление воздуха действует на диафрагму, и она перемещает тензорезисторы, которые в зависимости от положения меняют сопротивление, что в итоге влияет на величину импульса от чипа к блоку управления.

Чувствительные полупроводники для повышения импульса соединены по схеме моста, а исходящее напряжение изменяется от 1 до 5 В. Полученное напряжение позволяет ЭБУ определить давление во впускном коллекторе – чем оно больше, тем показатель считается выше. Исходя из типа датчика, он выдает различный тип сигнала – цифровой или аналоговый. В аналоговом приборе дополнительно устанавливают аналогово-цифровой преобразователь.

Датчик получает результаты о давлении воздуха следующим образом:

  1. Воздушный поток в коллекторе давит на диафрагму прибора, и она изгибается.
  2. При механическом растяжении диафрагмы на тензорезисторах меняется сопротивление, то есть наблюдается пьезорезистивный эффект.
  3. Пропорционально сопротивлению тензорезисторов, меняется напряжение.
  4. Полупроводники в датчике соединены по мостовой схеме и очень чувствительны. Электрическая схема, расположенная в приборе, мостовое напряжение усиливает, в итоге на выходе оно изменяется в пределах 1-5 В.
  5. Исходя из того, какое выходное напряжение поступает в блок управления, рассчитывается уровень давления на впускном клапане. Более высокое напряжение соответствует более высокому давлению.
  6. Признаки неисправности датчика абсолютного давления

    О возникшей неисправности ДАД свидетельствуют следующие признаки:

  7. Увеличение расхода топлива. Прибор подает в блок управления данные о высоком давлении воздуха, которое фактически гораздо ниже. По этой причине БУ подает в цилиндры богатую смесь.
  8. Падает динамика двигателя, не улучшающаяся при прогреве.
  9. При работе мотора из выхлопной трубы ощущается запах топлива.
  10. Работающий двигатель даже в теплое время года выдает белый выхлоп.
  11. Двигатель в холостом режиме работы долго не сбрасывает обороты.
  12. При переключении передач заметны рывки машины.
  13. Нестабильная работа двигателя во всех режимах работы, наличие посторонних шумов, зачастую переходящих в гул.
  14. Возможные причины неисправности

    Датчик абсолютного давления – достаточно надежное устройство, но иногда он выходит из строя, вызывая переключение работы двигателя в аварийный режим, и даже препятствуя запуску мотора. Причин неполадок в работе ДАД существует несколько:

  15. Плохое соединение датчика и входного штуцера.
  16. Закоксованный трубопровод, который имеет достаточно гибкую конструкцию.
  17. Поломка датчика температуры воздуха, который связан с ДАД, а иногда объединен с ним в одном корпусе.
  18. Разгерметизация вакуумного шланга по причине повреждения или отключения от датчика.
  19. Обрыв контакта «масса».
  20. Неисправность внутри датчика.
  21. Проверка датчика абсолютного давления

    В различных моделях авто конструкция датчика может отличаться, и, следовательно, алгоритм проверки тоже. Следующая обобщенная инструкция позволит исследовать большинство типов приборов. Для этого понадобятся:

  22. Простой вакуумный манометр.
  23. Тестер или вольтметр.
  24. Вакуумный насос.
  25. Тахометр.
  26. Проверка датчика давления воздуха состоит из следующих этапов:

  27. Для проверки аналогового датчика, его переходник подключается к вакуумному шлангу между датчиком давления и впускным коллектором. К переходнику также подсоединяют манометр.
  28. Двигатель запускают и дают ему некоторое время поработать на холостых оборотах. При показателе разрежения в коллекторе менее 529 мм рт. ст., проверяют целостность вакуумного шланга, так как через повреждения на нем утрачивается часть воздуха. Также следует обратить внимание на состояние диафрагмы датчика, на которой могут присутствовать как заводские, так и приобретенные при эксплуатации дефекты.
  29. После снятия показаний манометра, его заменяют на вакуумный насос, после чего создают разрежение 55-56 мм рт. ст. и прекращают откачку. При исправном датчике разрежение будет сохраняться 25-30 сек. Если требование не выполняется – датчик подлежит замене.
  30. При проверке цифрового датчика пользуются тестером в режиме вольтметра.
  31. Включают зажигание, находят контакты заземления и питания. К вольтметру подключают провод, соединенный с сигнальным контактом тестируемого датчика. При его нормальной работе напряжение будет составлять около 2,5 В. При наличии неисправностей – отличаться в большую или меньшую сторону.
  32. Тестер переключают в режим работы тахометра и отсоединяют от ДАД вакуумный шланг. Положительный ввод подключают к сигнальному проводу, а минус – к заземлению. При исправном датчике тахометр выдаст результат – 4400-4850 об/мин.
  33. Снова используется вакуумный насос, который подключается к датчику давления. Насосом постоянно меняют разрежение в приборе и следят за показаниями тахометра. При исправном датчике разрежение и показатели тахометра будут стабильными.
  34. При отключении вакуумного насоса, тахометр останавливается на показателе 4400-4900 об/мин. Если показания отличаются от указанных в ту или иную сторону – датчик неисправен.
  35. После диагностики неисправности ДАД, приступают к ее устранению. При мелкой поломке, поддающейся ремонту, прибор оставляют. Если прибор выдает неправильные показания – необходима его полная замена. Конструкция датчика на проведение ремонта не рассчитана, и все действия, направленные мастером на устранение неисправностей, проводятся на его страх и риск. Но стоимость нового прибора достаточно высока, и все манипуляции в случае успеха становятся оправданными.

    Ремонт датчика осуществляют в определенной последовательности:

  36. Ножом или другим острым инструментом снимают крышку прибора, после чего выявляют местонахождение неисправности.
  37. Контакты чистят от загрязнений и ржавчины, проверяют надежность их соединения, а после чистки просушивают, заливают силиконовым герметиком, и снова сушат. На собранном приборе герметиком заделывают все стыки.
  38. Прибор устанавливают на автомобиль и проверяют его исправность. Быстрый запуск двигателя и его ровная работа означают исправность прибора. Если ремонт не принес ожидаемых результатов – датчик меняют на новый.

voditelauto.ru

Высокое давление во впускном коллекторе

По каким причинам может быть высокое давление во впускном коллекторе при работе двигателя на холостом ходу?

Периодически приходится высказывать своё мнение по этому поводу. И дабы не тратить каждый раз время и не изнашивать клавиатуру, решил изложить свои мысли в одном посте и в будущем просто давать ссылку на него.

Много бытует мифов по этому поводу, много предположений и заблуждений. Основная масса обладателей данной проблемы уверены, что это подсос воздуха во впускной коллектор в обход дроссельной заслонки. Так ли это? Или бывают и другие причины? Попробуем на этой странице с этим разобраться.

Какое должно быть давление во впускном коллекторе

Давление во впускном коллекторе на прогретом двигателе в режиме работы на холостом ходу должно составлять 30-33 кПа. При этом должны быть выключены все мощные потребители.

Если на Вашем авто давление во впускном коллекторе явно выше этих значений, тогда стоит обязательно разобраться в причине таких показаний.

Причины завышенного давления во впускном коллекторе

При любой диагностике всегда неизбежно возникает первый и самый главный вопрос – исправен ли датчик? Реально ли там такое давление или датчик даёт неверные показания? Ответив на этот вопрос мы пройдём половину пути к решению данной проблемы.

На странице Как проверить ДАД изложено, как проверить датчик, проводку датчика, напряжения питания датчика и имеется видео проверки.

Но хочу в очередной раз отметить, что по моему мнению эти датчики очень надёжны и редко выходят из строя.

Если у Вас совершенно нет никакого желания тягаться в моторном отсеке с мультиметром, то работоспособность датчика примерно можно оценить по логам диагностики. Если нажать педаль газа на холостом ходу и удерживать её примерно на 2000-3000 об/мин, то сигнал датчика должен слегка подскочить, а затем опуститься до 23-25 кПа и оставаться на этих значениях, пока Вы не отпустите педаль

И если при выжатой педали газа при нагрузке на двигатель (интенсивный разгон, движение в гору), показания абсолютного давления в коллекторе стали практически равны барометрическому давлению, то значит датчик скорее всего исправен

Если датчик исправен, значит давление во впускном коллекторе действительно завышено и будем дальше искать причину данного явления.

Будем разбираться на примере вот такой ситуации. Работу двигателя можно назвать нормальной, только значительно возрос расход топлива

Как видим, обороты в норме, а давление во впускном коллекторе составляет аж 42 кПа, что практически превышает норму на 10 кПа.

Основная масса советчиков в интернете сразу и безоговорочно заставляют искать подсос воздуха. Мотивируя это тем, что больше воздуха попадает в коллектор и, соответственно, повышается давление. Но, по моему мнению, это полная ерунда. Не стоит сразу и сломя голову искать подсосы. Лучше потратьте это время на более полезные занятия, о которых я напишу дальше.

Давайте объясню. Двигатель работает на воздухе с небольшим добавлением массы топлива. Когда мы открываем дроссельную заслонку, то мы даём двигателю больше воздуха, чтобы он увеличивал обороты. Из этого следует, что если во впускной коллектор будет подсос воздуха, то неизбежно возрастут обороты холостого хода!

ЭБУ видит завышенные обороты и пытается их понизить, прикрывая прохождение воздуха через регулятор холостого хода (РХХ). Поэтому я определяю подсос воздуха даже без дымогенераторов и прочих приспособлений. Для этого достаточно глянуть на шаги РХХ. А на двигателях Лачетти 1,4 и 1,6, вообще, достаточно глянуть на положение ДЗ, так как на них РХХ управляет непосредственно дроссельной заслонкой.

Пытался как-то вступить в дискуссию и высказать свою точку зрения, но фанатики подсосов не сильно прониклись предоставленной мной теорией. Поэтому решил показать всё наглядно на практике.

Вот внизу два графика. На первом работа двигателя без подсоса во впускной коллектор

А на втором я снял шланг с клапана вентиляции картера, чем обеспечил довольно не плохой подсос воздуха во впускной коллектор в обход дроссельной заслонки

И что же мы видим:

  • Положение ДЗ было 2.7, стало 0.4 – это ЭБУ прикрыл заслонку, чтобы уменьшить подачу воздуха в двигатель
  • Обороты были 798, стали 841
  • Положение РХХ было 24, стало 4 – это ЭБУ прикрыл подачу воздуха
  • Давление в коллекторе было 34, стало 34. То есть, не изменилось!
  • Из этого могу сделать три вывода:

    • Если давление в коллекторе возросло, а шаги РХХ не снизились практически до нуля, то не стоит тратить время на поиск мифических подсосов
    • Если шаги РХХ упали почти в ноль, то это означает, что имеется довольно сильный подсос. В данном случае подсос был через штуцер вентиляции картерных газов, а он довольно не маленький. Поэтому и в данной ситуации нет особого смысла искать микроскопические подсосы через уплотнители форсунок и прочих мелочей, которые советуют проверить почти все советчики в интернете.
    • Давление в коллекторе может возрасти тогда, когда РХХ закроется уже полностью и ЭБУ просто не сможет уже регулировать подачу воздуха. Но это будет уже не слабый подсос, который, опять же, не стоит искать в микротрещинах. Это будет уже большая “дырка”, которую теоретически можно будет найти даже по звуку всасываемого большого количества воздуха. Для примера я отключил ещё и трубку от адсорбера, устроив этим уже мега подсос. РХХ закрыт уже полностью (4-5 шагов) и не может скомпенсировать подсос, что неизбежно приведёт к повышению оборотов холостого хода. Даже таким подсосом я смог добиться повышения давления во впускном коллекторе только до 40 кПа. А обороты поднялись до 1000!
    • В общем, если РХХ не уменьшил шаги до очень низкого значения, а обороты хх не выросли, то подсоса воздуха, по моему мнению, нет. И не стоит тратить время на его поиск.

      Отвлекусь ещё на подсосы воздуха. Соединения через прокладки не возможно сделать 100% герметичными, поэтому подсосы воздуха есть у всех, вопрос лишь в их количестве. Если они не значительны, то их влияние на работу системы управления двигателем, основанной на датчике давления в коллекторе, практически не заметно и они не приводят к каким-либо проблемам. Проблемы начинаются, как мы поняли, когда подсос становится уже более чем значительный. Даже если у Вас нет диагностического адаптера и Вы не можете посмотреть шаги РХХ и положение ДЗ, то и это не беда. Косвенно можно оценить ситуацию следующим образом. При работе двигателя на холостом ходу отключите шланг вентиляции картера от впускного коллектора.

      При этом обороты должны резко возрасти и плавно вернуться в норму. Это означает, что у РХХ ещё есть запас регулировки и критического подсоса скорее всего нет.

      В особо запущенных случаях можно снять гофру с дроссельного узла…

      …и перекрыть доступ воздуха в дроссель. Если двигатель на это не отреагирует и продолжит стабильно работать, значит воздух он всё-таки где-то берёт.

      Так почему же высокое давление во впускном коллекторе?

      Можно услышать ещё несколько вариантов причин данной проблемы:

    • Проблемы с впускным клапаном (зависание, заедание, прогар, поломка пружины и т.п.) – очень редкая ситуация, с которой я, слава Богу не сталкивался. По идее, линия графика тогда должна быть не ровной, а “пульсирующей”. И про нормальную работу двигателя в этой ситуации можно забыть. Но в нашей истории двигатель работает нормально. Только увеличен расход топлива.
    • Затруднён выход отработанных газов. Но в данной ситуации о нормальной работе двигателя тоже говорить не приходится.
    • Остаётся только одна и самая вероятная причина – не правильно работает механизм ГРМ. Именно в этой ситуации оказалось, что метки на шестернях распредвалов не совпадают на один зуб.

      Работа двигателя сильно не изменилась при этом, но значительно возрос расход топлива и повысилось давление в коллекторе до 42 кПа.

      Так что в такой ситуации первым делом проверяйте метки на распредвалах и коленвале. Особенно если Вы недавно меняли ремень ГРМ.

      В конце хочется ещё добавить про ситуацию, когда давление во впускном коллекторе повысилось незначительно (до 35-36 кПа). В такой ситуации довольно часто помогает промывка клапанов

      Вот видео про подсос воздуха и завышенное давление во впускном коллекторе

      Если у Вас есть мысли или дополнения по вопросу давления во впускном коллекторе, тогда милости прошу в комментарии ниже.

      moylacetti.ru

      Общими признаками неисправности в датчике абсолютного давления в коллекторе являются чрезмерный расход топлива, снижение мощности и высокое количество вредных веществ в результате проверки выхлопа автомобиля.

      Датчик абсолютного давления коллектора (ДАД) используется модулем управления трансмиссии (МУТ) для определения нагрузки двигателя. МУТ рассчитывает необходимое количество топлива для впрыскивания в цилиндры.

      Датчик измеряет абсолютное давление внутри впускного коллектора двигателя. Атмосферное давление на уровне моря составляет около 1 атм. Когда двигатель выключен, абсолютное давление внутри впуска равно атмосферному давлению, поэтому ДАД покажет величину около 1 атм. В абсолютном вакууме датчик покажет величину, равную 0 атм. А когда двигатель работает, движение поршней вниз создает вакуум внутри впускного коллектора (согласно системе управления двигателем, когда технический специалист говорит о вакууме, он подразумевает давление, которое ниже атмосферного). Вакуумный вентилятор обычно работает от 45 до 50 см ртутного столба. При 50 см ртутного столба датчик будет показывать около 0,3 атм. Это связано с тем, что ДАД измеряет «абсолютное» давление, основанное на абсолютном вакууме, а не на атмосферном давлении.

      Неисправный ДАД может привести к серьезным сбоям в системе регулирования топлива, увеличению вредных веществ в выхлопных газах и повышению расхода топлива. К признакам неисправного датчика относят:

      Чрезмерный расход топлива

      Если ДАД указывает на высокое давление во впускном коллекторе, то это говорит о высокой нагрузке двигателя и увеличении подачи топлива в двигатель. Это, в свою очередь, снижает общую экономию топлива, а также увеличивает количество выбросов углеводородов и окиси углерода от вашего автомобиля в окружающую атмосферу. Углеводороды и окись углерода являются одними из химических компонентов смога.

      Снижение мощности

      Если датчик указывает на низкое давление во впускном коллекторе, то это говорит о, наоборот, низкой нагрузке двигателя. МУТ реагирует, уменьшая количество топлива, впрыскиваемого в двигатель. Вы заметите увеличение экономии топлива и то, что ваш двигатель стал не таким мощным, как раньше. Благодаря уменьшению количества топлива в двигателе температура камеры сгорания увеличивается. Это увеличивает количество NOx (оксидов азота) в двигателе. NOx также является химическим компонентом смога.

      Высокое количество вредных веществ при проверке выхлопа автомобиля

      Неисправный ДАД приводит к увеличению количества вредных веществ при проверке выхлопа автомобиля. Выбросы выхлопных газов могут демонстрировать высокий уровень содержания углеводородов, высокое содержание NOx, низкий уровень СО2 или высокий уровень окиси углерода.

      Только профессиональный техник способен диагностировать и устранить неисправность датчика абсолютного давления.

      elm327rus.ru

    Опубликовал windel , 18.03.2016 07:51 в Двигатель

    В теме 21 сообщение

    Создайте аккаунт или войдите в него для комментирования

    Вы должны быть пользователем, чтобы оставить комментарий

    Создать аккаунт

    Зарегистрируйтесь для получения аккаунта. Это просто!

    Уже зарегистрированы? Войдите здесь.

    Сейчас на странице 0 пользователей

    Нет пользователей, просматривающих эту страницу.

    • Вся активность
  • Главная
  • Технические вопросы
  • Двигатель и трансмиссия
  • Двигатель
  • Высокое абсолютное давление во впускном коллекторе на холостых
  • Быстрый переход

    Всеукраинский клуб ЛАНОС КЛАН — создан с целью наладить общение между автолюбителями, организовать клубное сообщество для тематического общения, встреч и других мероприятий.

    Всеукраинский клуб ЛАНОС КЛАН — Клуб, который объединил абсолютно разных людей из абсолют но разных уголков Украины, и даже России и Белоруссии.

    Всеукраинский клуб ЛАНОС КЛАН был создан 01 марта 2005 года небольшой группой людей, которые внесли в его развитие огромный вклад.

    lanos.com.ua

    Это интересно:

    • Правила пользования маршрутными Программа для заполнения железнодорожных накладных (печать на железнодорожных бланках) InPrint ж.д./pro поставляется с базами данных, содержащих реальные примеры заполнения. На страницу закачки программы На сайт […]
    • Заявление о признании недееспособности образец Образец заполнения заявления на признание недееспособности Июль 27, 2017 Заявление о признании недееспособным Чаще всего с такими заявлениями обращаются близкие родственники: родители, дети, которые просят признать […]
    • Признание искового заявления последствия Закон исходит из добросовестности и правомерности сторон сделки, поэтому при нарушении таких условий требуется подача искового заявления о признании сделки недействительной. Правовым основанием для обращения в суд в […]
    • Мультик смешарики по правилам дорожного движения Скачать бесплатно Смешарики. Азбука безопасности (2006-2007) DVDRip от libsoftware.net Мультфильмы по правилам дорожного движения скачать бесплатно Информация о фильме:Название: Смешарики. Азбука безопасностиГод […]
    • Приступим закон как правильно преступил или приступил ⇒ Гласные буквы в слове: гласные выделены красным гласными являются: и, у, и общее количество гласных: 3 (три) ударная гласная выделена знаком ударения « ́» ударение падает на […]
    • Страховка осаго в астрахани Отзывы о страховой компании «Сбербанк страхование жизни» Я, Кузнецов Иван Викторович (03.03.1979). 05.06.18 оформил автокредит в Сетелем Банк ООО. Навязали страховку (Сбербанк страхование жизни). Договор страхования […]

aiki-group.ru

Проверка разрежения во впускном коллекторе, часть 2

Продолжение, часть 2.
Часть 1 по адресу: ссылка
 

Проверка разряжения во впускном коллекторе, часть 2

 

Факторы, влияющие на разряжение во впускном коллекторе

1.Пониженная компрессия.
 
                         Износ поршневых колец.
На такте  впуска в цилиндр  поступает дополнительный воздух  из картера через увеличенный зазор между поршнем  и цилиндром. Давление  повышается, разряжение уменьшается.
 
                       Неплотность выпускных клапанов
Часть отработанных газов из выхлопного коллекторе засасывается обратно в цилиндр. Повышается давление  в цилиндре, меньшее количество смеси забирается из впускного коллектора – разряжение уменьшается.
 
                      Неплотность впускного клапана
На такте впуска впускной клапан открыт, на разряжение влияния не оказывает.. Но на такте  сжатия  часть смеси, находящаяся в цилиндре, выталкивается обратно во впускной коллектор под давлением. Среднее давление  в коллекторе  возрастает (разряжение падает). Стрелка вакуумметра  начинает «дрожать», при снятии  воздушного фильтра слышно характерное «бубнение»  во впускном коллекторе.
 
2.Подсос воздуха во впускной коллектор
 
    Дополнительный воздух поступает в коллектор, минуя дроссельную    заслонку. Давление возрастает, разряжение уменьшается.
 
3.Неправильные фазы газораспределения.
 
                  Увеличенные зазоры  в клапанах
При увеличении зазоров в клапанах они открываются позже, закрываются раньше. Это приводит  к уменьшению времени продувки (выпускной клапан) и уменьшению времени всасывания (впускной клапан).
Уменьшение времени продувки приводит к тому, что отработанные газы (ОГ) выходят не полностью. Часть их остается в цилиндре. Наполняемость  цилиндра свежей смесью  уменьшается.
Уменьшение  времени всасывания так же приводит  к уменьшенной наполняемости цилиндра. В обоих случаях меньше смеси поступает в цилиндр, разряжение во впускном коллекторе падает.
 
                  Уменьшенные зазоры в клапанах
Картина явно противоположная – клапана открываются  раньше, закрываются позже.
Раннее открытие выпускного клапана приводит к тому, что на такте  рабочего хода часть давления сбрасывается в выпускной коллектор, не производя механической работы.  Позднее закрытие  приводит к тому, что такт всасывания происходит при большем открытии выпускного клапана (т.н. перекрытие  клапанов увеличивается). Часть  ОГ, вышедших в выпускной коллектор, возвращается  обратно в цилиндр. Раннее открытие  впускного клапана  на такте продувки приводит к тому, что часть ОГ  «выталкиваются» во впускной коллектор. Наполняемость цилиндра свежей смесью уменьшается, что приводит к уменьшению разряжения во впускном коллекторе.
 
                   Смещение ремня ГРМ
При смещении  распредвала  относительно коленвала  в  РАННЮЮ  сторону  мы можем наблюдать следующую картину. Клапана открываются раньше, закрываются тоже раньше. Раннее открытие выпускного  клапана  приводит к сбросу давления  на  такте рабочего хода  и соответственно, к недополучению  механической работы (падение мощности двигателя при том же расходе топлива).  А вот его раннее закрытие  вызывает подъем давления  в цилиндре на конце такта  продувки), ршень идет  еще вверх, выталкивая ОГ, а выпускной клапан уже закрыт). Свежая смесь начнет поступать в цилиндр только тогда, когда это давление упадет  до значения, равного давлению во впускном коллекторе – т.е. с задержкой. Точка перехода давления на выпуске к разряжению на впуске смещается в позднюю сторону.
 
 
 Раннее закрытие впускного клапана так же уменьшает время  всасывания. Наполняемость цилиндра свежей смесью падает. Наблюдается нестабильная работа  двигателя на холостом ходу, разряжение во впускном коллекторе падает.
Аналогичные  процессы происходят  при смещении распредвала относительно коленвала  в  ПОЗДНЮЮ  сторону.
 
Анализ графика давления в цилиндре  позволяет с большой  степенью достоверности  оценить состояние механической части двигателя. К сожалению, применение датчика давления в цилиндре сопряжено с рядом технологических трудностей:
На такте сжатия давление (а соответственно температура) повышается. Происходит перегрев датчика, что вызывает его неверные показания.
На двухвальных двигателях  установка датчика вместо свечи невозможна – требуются переходники, которые увеличивают объем камеры сгорания – и как следствие, неверные показания.
Цена.
 
И ряд других…..
 
Поэтому доступным является метод проверки разряжения (абсолютного давления) во впускном коллекторе. Факторы,  влияющие на этот параметр, мы уже рассмотрели.  Однозначная локализация  дефекта затруднена, но данный метод позволяет с достаточной степенью точности оценить состояние  механической части двигателя.
При наличии  отклонений (абсолютное давление на автомобилях – более 30 кРа, на ВАЗах – более 40 кРа) локализация дефекта (цилиндропоршневая группа или механизм газораспределения) не составляет большого труда. Проверка компрессии (а лучше использование тестера утечек в цилиндре) позволяет уточнить место дефекта. Напомню, что проблемы  в цилиндропоршневой группе, равно как и прогоревший (неплотно сидящий клапан) вызывает резкое падение компрессии. Нарушения в фазах ГРМ вызывает падение  компрессии в значительно в меньшей степени (к примеру, по замерам автора, смещение меток на 1-2 зуба снижает компрессию всего на 0,5- 1,0 кг/см2), а вот влияние на разряжение  во впускном коллекторе очень велико.
При отсутствии отклонений в разряжении во впускном коллекторе дальнейшие проверки механической части двигателя просто не нужны.
 
         Автор статьи:
Рязанов Федор

Книги по ремонту автомобилей

autodata.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *