Menu

На что влияет датчик кислородный: Первые признаки неисправности лямбда-зонда или как проверить датчик кислорода

Первые признаки неисправности лямбда-зонда или как проверить датчик кислорода

О том, что такое лямбда зонд и для чего он нужен, к сожалению, знают далеко не все автовладельцы. Лямбда зонд — это кислородный датчик, который позволяет электронной системе контролировать и балансировать правильное соотношение воздуха и бензина в камерах сгорания. Он способен своевременно исправить структуру топливной смеси и предупредить дестабилизацию рабочего процесса двигателя.

Этот достаточно хрупкий прибор находится в очень агрессивной среде, поэтому его работу необходимо постоянно контролировать, так как при его поломке дальнейшее использование автомобиля невозможно. Периодическая проверка лямбда зонда станет гарантом стабильной работы автотранспортного средства.

Содержание

Принцип действия лямбда зонда

Основной задачей лямбда зонда является определение химсостава выхлопных газов и уровня содержания в них молекул кислорода. Этот показатель должен колебаться в пределах от 0,1 до 0,3 процентов. Бесконтрольное превышение этого нормативного значения может привести к неприятным последствиям.

как устроен лямбда зонд

При стандартной сборке автомобиля, лямбда зонд монтируется в выпускном коллекторе в области соединения патрубков, однако, иногда бывают и другие вариации его установки. В  принципе, иное расположение не влияет на рабочую производительность данного прибора.

Сегодня можно встретить несколько вариаций лямбда зонда: с двухканальной компоновкой и широкополосного типа. Первый вид чаще всего встречается на старых автомобилях, выпущенных в 80-е годы, а также на новых моделях эконом-класса. Датчик широкополосного типа присущ современным авто среднего и высшего класса. Такой датчик способен не только с точностью определить отклонение от нормы определенного элемента, но и своевременно сбалансировать правильное соотношение.

Благодаря усердной работе таких датчиков существенно повышается рабочий ресурс автомобиля, снижается топливный расход и повышается стабильность удержания оборотов холостого хода.

принцип работы лямбда зонда

С точки зрения электротехнической стороны, стоит отметить тот момент, что датчик кислорода не способен создавать однородный сигнал, так как этому препятствует его расположение в коллекторной зоне, ведь в процессе достижения выхлопными газами прибора может пройти определенное количество рабочих циклов. Таким образом, можно сказать, что лямбда зонд реагирует скорее на дестабилизацию работы двигателя, о чем он собственно впоследствии и оповещает центральный блок и принимает соответствующие меры.

Основные признаки неисправности лямбда зонда

Основным признаком неисправности лямбда зонда служит изменение работы двигателя, так как после его поломки значительно ухудшается качество поступаемой топливной смеси в камеру сгорания. Топливная смесь, по сути, остается бесконтрольной, что недопустимо.

Причиной выхода из рабочего состояния лямбда зонда может быть следующее:

  • разгерметизация корпуса;
  • проникновение внешнего воздуха и выхлопных газов;
  • перегрев датчика вследствие некачественной покраски двигателя или неправильной работы системы зажигания;
  • моральный износ;
  • неправильное или прерывающееся электропитание, которое ведет к основному блоку управления;
  • механическое повреждение в следствие некорректной эксплуатации автомобиля.

Во всех вышеперечисленных случаях, кроме последнего, выход из строя происходит постепенно. Поэтому те автовладельцы, которые не знают как проверить лямбда зонд и где он вообще расположен, скорее всего, не сразу заметят неисправность. Однако, для опытных водителей определить причину изменения работы двигателя не составит никакого труда.

Постепенный выход из строя лямбда зонда можно разбить на несколько этапов. На начальной стадии датчик перестает нормально функционировать, то есть, в определенных рабочих моментах мотора устройство перестает генерировать сигнал, впоследствии чего дестабилизируется налаженность оборотов холостого хода.

Иными словами, они начинают колебаться в достаточно расширеном диапазоне, что в конечном итоге приводит к потере качества топливной смеси. При этом авто начинает беспричинно дергаться, также можно услышать нехарактерные работе двигателя хлопки и обязательно на панели приборов загорается сигнальная лампочка. Все эти аномальные явления сигнализируют автовладельцу о неправильной работе лямбда зонда.

На втором этапе датчик и вовсе перестает работать на не прогретом двигателе, при этом автомобиль будет всевозможными способами сигнализировать водителю о проблеме. В частности, произойдет ощутимый упадок мощности, замедленное реагирование при воздействии на педаль акселератора и все те же хлопки из-под капота, а также неоправданное дергание автомобиля. Однако, самым существенным и крайне опасным сигналом поломки лямбда зонда служит перегрев двигателя.

где расположен лямбда зонд

В случае полного игнорирования всех предшествующих сигналов свидетельствующих об ухудшении состояния лямбда зонда, его поломка неизбежна, что станет причиной большого количества проблем. В первую очередь пострадает возможность естественного движения, также значительно увеличится расход топлива и появится неприятный резкий запах с ярко выраженным оттенком токсичности из выхлопной трубы. В современных автоматизированных автомобилях в случае поломки кислородного датчика может попросту активизироваться аварийная блокировка, в результате которой последующее движение автомобиля становится невозможным. В таких случаях сможет помочь только экстренный вызов эвакуатора.

Однако, самым худшим вариантом развития событий является разгерметизация датчика, так как в этом случае движение автомобиля становится невозможным по причине высокой вероятности поломки двигателя и последующего дорогостоящего ремонта. Во время разгерметизации отработанные газы вместо выхода через выхлопную трубу, попадают в заборный канал атмосферного эталонного воздуха. Во время торможения двигателем лямбда зонд начинает фиксировать переизбыток молекул кислорода и экстренно подает большое количество отрицательных сигналов, чем полностью выводит из строя систему управления впрыском.

Основным признаком разгерметизации датчика является потеря мощности, особенно это ощущается во время скоростного движения, характерное постукивание из-под капота во время движения, которое сопровождается неприятными рывками и неприятный запах, который выбрасывается из выхлопа. Также о разгерметизации свидетельствует видимый осадок сажных образований на корпусе выпускных клапанов и в области свечей.

Как определить неисправность лямбда зонда рассказывается на видео:

Электронная проверка лямбда зонда

Узнать о состоянии лямбда зонда можно путем его проверки на профессиональном оборудовании. Для этого используется электронный осциллограф. Некоторые специалисты определяют работоспособность кислородного датчика при помощи мультиметра, однако, он способен только констатировать или же опровергнуть факт его поломки.

проверка лямбда зонда на электронном осциллографе

Проверяется устройство во время полноценной работы двигателя, так как в состоянии покоя датчик не сможет полностью передать картину своей работоспособности. В случае даже незначительного отхождения от нормы, лямбда зонд рекомендуется заменить.

Замена лямбда зонда

В большинстве случаев такая деталь, как лямбда зонд не подлежит ремонту, о чем свидетельствуют утверждения о невозможности произведения ремонта от многих автомобильных производителей. Однако, завышенная стоимость такого узла у официальных дилеров отбивает всякую охоту его приобретения. Оптимальным выходом из сложившейся ситуации может стать универсальный датчик, который стоит гораздо дешевле родного аналога и подходит практически всем автомобильным маркам. Также в качестве альтернативы можно приобрети датчик бывший в использовании, но с продолжительностью гарантийного периода или же полностью выпускной коллектор с установленным в него лямбда зондом.

замена лямбда зонда

Однако, бывают случаи, когда лямбда зонд функционирует с определенной погрешностью из-за сильного загрязнения в результате оседания на нем продуктов сгорания. Для того чтобы убедиться, что это действительно так, датчик необходимо проверить у специалистов. После того как проверка лямбда зонда состоялась и подтвержден факт его полной работоспособности, его нужно снять, почистить и установить обратно.

Для того чтобы демонтировать датчик уровня кислорода, необходимо прогреть его поверхность до 50 градусов. После снятия, с него снимается защитный колпачок и только после этого можно приступать к очистке. В качестве высокоэффективного очищающего средства рекомендуется использовать ортофосфорную кислоту, которая с легкостью справляется даже с самыми стойкими горючими отложениями. По окончании процедуры отмачивания, лямбда зонд ополаскивается в чистой воде, тщательно просушивается и устанавливается на место. При этом не стоит забывать о смазке резьбы специальным герметиком, который обеспечить полную герметичность.

как очистить лямбда зонд

Устройство автомобиля очень сложное, поэтому он нуждается в постоянной поддержке работоспособности и проведении своевременных профилактических работ. Поэтому в случае возникновения подозрений о неисправности лямбда зонда, необходимо незамедлительно произвести диагностику его работоспособности и в случае подтверждения факта выхода из строя, заменить лямбда зонд. Таким образом, все важнейшие функции транспортного средства будут сохранены на прежнем уровне, что станет гарантом отсутствия дальнейших проблем с двигателем и прочими важными элементами автомобиля.

Неисправность датчика кислорода. Признаки и причины

Неисправность датчика кислорода приводит к повышенному расходу топлива, снижению динамических характеристик автомобиля, нестабильной работе мотора на холостых оборотах, увеличение токсичности выхлопных газов. Обычно причинами неисправности датчика концентрации кислорода является его механическое повреждение, разрыв электрической (сигнальной) цепи, загрязнение чувствительной части датчика продуктами сгорания топлива. В некоторых случаях, например, при возникновении ошибки p0130 или p0141 на приборной панели активируется сигнальная лампа Check Engine. Использовать автомобиль при неисправном датчике кислорода можно, однако это приведет к указанным выше проблемам.

Содержание:

Неисправность датчика кислорода

Назначение датчика кислорода

Датчик кислорода устанавливается в выпускном коллекторе (у различных машин конкретное место и ко-во может отличаться), и выполняет мониторинг наличия кислорода в выхлопных газах. В автопромышленности греческая буква «лямбда» обозначает коэффициент избытка кислорода в топливовоздушной смеси. Именно по этой причине зачастую датчик кислорода называют «лямбда-зонд».

Предоставленная датчиком информация о количестве кислорода в составе выхлопных газов электронным блоком управления двигателем (ЭБУ) используется для корректировка впрыска топлива. Если кислорода в выхлопных газах много, значит, топливовоздушная смесь, подаваемая в цилиндры, бедная (напряжение на датчике 0,1…0,3 Вольта), а если кислорода много — значит, богатая (напряжение на датчике 0,6…0,9 Вольта). Соответственно, происходит коррекция количества подаваемого топлива при необходимости. Что сказывается не только на динамических характеристиках двигателя, но и работы каталитического нейтрализатора выхлопных газов.

В большинстве случаев диапазон эффективной работы катализатора составляет 14,6…14,8 долей воздуха на одну долю топлива. Это соответствует значению лямбда, равной единице. Таким образом, датчик кислорода является своеобразным контролером, расположенным в выпускном коллекторе.

На некоторых автомобилях конструктивно предусмотрено использование двух датчиков концентрации кислорода. Один расположен до катализатора, а второй — после. Задача первого состоит в коррекции состава топливовоздушной смеси, а второго — проверка эффективности работы катализатора. Сами же датчики по конструкции, как правило, идентичны.

Влияет ли лямбда зонд на запуск — что будет?

Если отключить лямбда зонд то будет возрастание расхода топлива, повышение токсичности газов, а иногда и нестабильная работа двигателя на холостых оборотах. Однако такой эффект происходит лишь после прогрева так как кислородный датчик начинает работать в условиях повышенной до +300°С температуры. Для этого его конструкция подразумевает использование специального подогрева, которая включается при запуске двигателя. Соответственно, непосредственно в момент запуска мотора лямбда зонд не работает, и никоим образом не влияет на сам запуск.

Лампочка “чек” при неисправности лямбда зонда горит когда в памяти ЭБУ сформированы конкретные ошибки связанные с повреждением проводки датчика либо самого датчика, однако код фиксируется лишь при определенных условиях работы двигателя.

Признаки неисправности датчика кислорода

Выход из строя лямбда зонда, как правило, сопровождается следующими внешними симптомами:

  • Ухудшение тяги и снижение динамических характеристик автомобиля.
  • Нестабильный холостой ход. Значение оборотов при этом могут скакать и понижаться ниже оптимальных. В самом критическом случае машина вообще не будет держать холостые обороты и без подгазовывания водителем она попросту заглохнет.
  • Увеличение расхода топлива. Обычно перерасход незначительный, однако можно определить при программном замере.
  • Увеличение токсичности выхлопа. Выхлопные газы при этом становятся непрозрачными, а имеющими сероватый либо синеватый оттенок и более резкий, топливный, запах.

Стоит оговориться, что перечисленные выше признаки могут указывать и на другие поломки двигателя или прочих систем автомобиля. Поэтому, чтобы определить неисправности датчика кислорода, нужны несколько проверок используя в первую очередь диагностический сканер и мультиметр для проверки сигналов лямбды (управляющего и цепи подогрева).

Как правило, проблемы с проводкой датчика кислорода четко фиксируется электронным блоком управления. При этом в его памяти формируются ошибки, например, p0136, p0130, p0135, p0141 и прочие. В любом случае необходимо выполнить проверку цепи датчика (проверить наличие напряжения и целостность отдельных проводов), а также посмотреть на график работы (используя осциллограф либо программу диагностик).

Причины неисправности датчика кислорода

В большинстве случаев кислородная лямбда работает около 100 тыс. км без сбоев однако есть причины которые значительно сокращают его ресурс и приводят к неисправности.

  • Неисправность цепи датчика кислорода. Выражаться по-разному. Это может быть полный обрыв питающих и/или сигнальных проводов. Возможно повреждение цепи подогрева. В этом случае лямбда зонд не будет работать до тех пор, пока выхлопные газы не разогревают его до рабочей температуры. Возможно повреждение изоляции на проводах. В этом случае имеет место короткое замыкание.
  • Замыкание датчика. В этом случае он полностью выходит из строя и, соответственно, не подает никаких сигналов. Большинство лямбда зондов ремонту не подлежат и их надо менять на новые.
  • Загрязнение датчика продуктами сгорания топлива. В процессе эксплуатации датчик кислорода по естественным причинам постепенно загрязняется и со временем может перестать передавать корректную информацию. По этой причине автопроизводители рекомендуют периодически менять датчик на новый, отдавая при этом предпочтение оригиналу так как универсальная лямбда не всегда корректно показывает информацию.
  • Термические перегрузки. Обычно это происходит по причине проблем с зажиганием, в частности, перебоев с ним. В таких условиях датчик работает при критических для него температурах, что снижает его общий ресурс и постепенно выводит из строя.
  • Механические повреждения датчика. Они могут возникнуть при неаккуратных ремонтных работах, при езде по бездорожью, ударах при ДТП.
  • Использование при установке датчика герметиков, которые вулканизируются при высокой температуре.
  • Многократные неудачные попытки запуска двигателя. При этом в двигателе, и в частности, в выпускном коллекторе накапливается несгоревшее топливо.
  • Попадание на чувствительный (керамический) наконечник датчика различных технологических жидкостей или мелких посторонних предметов.
  • Негерметичность в выпускной системе выхлопных газов. Например, может прогореть прокладка между коллектором и катализатором.

Обратите внимание, что состояние датчика кислорода во многом зависит от состояния других элементов двигателя. Так, значительно снижают ресурс лямбда зонда следующие факторы: неудовлетворительное состояние маслосъемных колец, попадание антифриза в масло (цилиндры), обогащенная топливовоздушная смесь. И если при исправном датчике кислорода количество углекислого газа составляет порядка 0,1…0,3%, то при выходе лямбда зонда из строя соответствующее значение увеличивается до 3…7%.

Как определить неисправность датчика кислорода

Существует ряд методов для проверки состояния лямбда датчика и его питающих/сигнальных цепей.

Специалисты компании BOSCH советуют проверять соответствующий датчик каждые 30 тысяч километров пробега, либо при выявлении описанных выше неисправностей.

Что нужно сделать в первую очередь при диагностике?

  1. Необходимо оценить количество сажи на трубке зонда. Если ее слишком много — датчик будет работать некорректно.
  2. Определить цвет отложений. Если на чувствительном элементе датчика имеются белые или серые отложения — это означает, что используются присадки к топливу или к маслу. Они негативно сказываются на работе лямбда зонда. Если на трубке зонда имеются блестящие отложения — это говорит о том, что в используемом топливе очень много свинца, и от использования такого бензина лучше отказаться, соответственно, сменить марку бензозаправки.
  3. Можно попытаться очистить сажу, однако это не всегда возможно.
  4. Проверить мультиметром целостность проводки. В зависимости от модели конкретного датчика он может иметь от двух до пяти проводов. Один из них будет сигнальным, а остальные — питающими, в том числе, для питания элементов подогрева. Для выполнения процедуры проверки вам понадобится цифровой мультиметр, способный измерять постоянное электрическое напряжение и сопротивление.
  5. Имеет смысл проверить сопротивление нагревателя датчика. В разных моделях лямбда зонда оно будет находиться в пределах от 2 до 14 Ом. Значение питающего напряжения должно быть около 10,5…12 Вольт. В процессе проверки также нужно обязательно проверить целостность всех проводов, подходящих к датчику, а также значение сопротивления их изоляции (как попарно между собой, так и каждого на «массу»).

Как проверить лямбда-зонд видео

Обратите внимание, что нормальная работа датчика кислорода возможна лишь при его нормальной рабочей температуре, равной +300°С…+400°С. Это обусловлено тем, что лишь в таких условиях циркониевый электролит, нанесенный на чувствительный элемент датчика, становится проводником электрического тока. Также при такой температуре разница атмосферного кислорода и кислорода в выхлопной трубе приведет к тому, что на электродах датчика появится электрический ток, который и будет передаваться на электронный блок управления двигателем.

Так как проверка кислородного датчика во многих случаях подразумевает снятие/установку то стоит учесть такие нюансы:

  • Лямбда — устройства очень хрупкие, поэтому при проверке нельзя подвергать их механическим нагрузкам и/или ударам.
  • Резьбу датчика необходимо обработать специальной термопастой. При этом нужно следить, чтобы паста не попала на его чувствительный элемент, поскольку это приведет к его некорректной работе.
  • При закручивании необходимо соблюдать значение крутящего момента, и пользоваться для этих целей динамометрическим ключом.

Точная проверка лямбда зонда

Точнее всего определить неисправность датчика концентрации кислорода позволит осциллограф. Причем использовать профессиональный аппарат необязательно можно снять осциллограмму используя программу-симулятор на ноутбуке либо другом гаджете.

График правильной работы датчика кислорода

На первом рисунке в данном разделе представлен график правильной работы датчика кислорода. В этом случае на сигнальный провод поступает сигнал, похожий на ровную синусоиду. Синусоида в данном случае означает, что контролируемый датчиком параметр (количество кислорода в выхлопных газах) находится в предельно допустимых границах, и просто происходит его постоянная и периодическая проверка.

График работы сильно загрязненного датчика кислорода

График работы датчика кислорода на обедненной топливной смеси

График работы датчика кислорода на обогащенной топливной смеси

График работы датчика кислорода на бедной топливной смеси

Далее представлены графики, соответствующие сильно загрязненному датчику, использованию двигателем автомобиля обедненной топливной смеси, богатой смеси, а также бедной смеси. Ровные линии на графиках означают, что контролируемый параметр вышел за допустимые пределы в ту или другую сторону.

Как устранить неисправность датчика кислорода

Если впоследствии проверки показало что причина в проводке, то проблема решится заменой жгута проводов либо фишки подключения, а вот при отсутствии сигнала от самого датчика зачастую говорит о необходимости замены датчика концентрации кислорода на новый, но прежде чем покупать новую лямбду можно воспользоваться одним из представленных ниже способов.

Метод первый

Предполагает очистку элемента подогре от нагара (применяется когда возникает неисправность нагревателя датчика кислорода). Для реализации этого метода необходимо обеспечить доступ к чувствительной керамической части устройства, которая скрыта за защитным колпачком. Снять указанный колпачок можно с помощью тонкого напильника, с помощью которого нужно сделать надрезы в области основания датчика. Если демонтировать колпачок полностью не получится, то допускается сделать маленькие окошки размером около 5 мм. Для дальнейшей работы необходимо около 100 мл ортофосфорной кислоты либо преобразователя ржавчины.

Когда защитный колпачок был демонтирован полностью, то для его восстановления на его посадочном месте придется воспользоваться аргоновой сваркой.

Процедура по восстановлению выполняется по следующему алгоритму:

  • Налить 100 мл ортофосфорной кислоты в стеклянную емкость.
  • Опустить керамический элемент датчика в кислоту. Полностью опускать датчик в кислоту нельзя! После этого подождать около 20 минут с тем, чтобы кислота растворила сажу.
  • Извлечь датчик и промыть его проточной водой из крана, а затем дать ему высохнуть.

Порой на выполнение чистки датчика таким методом нужно потратить до восьми часов времени, ведь если с первого раза очистить сажу не получилось, то имеет смысл повторить процедуру два и более раза, причем можно воспользоваться кистью для выполнения механической обработки поверхности. Вместо кисти можно воспользоваться зубной щеткой.

Метод второй

Предполагает выпаливание нагара на датчике. Для выполнения чистки датчика кислорода вторым методом кроме той же ортофосфорной кислоты понадобится еще и газовая горелка (как вариант использовать домашнюю газовую плиту). Алгоритм чистки следующий:

  • Окунуть чувствительный керамический элемент датчика кислорода в кислоту, обильно смочив его.
  • Взять датчик пассатижами с противоположной от элемента стороны и поднести к горящей конфорке.
  • Кислота на чувствительном элементе будет закипать, а на его поверхности образуется соль зеленоватого оттенка. Однако вместе с этим сажа с него будет удаляться.

Повторить описанную процедуру нужно несколько раз до тех пор, пока чувствительный элемент не станет чистым и блестящим.

Спрашивайте в комментариях. Ответим обязательно!

Кислородные датчики: подробное руководство - Denso

Вы наверняка знаете, что в вашем автомобиле установлен кислородный датчик (или даже два!)… Но зачем он нужен и как он работает? На часто задаваемые вопросы отвечает Стефан Верхоеф (Stefan Verhoef), менеджер DENSO по продукту (кислородные датчики).

B: Какую работу выполняет датчик кислорода в автомобиле?
O: Датчики кислорода (также называемые лямбда-зондами) помогают контролировать расход топлива вашего автомобиля, что способствует снижению объема вредных выбросов. Датчик непрерывно измеряет объем несгоревшего кислорода в выхлопных газах и передает эти данные в электронный блок управления (ЭБУ). На основании этих данных ЭБУ регулирует соотношение топлива и воздуха в топливовоздушной смеси, поступающей в двигатель, что помогает каталитическому нейтрализатору (катализатору) работать более эффективно и уменьшать количество вредных частиц в выхлопных газах.

B: Где находится датчик кислорода?
O: Каждый новый автомобиль и большинство автомобилей, выпущенных после 1980 г., оснащены датчиком кислорода. Обычно датчик установлен в выхлопной трубе перед каталитическим нейтрализатором. Точное местоположение датчика кислорода зависит от типа двигателя (V-образное или рядное расположение цилиндров), а также от марки и модели автомобиля. Для того чтобы определить, где расположен датчик кислорода в вашем автомобиле, обратитесь к руководству по эксплуатации.

В: Почему состав топливовоздушной смеси нужно постоянно регулировать?
O: Соотношение «воздух — топливо» крайне важно, поскольку оно влияет на эффективность работы каталитического нейтрализатора, который снижает содержание оксида углерода (CO), несгоревших углеводородов (CH) и оксида азота (NOx) в выхлопных газах. Для его эффективной работы необходимо наличие определенного количества кислорода в выхлопных газах. Датчик кислорода помогает ЭБУ определить точное соотношение «воздух — топливо» в смеси, поступающей в двигатель, передавая в ЭБУ быстроизменяющийся сигнал напряжения, который меняется в соответствии с содержанием кислорода в смеси: слишком высокого (бедная смесь) или слишком низкого (богатая смесь). ЭБУ реагирует на сигнал и изменяет состав топливовоздушной смеси, поступающей в двигатель. Когда смесь слишком богатая, впрыск топлива уменьшается. Когда смесь слишком бедная — увеличивается. Оптимальное соотношение «воздух — топливо» обеспечивает полное сгорание топлива и использует почти весь кислород из воздуха. Оставшийся кислород вступает в химическую реакцию с токсичными газами, в результате которой из нейтрализатора выходят уже безвредные газы.

В: Почему на некоторых автомобилях устанавливаются два кислородных датчика?
O: Многие современные автомобили дополнительно кроме датчика кислорода, расположенного перед катализатором, оснащаются и вторым датчиком, установленным после него. Первый датчик является основным и помогает электронному блоку управления регулировать состав топливовоздушной смеси. Второй датчик, установленный после катализатора, контролирует эффективность работы катализатора, измеряя содержание кислорода в выхлопных газах на выходе. Если весь кислород поглощается химической реакцией, происходящей между кислородом и вредными веществами, то датчик выдает сигнал высокого напряжения. Это означает, что катализатор работает нормально. По мере износа каталитического нейтрализатора некоторое количество вредных газов и кислорода перестает участвовать в реакции и выходит из него без изменений, что отражается на сигнале напряжения. Когда сигналы станут одинаковыми, это будет указывать на выход из строя катализатора.


В: Какие бывают датчики?
О: Существует три основных типа лямбда-сенсоров: циркониевые датчики, датчики соотношения «воздух — топливо» и титановые датчики. Все они выполняют одни и те же функции, но используют при этом различные способы определения соотношения «воздух — топливо» и разные исходящие сигналы для передачи результатов измерений.

Наибольшее распространение получила технология на основе использования циркониево-оксидных датчиков (как цилиндрического, так и плоского типов). Эти датчики могут определять только относительное значение коэффициента: выше или ниже соотношение «топливо — воздух» коэффициента лямбда 1.00 (идеальное стехиометрическое соотношение). В ответ ЭБУ двигателя постепенно изменяет количество впрыскиваемого топлива до тех пор, пока датчик не начнет показывать, что соотношение изменилось на противоположное. С этого момента ЭБУ опять начинает корректировать подачу топлива в другом направлении. Этот способ обеспечивает медленное и непрекращающееся «плавание» вокруг коэффициента лямбда 1.00, не позволяя при этом поддерживать точный коэффициент 1.00. В итоге в изменяющихся условиях, таких как резкое ускорение или торможение, в системах с циркониево-оксидным датчиком подается недостаточное или избыточное количество топлива, что приводит к снижению эффективности каталитического нейтрализатора.

Датчик соотношения «воздух — топливо» показывает точное соотношение топлива и воздуха в смеси. Это означает, что ЭБУ двигателя точно знает, насколько это соотношение отличается от коэффициента лямбда 1.00 и, соответственно, насколько требуется корректировать подачу топлива, что позволяет ЭБУ изменять количество впрыскиваемого топлива и получать коэффициент лямбда 1.00 практически мгновенно.

Датчики соотношения «воздух — топливо» (цилиндрические и плоские) впервые были разработаны DENSO для того, чтобы обеспечить соответствие автомобилей строгим стандартам токсичности выбросов. Эти датчики более чувствительны и эффективны по сравнению с циркониево-оксидными датчиками. Датчики соотношения «воздух — топливо» передают линейный электронный сигнал о точном соотношении воздуха и топлива в смеси. На основании значения полученного сигнала ЭБУ анализирует отклонение соотношения «воздух — топливо» от стехиометрического (то есть Лямбда 1) и корректирует впрыск топлива. Это позволяет ЭБУ предельно точно корректировать количество впрыскиваемого топлива, моментально достигая стехиометрического соотношения воздуха и топлива в смеси и поддерживая его. Системы, использующие датчики соотношения «воздух — топливо», минимизируют возможность подачи недостаточного или избыточного количества топлива, что ведет к уменьшению количества вредных выбросов в атмосферу, снижению расхода топлива, лучшей управляемости автомобиля.

Титановые датчики во многом похожи на циркониево-оксидные датчики, но титановым датчикам для работы не требуется атмосферный воздух. Таким образом, титановые датчики являются оптимальным решением для автомобилей, которым необходимо пересекать глубокий брод, например полноприводных внедорожников, так как титановые датчики способны работать при погружении в воду. Еще одним отличием титановых датчиков от других является передаваемый ими сигнал, который зависит от электрического сопротивления титанового элемента, а не от напряжения или силы тока. С учетом данных особенностей титановые датчики могут быть заменены только аналогичными и другие типы лямбда-зондов не могут быть использованы.

В: Чем отличаются специальные и универсальные датчики?
O: Эти датчики имеют разные способы установки. Специальные датчики уже имеют контактный разъем в комплекте и готовы к установке. Универсальные датчики могут не комплектоваться разъемом, поэтому нужно использовать разъем старого датчика.


B: Что произойдет, если выйдет из строя датчик кислорода?
O: В случае выхода из строя датчика кислорода ЭБУ не получит сигнала о соотношении топлива и воздуха в смеси, поэтому он будет задавать количество подачи топлива произвольно. Это может привести к менее эффективному использованию топлива и, как следствие, увеличению его расхода. Это также может стать причиной снижения эффективности катализатора и повышения уровня токсичности выбросов.

B: Как часто необходимо менять датчик кислорода?
O: DENSO рекомендует заменять датчик согласно указаниям автопроизводителя. Тем не менее следует проверять эффективность работы датчика кислорода при каждом техобслуживании автомобиля. Для двигателей с длительным сроком эксплуатации или при наличии признаков повышенного расхода масла интервалы между заменами датчика следует сократить.

Ассортимент кислородных датчиков

• 412 каталожных номеров покрывают 5394 применения, что соответствует 68 % европейского автопарка.
• Кислородные датчики с подогревом и без (переключаемого типа), датчики соотношения «воздух — топливо» (линейного типа), датчики обедненной смеси и титановые датчики; двух типов: универсальные и специальные.
• Регулирующие датчики (устанавливаемые перед катализатором) и диагностические (устанавливаемые после катализатора).
• Лазерная сварка и многоэтапный контроль гарантируют точное соответствие всех характеристик спецификациям оригинального оборудования, что позволяет обеспечить эффективность работы и надежность при длительной эксплуатации.

В DENSO решили проблему качества топлива!

Вы знаете о том, что некачественное или загрязненное топливо может сократить срок службы и ухудшить эффективность работы кислородного датчика? Топливо может быть загрязнено присадками для моторных масел, присадками для бензина, герметиком на деталях двигателя и нефтяными отложениями после десульфуризации. При нагреве свыше 700 °C загрязненное топливо выделяет вредные для датчика пары. Они влияют на работу датчика, образуя отложения или разрушая его электроды, что является распространенной причиной выхода датчика из строя. DENSO предлагает решение этой проблемы: керамический элемент датчиков DENSO покрыт уникальным защитным слоем оксида алюминия, который защищает датчик от некачественного топлива, продлевая срок его службы и сохраняя его рабочие характеристики на необходимом уровне.

Дополнительная информация

Более подробную информацию об ассортименте кислородных датчиков DENSO можно найти в разделе Кислородные датчики, в системе TecDoc или у представителя DENSO.

Почему так важен датчик кислорода для автомобиля?

Правильная работа системы впрыска двигателя, а вместе с ней управляемость автомобиля, потребление топлива, токсичность выхлопных газов напрямую зависят от достоверности и качества информации, получаемой от электронных датчиков, использующихся в работе компьютеризированной системы управления двигателем. Один из датчиков в этой системе — датчик кислорода. Его называют датчик «O2», датчик «дожига» или лямбда-зонд (O2 sensor, датчик дожига, датчик кислорода или лямбда-зонд).

На необходимое качество топливной смеси для двигателя влияет множество факторов: температура воздуха, температура охлаждающей жидкости, положение дроссельной заслонки, поток воздуха, нагрузка на ДВС и т. д. Датчики измеряют эти параметры на ВХОДЕ и подают сигнал электронному блоку управления впрыском топлива (ЭБУ), «как дозировать» топливо — воздушную смесь. А датчик кислорода практически единственный видит, что получается на ВЫХОДЕ, так как он определяет концентрацию кислорода в отработавших газах, которая зависит от соотношения топлива и воздуха в смеси, подаваемой в цилиндры двигателя. Что это значит на практике?

Любые проблемы с датчиком кислорода могут привести обратную связь целой системы оперативного контроля процессом сгорания топливовоздушной смеси в неисправное состояние. При неисправном датчике рабочая смесь не соответствует необходимым параметрам и, как правило, переобогащена, что и вызывает повышенный расход бензина.

Как работает кислородный датчик
Датчик кислорода установлен в выпускном коллекторе двигателя и проверяет, сколько несгоревшего кислорода находится в выхлопных газах. Электрический сигнал датчика считывается ЭБУ, а тот, в свою очередь, оптимизирует состав смеси путем изменения количества подаваемого в цилиндры топлива регулированием длительности впрыска топлива форсунками, то есть осуществляется точная подстройка режима работы двигателя под текущую ситуацию с достижением максимальной экономии топлива и минимизации вредных выбросов. На некоторых современных моделях автомобилей имеется еще один лямбда-зонд. Расположен он на выходе катализатора. Этим достигается большая точность приготовления смеси и контролируется эффективность работы катализатора, поскольку некоторое количество кислорода для нейтрализации вредных газов в катализаторе все же требуется (см. Рис. 1).

Рис. 1. Схема лямбда-коррекции с одним и двумя датчиками кислорода двигателя.
1 — впускной коллектор; 2 — двигатель; 3 — блок управления двигателем; 4 — топливная форсунка; 5 — основной лямбда-зонд; 6 — дополнительный лямбда-зонд; 7 — каталитический нейтрализатор.

Название датчика происходит от греческой буквы λ (лямбда), которая в автомобилестроении обозначает коэффициент избытка воздуха в топливно-воздушной смеси, то есть отношение количества воздуха, поступившего в цилиндры, к количеству воздуха, теоретически необходимого для полного сгорания топлива. Для полного сгорания 1 кг топлива необходимо 14,7 кг воздуха (λ=1). Такой состав топливо — воздушной смеси называют стехиометрическим, он обеспечивает наименьшее содержание токсичных веществ в отработавших газах и, соответственно, эффективное их «дожигание» в каталитическом нейтрализаторе. Если лямбда будет <1 (недостаток воздуха), смесь будет обогащенной, при лямбда >1 (избыток воздуха) смесь называют обедненной.

Датчик кислорода — не самостоятельное устройство. Он работает «в связке» с каталитическим нейтрализатором отработанных газов, который предназначен для окисления токсичных веществ (окиси углерода, углеводородов и окиси азота) до углекислого газа, азота и воды в результате каталитической реакции. Оптимальная работа катализатора (нейтрализация примерно 80% всех компонентов) достигается в очень узком диапазоне: наибольшая экономичность при полностью открытой дроссельной заслонке бензинового двигателя достигается при λ=1,1-1,3. Максимальная мощность обеспечивается, когда λ=0,85-0,9. Такая точность в двигателях внутреннего сгорания обеспечивается благодаря системе питания с электронным (дискретным) впрыском топлива и при использовании в цепи обратной связи лямбда—зонда.

Рабочий элемент кислородного датчика — пористый керамический материал на основе двуокиси циркония, покрытый методом напыления платиной. Выхлопные газы обтекают рабочую поверхность. Датчик реагирует на разницу между уровнем кислорода в выхлопных газах и в атмосфере, вырабатывая на выходе соответствующую разность потенциалов, которая считывается ЭБУ.

Эффективная работа датчика возможна при температуре не ниже 300-3500С. Поэтому, для быстрого прогрева после пуска двигателя, современные датчики снабжают электрическим нагревательным элементом, который сокращает время выхода датчика на рабочую температуру.

Датчики кислорода бывают одно-, двух-, трех- и четырехпроводные. Однопроводные и двухпроводные датчики — без нагревательного элемента, они применялись в самых первых системах впрыска с обратной связью (лямбда — регулированием). Однопроводный датчик имеет только один провод, который является сигнальным. «Земля» этого датчика выведена на корпус и приходит на массу двигателя через резьбовое соединение. Двухпроводный датчик отличается от однопроводного наличием отдельного «земляного» провода сигнальной цепи.
Трех — и четырехпроводные лямбда зонды снабжены нагревательным элементом. В четырехпроводном лямбда-зонде два провода идут на подогрев, а два — сигнальные.

Взаимозаменяемость кислородных датчиков.
Рекомендованный заводом-изготовителем лямбда-зонд и сходные по конструкции циркониевые датчики взаимозаменяемы (Например, NGK, BOSCH). Лямбда-зонд с подогревом может устанавливаться вместо такого же, но без подогрева, если смонтировать на автомобиль цепь подогрева и подключить ее к цепи, запитываемой при включении зажигания. Обратная замена — установка однопроводного датчика вместо трех- и более — проводных не допускается, работать не будет. И, конечно, резьба датчика должна совпадать с резьбой, нарезанной в штуцере.

Возможные неисправности кислородного датчика.
Неисправности и необходимость замены кислородного датчика выявляет только компьютерная диагностика, поскольку не все неисправности фиксируются системой бортовой самодиагностики автомобиля.

Наиболее распространенные неисправности: потеря чувствительности и уменьшение быстродействия. Замедленная реакция датчика неминуемо вызывает увеличенный расход топлива и заметное снижение динамики автомобиля, но система самодиагностики ее не зафиксирует, т.к. данный параметр не отслеживается контроллером.

Потерей чувствительности страдает изрядно послуживший и практически забитый датчик, который выдает слишком низкий выходной сигнал. В этом случае на приборной панели обычно загорается лампочка индикации неисправности «CHECK ENGINE».

При обнаружении неисправности датчика кислорода, контроллер переходит в режим управления впрыском по усредненным параметрам и завышает обогащение топливной смеси в сравнении с обычным ее составом. В результате возникает скачок в потреблении топлива и увеличении токсичности выхлопных газов, неустойчивая работа двигателя на холостом ходу, снижение динамических характеристик, но машина при этом, возможно, останется на ходу. Хотя в некоторых моделях автомобилей ЭБУ реагирует на отказ лямбда-зонда очень серьезно, и начинает так рьяно увеличивать количество подаваемого в цилиндры топлива, что запас горючего в баке «тает» на глазах, из трубы валит черный дым, СО «зашкаливает», а двигатель «тупеет» и на ближайшую СТО Вам, скорее всего, придется добираться на буксире.

Поскольку пропадание или искажение сигнала с лямбда-зонда приводит к увеличению содержания токсичных веществ в продуктах сгорания, срок службы каталитического нейтрализатора при этом резко сокращается.

Вообще лямбда-зонд — наиболее уязвимый датчик автомобиля с системой впрыска. Ресурс одно- двух- проводных датчиков составляет 40-50 тысяч километров, трех- четырех- проводных — 70-80 тысяч километров пробега, в зависимости от условий эксплуатации и исправности двигателя. Плохое состояние маслосъемных колец, попадание антифриза в цилиндры и выпускные трубопроводы сильно сокращают срок его службы. Применение этилированного бензина категорически недопустимо — свинец «отравляет» платиновые электроды лямбда-зонда за несколько бесконтрольных заправок. Преждевременный выход из строя лямбда-зонда также могут вызвать многократные неудачные попытки запуска двигателя, в результате которых в выпускном трубопроводе скапливаются пары несгоревшего топлива, способного воспламениться с образованием ударной волны; перегрев наконечника датчика, вызванный перебоями в зажигании; нарушения в системе контроля опережения зажигания, когда двигатель продолжительное время работает на переобогащенной топливной смеси; чрезмерной «перегазовкой», когда тахометр находится в «красной зоне».

Возможными признаками выхода из строя кислородного датчика являются: неустойчивая работа двигателя на холостых оборотах, повышенный расход топлива и ухудшение динамики автомобиля, потрескивание и запах гари в районе установки катализатора, а также характерный запах тухлых яиц, присутствующий в выхлопе при попадании в катализатор большого количества несгоревшего топлива.

По статистике, 70% транспортных средств нуждаются в новом лямбда-зонде.

Ассортимент датчиков в магазинах Гиперавто →

6 признаков неисправности лямбда зонда - Статьи

Неисправность лямбда зонда сопровождается диагностикой и в некоторых случаях заменой детали. Этот компонент системы автомобиля стоит на страже экологии планеты. Его основная функция заключается в контроле уровня содержания вредных веществ в выхлопных газах.

Узнайте стоимость диагностики лямбда зонда онлайн за 3 минуты

Не тратьте время впустую – воспользуйтесь поиском Uremont и получите предложения ближайших сервисов с конкретными ценами!

Автомобильный рынок предлагает два основных вида лямбда зонда:

  1. С двухканальной компоновкой. Его устанавливали на автомобилях, произведённых более 30 лет назад. Такой зонд также применяют для машин эконом класса.
  2. Широкополосное устройство. Используется для большинства машин среднего и премиум класса. Устройство более точно определяет превышение нормы вредных веществ и сообщает об этом водителю.

Деталь устанавливается внутри специального коллектора, где соединяются шланги и патрубки. Монтаж в этом месте позволяет добиться высокой производительности и точности диагностики. Основная функция лямбда зонда заключается в повышении рабочих ресурсов автомобиля, понижения расхода топлива и поддержания стабильной работы двигателя. Если возникает несоответствие, прибор посылает сигнал в ЭБУ, который изменяет пропорции топлива и воздуха.

Важность этого устройства многие недооценивают, однако в случае его отказа машина может работать нестабильно. По этой причине важно знать основные неполадки зонда и способы борьбы с ними.

Признаки неисправности лямбда зонда

Признаки неисправности этого устройства могут быть разными, и самым главным сигналом для водителя станет нарушение нормальной работы мотора. Если устройство работает плохо, то качество топлива, которое подаётся в камеру сгорания, значительно понижается.

Почему ломается лямбда зонд? Причины могут быть следующими:

  • Корпус машины был разгерметизирован.
  • Внутри топливной системы попал воздух или выхлопные газы.
  • Датчик перегрелся из неполадок системы зажигания или неправильной покраски мотора.
  • Обыкновенный износ компонентов.
  • Неисправность электропитания – сигналы не поступают к ЭБУ.
  • Поломка в результате удара или другого механического воздействия.

В последнем случае лямбда зонд ломается в одно мгновение. Остальные симптомы свидетельствуют о том, что устройство выходит из строя постепенно. Если вы не знаете, как проводить диагностику этого компонента и не представляете, где он находится, то неисправности лямбда зонда определить не удастся.

Как понять, что этой детали скоро придёт конец? Сначала датчик начинает работать через раз. Сигнал иногда просто не передаётся для электронного блока управления. Это приводит к коррекции оборотов холостого хода. Данный показатель начинает изменяться и его колебания расширяются в диапазоне. Качество бензина или солярки понижается, а сам автомобиль дёргается.

Водитель слышит хлопки внутри мотора, а на приборной панели загорается соответствующая иконка. Затем датчик просто не работает на двигателе, который был только что запущен. Приборная панель будет сообщать вам об этом всеми доступными способами. Мощность машины сильно снижается, и когда вы будете нажимать на педаль ускорения, из двигателя будут слышны хлопки.

Но самая большая опасность для водителя заключается в перегреве двигателя, что становится причиной тотальной поломки системы. Если игнорировать сломанный датчик, то его состояние станет ухудшаться.

Это прямым образом влияет на работу машины. Качество передвижения снизится, потребление бензина увеличится и внутри машины начнёт пахнуть выхлопными газами с характерным запахом. Некоторые современные автомобиля оснащены системой блокировки двигателя, если датчик не работает. Придётся вызывать эвакуатор и отправляться в автосервис.

Самая худшая альтернатива развития события – это разгерметизация устройства. Если в машине ВАЗ произойдёт такой случай, то движение лучше прекратить, если вы не хотите окончательно доломать мотор. При окончательной поломке запчасти отработанные газы начинают попадать в ёмкость атмосферного воздуха. При срабатывании тормозных колодок устройство начинает определять большое количество молекул воздуха и подаёт чрезмерное количество сигналов для ЭБУ. В результате система управления впрыска ВАЗ работает некорректно или вообще перестаёт функционировать.

Как узнать, что произошла разгерметизация зонда? При движении на высокой скорости внутри двигателя сильно стучит. Автомобиль начинает двигаться рывками, и слышен неприятный запах отработанных газов. Также эту поломку можно определить путём визуального анализа корпуса выпускных клапанов и свечей – на них появляется сажный налёт.

Как производится диагностика и замена лямбда зонда?

Для автомобиля ВАЗ или любого другого транспортного средства можно использовать профессиональное оборудование. Воспользуйтесь услугами автосервиса, которые располагают осциллографом. Также состояние кислородного датчика можно определить при помощи мультимера. Это устройство может быть использовано для автомобилей ВАЗ.

Процедура проверки производится при заведённом двигателе, так как если датчик находится в спокойном состоянии, то невозможно определить его работоспособность. Если лямбда зонд работает некорректно, то рекомендуется замена детали.

В большинстве случаев зонд ВАЗ не поддаётся восстановлению – гораздо проще поставить новую деталь. Если на приборной панели выскакивает несколько ошибок, то нужно провести полную диагностику автомобиля. Если уж вы отправились в автосервис, то стоит проверить как можно больше систем машины.

Если вы планируете менять неисправный датчик у дилера, то это будет стоить дорого. Оптимальным вариантом является использование универсального зонда, который реализуется по нормальной цене. Можно поставить б\у датчик, но вы сами осознаёте риск, связанный с таким решением. Решать неисправности лямбда зонда подобным образом нужно только в крайнем случае.

Бывают случаи, когда устройство работает с погрешностью и таким неполадкам нужно также уделять внимание. На устройстве оседают продукты горения топлива и лучше проверить деталь у специалистов. Если его работоспособность подтверждена, то можно произвести очищение и продолжить ездить на машине.

Для удаления лямбда зонда нужно его сначала нагреть до температуры в 50 градусов. Затем нужно снять защитный колпачок и очистить поверхность. Для очистки опытные водители используют ортофосфорную кислоту, которая отлично удаляет любые горючие отложения. После удаления продуктов горения сполосните деталь в горячей воде, просушите и поставьте на место. Обязательно смажьте его герметиком, чтобы обеспечить защиту от разгерметизации.

Каждой поломке автомобиля нужно уделять особое внимание и это в особенной степени касается лямбда зонда. Если вы хотите спокойно ездить на автомобиле ещё много лет, то этой детали нужно уделить внимание. Неисправности лямбда зонда влекут за собой серьёзные проблемы. Вы можете заменить эту деталь самостоятельно или поехать в ближайший автосервис.

Если вы выбрали второй вариант, то предлагаем решить проблему неисправностей лямбда зонда при помощи сайта Uremont.com. Здесь вы можете заказать услугу в одном из лучших автосервисов вашего города. Сайт собирает только проверенную информацию об исполнителях.

Как проверить лямбда-зонд на работоспособность

Инжекторные двигатели экономичны и дружелюбны к экологии в отличии от карбюраторных моторов. Высоких показателей инженеры добились благодаря датчикам в системе питания. Один из датчиков, который непосредственно влияет на смесеобразование – это лямбда-зонд или кислородный датчик.

Содержание статьи:

Если он выходит из строя, можно наблюдать потерю мощности, большой расход топлива, нестабильную работу мотора.

Зачем в автомобиле нужен лямбда-зонда, место расположения

Лямбда-зонд необходим для измерения коэффициента содержания кислорода в горючей смеси. Он устанавливается всегда в районе приемной трубы до катализатора и измеряет объем несгоревшего кислорода в продуктах сгорания. Эта информация позволит ЭБУ готовить оптимальную смесь.

Наиболее эффективно сгорает смесь, в которой содержится 14,7 частей воздуха и одна часть топлива. Это оптимальные показатели, если кислород присутствует в больших количествах, то смесь бедная, если воздуха меньше, то богатая.

Читайте также: Почему горит ЧЕК в машине, что делать, можно ли ехать и как его потушить

Сгорание богатой смеси менее эффективно – можно наблюдать снижение мощности, повышенный расход топлива.

Так как моторы в автомобилях функционируют на совершенно разных режимах, то оптимальное соотношения воздуха и топлива может не соблюдаться. Для контроля качества смеси в системах питания применяют кислородные датчики.

На основе сигналов от лямбды ЭБУ может оценить качество смеси. Если обнаружены показатели, которые не соответствуют нормам, смесь корректируется.

Принцип работы кислородного датчика

Принцип действия кислородного датчика достаточно простой. Лямбда-зонд должен сравнивать показания с какими-то идеальными результатами, чтобы понимать, как меняется процент кислорода в смеси, поэтому замеры проводятся в двух местах – измеряется атмосферный воздух и продукты сгорания.

Такой подход позволяет датчику чувствовать разницу, если соотношения топливной смеси меняется.

ЭБУ должен получать от лямбда-зонда электрический импульс. Для этого датчик должен уметь преобразовывать замеры в электрические сигналы. Для измерения применяются специальные электроды, которые могут вступать с кислородом в реакцию.

В работе лямбды используется принцип гальванических элементов – смена условий химических реакций приводит к изменению напряжения между двумя электродами. Когда смесь богатая, а содержание кислорода за нижним порогом, тогда напряжение растет. Если смесь обедненная, напряжение будет падать.

Далее импульс, который возникает на этапе химических реакций, отправляется на ЭБУ, где параметры сравниваются с записанными в памяти топливными картами. В результате корректируется работа системы питания.

Статья по теме: Как сделать пеногенератор для автомойки из подручных вещей своими руками

Датчик кислорода работает на химических реакциях, но при этом конструкция его относительно простая. Главный элемент – специальный наконечник из керамических материалов. В качестве сырья используется диоксид циркония, а реже – диоксид титана.

Наконечник покрыт напылением из платины – именно этот слой и вступает в реакцию с кислородом. Одной стороной этот наконечник контактирует с выхлопными газами, другой стороной – с воздухом в атмосфере.

Электроды лямбда-зонда имеют одну особенность. Так, чтобы реакция проходила эффективнее и показатели были точными, замеры содержания кислорода в выхлопе производятся при условии определенных температур.

Для того, чтобы наконечник вышел на рабочие характеристики и нужную электропроводимость, температура среды должна составлять 300-400 градусов.

Для обеспечения нужного режима температур изначально лямбда-зонд устанавливался в непосредственной близости к выпускному коллектору. Это обеспечивало нужную температуру после прогрева ДВС. В работу датчик вступал не сразу. До того, как лямбда достаточно нагреется и начнет выдавать точные параметры, ЭБУ использовало сигналы других датчиков. Оптимальная смесь в процессе прогрева не приготавливалась.

Некоторые модели кислородных датчиков оснащены электрическими нагревателями. Благодаря им лямбда может быстрее выходить на рабочие температурные режимы. Подогрев использует энергию бортовой сети автомобиля.

Признаки и причины неисправности датчика

При неисправном лямбда-зонде выхлопные газы становятся более токсичными. Определить это можно при помощи специального диагностического оборудования. При этом никаких внешних признаков не будет, также, как и не будет никакого особенного запаха.

Вырастает расход топлива. Водители, как правило следят за тем, насколько наполнен топливный бак, стараются определить скорость, при которой расход минимален. Повышенный расход будет сразу же заметен. В зависимости от серьезности поломки датчика кислорода, расход вырастет в пределах от 1 л до 4 л.

Перегрев каталитического нейтрализатора. Если лямбда неисправна, то в ЭБУ подается неверный сигнал. Это может приводить к неправильной работе катализатора. Он перегревается вплоть до красного цвета и выходит из строя.

Автомобиль будет дергаться, и водитель сможет услышать хлопки. Лямбда перестает формировать правильные сигналы, в результате – нестабильный ХХ. Обороты могут колебаться в очень широких диапазонах.

Это интересно: Как восстановить кожу на руле автомобиля методом покраски

Снижаются динамические характеристики. Автомобиль теряет мощность. Эти признаки можно наблюдать в сильно запущенных случаях. Датчик не работает на холодном моторе, а автомобиль всячески сигнализирует о неисправности.

Среди причин поломок можно выделить:

  • Повреждения, вызванные сильными ударами, ДТП, наездами на бордюр;
  • Некорректную работу ДВС и проблемы в работе системы зажигания, когда элемент перегревается и выходит из строя;
  • Засор системы и некачественное топливо. Чем больше в бензине тяжелых металлов, тем быстрее лямбда выйдет из строя;
  • Поршневая группа – часто из-за изношенной ЦПГ в выпускной коллектор попадает масло, а продукты его сгорания забивают зонд;
  • Замыкания в электропроводке;
  • Бедная или слишком богатая смесь;
  • Попадание лишнего воздуха в выхлопную систему;
  • Пропуски зажигания;
  • Топливные присадки.

Проверка лямбда-зонд с помощью диагностического устройства

В большинстве случае ДВС сам подсказывает есть ли неисправности в работе датчиков. Самым быстрым и эффективным способом диагностики в таком случае будет подключение ODBII сканера.

Из доступных на рынке вариантов рекомендуем обратить внимание на модель корейского производства Scan Tool Pro Black Edition.

ScanToolProScanToolPro

Данное устройство относится к бюджетному сегменту, но в отличие от китайских аналогов на 8-битном чипе, имеет 32-битную базу, что позволяет осуществлять диагностику не только двигателя, но и других систем автомобиля (коробку передач, трансмиссию, ABS, ESP, систему кондиционирования и т.д.).

Сканер достаточно прост в использовании, имеет широкий функционал и совместим с большинством автомобилей начиная с 1993 года выпуска.

Если все плохо, то в ЭБУ будет выдавать следующие ошибки – это P0131, P0134, P0171. Более подробно о них в видео ниже.

Также будет загораться лампочка «проверьте двигатель», но здесь точно установить причину можно только при помощи диагностики. Чек загорается и в случае других проблем.

Как проверить лямбда-зонд мультиметром

Когда наблюдаются рывки при движении, повышенный расход горючего, и горящий “чек”, то стоит провести диагностику. Эти признаки могут говорить и о других неисправностях, но если есть мультиметр, то можно проверить кислородный датчик своими руками. Специалисты рекомендуют проверять лямбду через измерение напряжений.

К сведению: Стук в Двигателе все причины появления странных звуков при работе мотора

Но прежде любых измерений нужно прогреть ДВС. Если лямбда холодная, она не будет работать. Также рекомендуется по возможности снять датчик и осмотреть его и проводку на предмет грязи и повреждений. Если датчик деформирован, электрод поцарапан или покрыт сажей, нагаром, то лучше его заменить.

Измерения напряжения в цепи подогрева

ScanToolProScanToolPro

Включают зажигание, щупами протыкают провода, которые идут к нагревателю. Можно также втыкать щупы мультиметра в разъем. Напряжение будет примерно равно напряжению в бортовой сети. Если двигатель не запущен, то напряжения может и не быть.

Обычно плюс приходит к нагревателю напрямую. Минус подает блок управления. Если отсутствует плюс, следует проверить цепи от аккумулятора до датчика. Если отсутствует минус, тогда нужно проверить цепь от ЭБУ до датчика.

Проверка нагревателя

ScanToolProScanToolPro

Можно проверить работоспособность кислородного датчика при помощи омметра. Очень часто поломка связана со спиралью подогрева или проводкой к ней.

Для проверки омметр присоединяют между контактами нагревателя. Если нагреватель исправен, то омметр покажет сопротивление от 2 до 10 ОМ. В цепи подогрева сопротивление будет от 1 кОм до 10 мОм. Если сопротивления нет, то стоит поискать обрыв в проводке.

Опорное напряжение

ScanToolProScanToolPro

Имея под рукой мультиметр, можно проверить опорное напряжения. Для этого включают зажигание, затем измеряют напряжение между проводом сигнала и массой.

В правильно работающей лямбде напряжение будет в пределах 0,45 В. Если имеются отличия хотя-бы на 0,2 В, то проблемы с сигнальной цепи или плохая масса.

Проверка сигнала с датчика осциллографом

ScanToolProScanToolPro

Двигатель необходимо прогреть. Осциллограф подключают между сигналом и массой. Затем поднимают обороты до 3000 и наблюдают за изменениями показаний. Сигнал должен меняться в пределах от 0,1 В до 0,9 В. Если осциллограф точный и видно, что изменения в более узком диапазоне, то лямбда неисправна.

По теме: Как нумеруются цилиндры, виды их расположения в двигателе

Также стоит засечь время, в течении которого показания опускаются от большего уровня к меньшему. За 10 секунд показания должны меняться 10 раз. Если смены происходят реже, тогда может появиться ошибка под датчику.

Датчик кислорода (Лямбда-зонд): как работает, проблемы, симптомы

На чтение 5 мин. Просмотров 545 Опубликовано

Датчик кислорода (ДК) — он же лямбда-зонд — измеряет количество кислорода в выхлопных газах, отправляя сигнал на блок управления двигателя (ЭБУ).

Где находится датчик кислорода

Передний датчик кислорода ДК1 установлен в выпускном коллекторе или в передней выпускной трубе перед каталитическим нейтрализатором. Как вы знаете, каталитический нейтрализатор является основной частью системы контроля выбросов в автомобиле.

Датчик кислорода Поло седанДатчик кислорода Поло седан

Задний кислородный датчик ДК2 установлен в выхлопе после каталитического нейтрализатора.

датчик кислородадатчик кислорода

На 4-цилиндровых двигателях устанавливают как минимум два лямбда-зонда. Двигатели V6 и V8 имеют как минимум четыре датчика O2.

ЭБУ использует сигнал от переднего кислородного датчика для регулировки топливно-воздушной смеси путем добавления или уменьшения топлива.

Сигнал заднего датчика кислорода используется для контроля работы каталитического нейтрализатора. В современных автомобилях вместо переднего кислородного датчика используется датчик воздушно-топливного отношения. Он работает аналогично, но точнее.

датчик кислородадатчик кислорода

Как работает датчик кислорода

Существует несколько типов лямбда-зондов, но для простоты в этой статье мы рассмотрим только обычные генерирующие напряжение датчики кислорода.

Как следует из названия, генерирующий напряжение датчик кислорода генерирует небольшое напряжение, пропорциональное разнице в количестве кислорода внутри и снаружи выхлопного газа.

Для правильной работы лямбда-зонд необходимо нагреть до определенной температуры. Типичный современный датчик имеет внутренний электрический нагревательный элемент, который питается от ЭБУ двигателя.

датчик кислорода в разрезедатчик кислорода в разрезе

Когда топливовоздушная смесь (ТВС), поступающая в двигатель, бедная (мало топлива и много воздуха), в выхлопе остается больше кислорода, и кислородный датчик создает очень небольшое напряжение (0,1 – 0,2 В).

Если ТВС обогащается (много топлива и мало воздуха), в выхлопе остается меньше кислорода, поэтому датчик будет генерировать бОльшее напряжение (около 0,9 В).

Регулировка соотношения топливовоздушной смеси

Передний датчик O2 отвечает за поддержание оптимального соотношения смеси воздух / топливо, поступающей в двигатель, которая составляет приблизительно 14,7:1 или 14,7 частей воздуха на 1 часть топлива.

работа-переднего-датчика-кислородаработа-переднего-датчика-кислорода

Блок управления регулирует топливовоздушную смесь на основе обратной связи от переднего датчика кислорода. Когда передний лямбда-зонд обнаруживает высокий уровень кислорода, ЭБУ предполагает, что двигатель работает на бедной смеси (недостаточно топлива) и поэтому добавляет топлива.

Когда уровень кислорода в выхлопе становится низким, ЭБУ предполагает, что двигатель работает на богатой смеси (слишком много топлива) и уменьшает подачу топлива.

Этот процесс непрерывен. Компьютер двигателя постоянно переключается между обедненным и обогащенным состоянием, чтобы поддерживать оптимальное соотношение воздух / топливо. Этот процесс называется операцией замкнутого цикла.

Если вы посмотрите на сигнал напряжения переднего датчика кислорода, он будет циклически колебаться где-то между 0,2 вольт (бедная) и 0,9 вольт (богатая).

осциллограмма-датчика-кислорода-1осциллограмма-датчика-кислорода-1

Когда автомобиль заводится холодным, передний кислородный датчик не прогрет полностью, и ЭБУ не использует сигнал ДК1 для регулировки топлива. Этот режим называется разомкнутым контуром. Только когда датчик полностью прогрелся, система впрыска топлива переходит в режим замкнутого контура.

В современных автомобилях вместо обычного датчика кислорода установлен широкополосный датчик топливовоздушного соотношения. Датчик соотношения воздух / топливо работает по-другому, но служит той же цели — для определения, является ли топливовоздушная смесь, поступающая в двигатель, обогащённой или обеднённой.

Датчик топливовоздушного соотношения является более точным и может измерять более широкий диапазон.

Задний датчик кислорода

Задний или нижний кислородный датчик установлен в выхлопе после каталитического нейтрализатора. Он измеряет количество кислорода в выхлопных газах, выходящих из катализатора. Сигнал от заднего лямбда-зонда используется для контроля эффективности нейтрализатора.

осциллограмма-датчика-кислорода-1осциллограмма-датчика-кислорода-1
Контроллер постоянно сравнивает сигналы от передних и задних датчиков O2. Основываясь на двух сигналах, ЭБУ знает, насколько хорошо каталитический нейтрализатор работает. Если катализатор выходит из строя, ЭБУ включает индикатор «Check Engine», чтобы вы знали об этом.

Задний датчик кислорода можно проверить с помощью диагностического сканера, адаптера ELM327 с программой Torque или осциллографа.

Идентификация датчика кислорода

Передний лямбда-зонд перед каталитическим нейтрализатором обычно называют датчиком «выше по потоку» или датчиком 1.

Задний датчик, установленный после катализатора, называется датчик «ниже по потоку» или датчик 2.

Типичный рядный 4-цилиндровый двигатель имеет только один блок (ряд 1 / банк 1). Поэтому в рядном 4-цилиндровом двигателе термин «Банк 1, Датчик 1» просто относится к переднему датчику кислорода. «Банк 1, Датчик 2» — это задний кислородный датчик.

Читайте подробнее: Что такое Банк 1, Банк 2, Датчик 1, Датчик 2?

Двигатель V6 или V8 имеет два блока (или две части этого «V»). Обычно блок цилиндров, содержащий цилиндр № 1, называется «Банк 1».

осциллограмма-датчика-кислорода-1осциллограмма-датчика-кислорода-1Различные производители автомобилей определяют Банк 1 и Банк 2 по-разному. Чтобы узнать, где банк 1 и банк 2 в вашем автомобиле, вы можете посмотреть в руководстве по ремонту или в Google, указав год, марку, модель и объём двигателя.

Замена датчика кислорода

Проблемы с датчиком кислорода являются распространёнными. Неисправный лямбда-зонд может привести к увеличению расхода топлива, увеличению выбросов в атмосферу и различным проблемам во время вождения (провалы оборотов, плохое ускорение, плавающие обороты и т. д.). Если датчик кислорода неисправен, его необходимо заменить.

В большинстве автомобилей замена ДК является довольно простой процедурой. Если вы хотите заменить кислородный датчик самостоятельно, с некоторыми навыками и руководством по ремонту, это не так сложно, но вам может понадобиться специальная торцевая головка для датчика (на фото).

golovka-dlya-lyambda-zondagolovka-dlya-lyambda-zonda

Иногда может быть трудно вытащить старый лямбда-зонд, так как они часто сильно ржавеют.

Еще одна вещь, о которой следует знать — некоторые автомобили, как известно, имеют проблемы с заменяемыми датчиками кислорода.

Например, есть сведения о неоригинальном датчике кислорода, вызывающем проблемы в некоторых двигателях Chrysler. Если вы не уверены, лучше всегда использовать оригинальный датчик.

90000 What is Affecting Your Dissolved Oxygen Measurements? Part 1 of 4 90001 90002 Drum roll please ..... the most significant variable for dissolved oxygen measurements is - 90003 temperature 90004. Therefore, it is important to ensure the temperature sensor on the instrument is measuring correctly because temperature affects DO measurements in two ways. 90005 90002 90007 90005 90002 First, due to the increase or decrease in molecular activity, diffusion of oxygen through the membrane of an electrochemical probe or sensing element of an optical probe changes with temperature.The change in diffusion rate based on temperature can be up to approximately 4% per degree Celsius depending on the membrane material for steady-state electrochemical sensors, 1% per degree Celsius for Rapid Pulse sensors, and is approximately 1.5% per degree Celsius for optical sensors. 90005 90002 For example, if the temperature of a sample changes from 20 ° C to 15 ° C, the probe signal would decrease by varying rates depending on the sensor in use, giving a lower DO% saturation reading even though the% saturation of the water has not changed.Therefore, the sensor signal must be compensated for changes in temperature. This is done by adding a thermistor to the circuit of older, analog instruments. For newer, digital instruments, the software compensates for temperature changes with proprietary algorithms that use the temperature readings from the probe's thermistor. 90005 90002 The adjustment described so far only compensates for temperature's effect on the oxygen diffusion rate through a membrane or sensing element. In addition to this effect, temperature also affects the ability of water to dissolve oxygen.It is a scientific fact that the solubility of oxygen in water is directly proportional to temperature; see the Oxygen Solubility Table. 90005 90002 Warmer water can not dissolve as much oxygen as colder water. For example, in an oxygen saturated sample of water at sea level (exposed to 760 mmHg of barometric pressure), the% saturation value will be 100% regardless of the temperature because it is fully saturated. However, the dissolved oxygen mg / L concentration will change with temperature because the solubility of oxygen in water changes with temperature.For instance, at 15ºC water can dissolve 10.08 mg / L while 30ºC water can only dissolve 7.56 mg / L of oxygen even though the% saturation value is 100% in both samples. Therefore, we must compensate the mg / L concentration reading per the temperature of the sample. 90005 90002 Both of these temperature effects are factored into the conversion of the probe signal to a mg / L concentration. For newer, digital instruments such as the optical ProSolo and the traditional Pro20, the software compensates for both of these temperature-related factors after instrument calibration and during readings.90005 90002 The temperature compensation for the% saturation reading is empirically derived, while the conversion from% saturation, temperature and salinity to a mg / L concentration is automatically carried out by the instrument's firmware using formulae available in Standard Methods for the Examination of Water and Wastewater . The calculation for converting% Saturation to mg / L and an example is provided below. 90005 90021 Determining DO mg / L from% Saturation 90022 90002 The following explains how to convert% Saturation to mg / L (also referred to as ppm).90005 90002 In order to perform this conversion, the temperature and salinity of the sample must be known. This is the reason accurate temperautre values ​​must be used in the calculation of mg / L values. 90005 90002 Step one: Determine the% saturation, temperature, and salinity of the sample. 90005 90002 Step two: Multiply the% saturation reading by the value in appropriate column (depends on salinity) and row (depends on temperature) of the Oxygen Solubility Table. 90005 90031 Example: 90032 90002 90034 Step one 90035: Sample is measured to have: 80% DO saturation 0 ppt salinity at 20º C 90005 90002 90034 Step two 90035: Multiply.80 (which is the DO%) by 9.09 (value from oxygen solubility table at 0 salinity and 20º C) = 7.27 mg / L. 90005 90002 90034 Result 90035: 7.27 is the mg / L value that corresponds to an 80% DO Saturation reading of a sample with zero salinity at 20º C. 90005 90002 90005 90002 90005 90002 What is Affecting Your Dissolved Oxygen Measurements? Part 4 of 4 90005 90002 What is Affecting Your Dissolved Oxygen Measurements? Part 3 of 4 90005 90002 What is Affecting Your Dissolved Oxygen Measurements? Part 2 of 4 90005.90000 Symptoms of a Bad or Failing Oxygen Sensor 90001 90002 The oxygen sensor in your vehicle measures oxygen levels in the exhaust gases exiting the engine. This information is used by the Powertrain Control Module (PCM) to determine the correct air to fuel ratio for your engine in real time. The sensor is located in the exhaust system and allows the fuel injection and engine timing to work efficiently, which assists with emissions control. The oxygen sensor transmits the data to the vehicle's PCM to maintain the optimal air to fuel ratio for your engine.A bad or failing oxygen sensor will have a negative impact on environmental emissions and engine performance, so there are a 3 things to watch out for before your oxygen sensor completely fails. 90003 90004 1. Check Engine Light comes on 90005 90002 The first line of defense is the Check Engine Light. The Check Engine Light will illuminate if you have a bad or failing oxygen sensor. As soon as this light comes on, contact a professional automotive technician for a Check Engine Light inspection.This light can come on for many different reasons, so it is important to have it looked at by a professional who can correctly diagnose the exact cause. If you have high a mileage vehicle, there's a good chance it has a bad oxygen sensor in need of replacement. 90003 90004 2. Bad gas mileage and rotten egg smell 90005 90002 If the oxygen sensor is going bad, the fuel-delivery and fuel-combustion systems will be thrown off. If a bad oxygen sensor disrupts the air to fuel ratio mixture, or too much fuel is injected into the engine, your vehicle's gas mileage will be reduced.This excess fuel in the engine can produce a sulfuric, rotten egg smell, and may even produce black smoke from the exhaust. If yourself filling up your gas tank more often, keep a record of how many gallons you fill up with and how often. If it is more than normal, have a professional mechanic check out your oxygen sensor. 90003 90004 3. Rough engine idle and misfires 90005 90002 As your oxygen sensor is going bad you may notice your vehicle is running rough, misfiring or running irregularly while idling.You may also observe other engine performance problems, such as loss of power, hesitation, or stalling. Since the oxygen sensor output helps control engine timing, combustion intervals, and the air to fuel ratio, a bad sensor can disrupt these engine functions, causing a rough or irregular engine idle and other engine-related issues. 90003 90004 When to replace the sensor 90005 90002 If your vehicle was manufactured within the past 15 years, the oxygen sensor should be replaced every 60,000 to 90,000 miles.This sensor does wear out and will need replacement over time. Replacement of a bad or failing oxygen sensor will reduce the level of emissions your vehicle puts into the atmosphere while keeping your engine running smoothly and properly. As soon as you notice your Check Engine Light, poor gas mileage, or an irregular engine idle, book an appointment to have your oxygen sensor replaced. This will ensure your vehicle is running smoothly, efficiently, and will help prolong the life of your engine.90003 .90000 FAQs | Alphasense 90001 90002 NDIR 90003 90004 What is an NDIR sensor? 90005 90006 Alphasense IRC-A sensors use the principle of Non-Dispersive Infra-Red (NDIR) to determine gas concentration. Each sensor consists of an infrared source, optical cavity, dual channel detector and internal thermistor .. 90007 90004 How do NDIR sensors work? 90005 90006 Gas diffuses into the optical cavity. Light from the infrared source passes through the optical cavity where it interacts with the gas before impinging on the detector.Certain gases absorb infrared radiation at specfic wavelengths (absorption bands). The dual channel detector is comprised of an active channel and a reference channel. The active channel is fitted with a light filter such that the only light with a wavelength that corresponds to an absoption band of the target gas is allowed to pass through. If the target gas is present in the optical cavity the intensity of light passing through the filter and hitting the active channel decreases. The reference channel of the detector is fitted with a filter that only allows wavelengths of light where there are no absorption bands to pass through.The intensity of light hitting the reference channel is not affected by the presence of gas. The use of a reference channel allows variations in the light intensity to be compensated. 90007 90006 For more information, see Application Note AAN 201 90007 90004 Is the NDIR sensor temperature and pressure dependent? 90005 90006 The detectors used are sensitive to the ambient temperature and the internal thermistor can be used to constantly monitor the temperature and compensate the output. 90007 90006 For more information, see Application Note AAN 201 90007 90004 Can Alphasense provide a transmitter board for the NDIR sensors? 90005 90006 Yes, currently we offer 4-20 mA transmitter boards for the IRC-A1 sensors only.When ordering please specify your CO2 range: 0 to 5000 ppm, 0 to 5%, 0 to 20% or 0 to 100% CO2. 90007 90002 PIDs 90003 90004 What is a volatile organic compound (VOC) and which ones are sensed by PID sensors? 90005 90006 Volatile organic compounds, or VOCs, are organic chemical compounds whose composition makes it possible for them to evaporate under normal indoor atmospheric conditions of temperature and pressure. 90007 90006 PID can detect most VOCs. When light of sufficient energy is directed at a VOC, it fragments into ions.The characteristic photon energy of light causing this to happen is called the VOC's Ionisation Potential or IP. 90007 90006 For more information see Application Note AAN 301 90007 90004 How long does the lamp and electrode stack last? 90005 90006 Under standard environmental conditions lamp life (lit hours) is between 2,000 and 6,000 hours. The electrode stack should last approximately the same time. Life depends on the combination of the number of lit hours and the level of contamination in the environment.90007 90006 For more information see Application Note AAN 306 90007 90004 What voltage supply does the PID A1 and PID AH sensors require? 90005 90006 The underside (pin side) of the PID-A1 (or PID-AH) sensor has a small circular gold plated well that can be left open or be filled with solder. If the well is not filled with the solder, the on board regulator is enabled therefore a regulated or unregulated supply between 3.6 - 18.0 V may be supplied and the internal voltage will be regulated to 3.3 V. 90007 90006 If the solder well is filled with solder, the sensor's on board regulator is disabled therefore a regulated supply of 2.8 - 3.6 V is required. This supply should be stable to within 10 mV to maintain a stable light intensity. 90007 90006 For more information, see Application Note AAN 302 90007 90004 What is the output of the PID sensor? 90005 90006 The sensor provides an analogue voltage output. The range is 0.0 V to Vs - 0.1 V for an externally regulated voltage supply (Vs) in the range of 3.0 to 3.6 V. When internally regulated on a supply voltage of 3.6 to 18.0 V, the output range is 0.0 to 3.2 V. 90007 90004 How do I confirm if the on board voltage regulator has been disabled? 90005 90006 If the solder well is empty or insufficiently filled by solder, the resistance between pins 1 and 3 (+ V and 0 V respectively) will be around 1.6 to 2.0 MΩ and the on-board voltage regulator will be enabled. If the well has been properly filled with solder the resistance across pins 1 and 3 will be around 1.2 KΩ and the on-board voltage regulator will be disabled. 90007 90004 How do I test my PID sensor? 90005 90006 The commonly used industrial standard for testing PID sensors is exposing the sensor to Isobutylene (or Isobutene). A quick qualitative response may be obtained by briefly exposing the sensor to, for example, Acetone, Ethanol or Isopropanol. 90007 90002 Pellistors (flammable or combustible gas sensors) 90003 90004 What are Pellistors? 90005 90006 Pellistors, also known as flammable or combustible gas sensors, are in an explosion proof housing (certified by UL, CSA, ATEX and IECEx).They are used to detect explosive or combustible gases in air. 90007 90004 How do Pellistors work? 90005 90006 The current passing through the platinum wire heats up the catalytic material to 400-550ºC in which it is able to combust the target gas, generating thermal energy which raises the bead temperature. This type of sensor is not selective and will respond to all combustible gases and vapours. 90007 90004 Can Pellistors be poisoned? 90005 90006 Pellistors can be poisoned if the gas or vapour reacts with the catalyst causing the sensor to permanently lose its response to gas.Typical poisons are organic silicon compounds (i.e. silicones), organo-metallic compounds and organic phosphate esters. 90007 90006 Other compounds such as halogenated hydrocarbons and Sulfur containing compounds can cause a reversible loss in response which may recover on providing the sensor with a clean environment. 90007 90004 Are filters available filters for Pellistors? 90005 90006 Alphasense offers disposable Hydrogen Sulfide and Chlorine filters for '' A '' and '' D '' type pellistors.The filter should last for several years but if the filter changes colour from white to black it must be replaced. 90007 90002 Toxic sensors 90003 90004 What materials are used in Alphasense toxic gas sensors? 90005 90006 Alphasense electrochemical toxic gas sensors are sealed units containing an aqueous solution of Sulfuric Acid (h3SO4) or Propylene Carbonate, Polytetrafluoroethylene (PTFE), Polycarbonate (PC), Noryl Polymer and small quantities of Carbon (C), Platinum (Pt) and other precious metals.90007 90004 How do toxic gas sensors work? 90005 90006 Alphasense toxic gas sensors are electrochemical cells that operate in the amperometric mode. They generate a current that is linearly proportional to the fractional volume of the toxic gas. 90007 90006 For more information, see Application Note AAN 104 90007 90004 Do toxic gas sensors require Oxygen? 90005 90006 Yes. For most gas sensors, good operation depends on reduction of Oxygen at the internal counter electrode; the counter electrode will do whatever it must to keep up with the working electrode.If there is no Oxygen, it will use protons and although the sensor is operating, the electrochemical balance is changed and the reading may be incorrect. 90007 90004 Is a shorting FET recommended in portable gas detectors? 90005 90006 It is normal practice to add a shorting FET for unbiased sensors This FET ensures that the working electrode is maintained at the same potential as the reference electrode when the circuit is switched off. The shorting FET is normally open circuit when power is applied.90007 90006 Biased sensors (NO is the most common) must not be shorted when switched off, rather the bias voltage must be maintained when the unit is powered off, usually by a back-up battery. 90007 90006 For more information, see Application note AAN 105 90007 90004 '' + '' or '' - '' Bias voltage for NO sensors? 90005 90006 The potential of the working electrode must be increased to +300 mV above the reference electrode to ensure the NO is oxidised. 90007 90006 For more information, see Application note AAN 105 90007 90004 What is the stabilisation time for Toxic sensors when first plugged in? 90005 90006 90007 90114 90115 90116 90116 90116 90119 90120 90121 90122 90123 GAS 90007 90125 90122 90123 New sensor or after long period of removal 90007 90123 (Hours) 90007 90125 90122 90123 After brief removal e.g for replacement 90007 90123 (Minutes - unless stated) 90007 90125 90138 90121 90122 90123 H 90142 2 90143 S 90007 90125 90122 90123 2 90007 90125 90122 90123 10 90007 90125 90138 90121 90122 90123 CO 90007 90125 90122 90123 2 90007 90125 90122 90123 10 90007 90125 90138 90121 90122 90123 SO 90142 2 90143 90007 90125 90122 90123 2 90007 90125 90122 90123 10 90007 90125 90138 90121 90122 90123 NO 90007 90125 90122 90123 12 90007 90125 90122 90123 12 Hours 90007 90125 90138 90121 90122 90123 NO 90142 2 90143 90007 90125 90122 90123 2 90007 90125 90122 90123 10 90007 90125 90138 90121 90122 90123 Cl 90142 2 90143 90007 90125 90122 90123 2 90007 90125 90122 90123 10 90007 90125 90138 90121 90122 90123 HCl 90007 90125 90122 90123 12 90007 90125 90122 90123 240 90007 90125 90138 90121 90122 90123 ETO 90007 90125 90122 90123 12 90007 90125 90122 90123 12 Hours 90007 90125 90138 90121 90122 90123 HBr 90007 90125 90122 90123 12 90007 90125 90122 90123 10 90007 90125 90138 90121 90122 90123 HCN 90007 90125 90122 90123 12 90007 90125 90122 90123 10 90007 90125 90138 90121 90122 90123 PH 90142 3 90143 90007 90125 90122 90123 2 90007 90125 90122 90123 10 90007 90125 90138 90121 90122 90123 NH 90142 3 90143 90007 90125 90122 90123 12 90007 90125 90122 90123 240 90007 90125 90138 90121 90122 90123 O 90142 3 90143 90007 90125 90122 90123 2 90007 90125 90122 90123 10 90007 90125 90138 90121 90122 90123 Br 90142 2 90143 90007 90125 90122 90123 2 90007 90125 90122 90123 10 90007 90125 90138 90121 90122 90123 H 90142 2 90143 90007 90125 90122 90123 2 90007 90125 90122 90123 10 90007 90125 90138 90367 90368 90004 How does temperature affect toxic gas sensors? 90005 90006 Electrochemical gas sensors are sensitive to ambient temperature.Both sensitivity (expressed as nA / ppm) and the zero current (expressed as equivalent ppm or nA) change with temperature. The individual technical data sheets specify the tolerance of temperature dependence at -20ºC and + 50ºC, so bear this in mind when setting your software corrections. 90007 90006 For more information see Application Note AAN 110 90007 90004 How does humidity affect toxic gas sensors? 90005 90006 Humidity transients cause current spikes, which decay in about 10 minutes. Note that the spikes are first positive then negative with a humidity decrease, and first negative then positive with a humidity increase.90007 90006 For more information see Application Note AAN 110 90007 90004 How does pressure affect toxic gas sensors? 90005 90006 When exposed to a positive pressure change, toxic sensors show a rapid positive current spike, then settle quickly to a constant output. 90007 90006 For more information see Application Note AAN 110 90007 90004 Is it possible to use Alphasense Oxygen and toxic sensors with 4-20mA Transmitter Boards? 90005 90006 Yes, we offer 4-20mA analogue transmitter boards for Oxygen sensors and both analogue and digital transmitter boards for toxic gas sensors 90007 90004 What is the difference between 3 and 4 electrode toxic gas sensors? 90005 90006 B4 and A4 sensors are specifically designed for low gas concentration detection: parts per billion (ppb).As well as the normal Working, Reference and Counter electrodes, B4 and A4 sensors include a 4th auxiliary electrode, which is used to correct for zero current changes. 90007 90006 90007 90002 Oxygen sensors 90003 90004 What materials are used in Alphasense Oxygen sensors? 90005 90006 Alphasense electrochemical Oxygen gas sensors are sealed units containing an aqueous solution of Potassium Acetate (KC2h4O2) and small quantities of Platinum (Pt), Carbon (C), Lead (Pb) and Lead Oxide (PbO), with trace amount of Antimony ( Sb).Housing is ABS and dust filter is PTFE. 90007 90004 How do Oxygen sensors work? 90005 90006 Alphasense Oxygen sensors operate like a metal / air battery. Oxygen is reduced at the cathode to hydroxyl ions, with a balancing reaction of lead oxidation at the anode. Alphasense mass flow Oxygen sensors use a very small capillary to restrict the flow of gas to the cathode. Mass flow Oxygen sensors are the technology of choice for industrial safety gas detectors. 90007 90006 For more information, see Application Note AAN 009 90007 90004 What is the easiest way of taking the readings from Oxygen sensor? 90005 90006 Oxygen sensors generate a current which is proportional to the rate of Oxygen consumption.This current is easily measured by placing a load resistor between the cathode and the anode (the 2 pins on an Oxygen sensor) and measuring the resultant voltage drop. This load resistor should be between 10 and 100Ω (we recommend 22Ω or 47Ω). 90007 90004 What are the minimum and maximum detection limits for Alphasense Oxygen sensors? 90005 90006 0.5% (5,000 ppm) O2 is the recommended minimum detection level for which a sensor will give stable readings. Oxygen sensors will operate repeatably and reliably up to 95% Oxygen, but sensor lifetime will decrease when the Oxygen concentration is above 20%.90007 90006 For more information, see Application Note AAN 003 90007 90004 What is the stabilisation time for Oxygen sensors when first connected? 90005 90006 Recommended stabilisation time for as-received sensors is two hours after first installation. 90007 90004 Which carrier gases might change the Oxygen sensor reading? 90005 90006 Helium (He), Argon (Ar), Carbon Dioxide (CO2) and Hydrogen h3 all increase diffusion of O2, hence increasing output current. 90007 90004 What are the minimum and maximum usage temperatures for an Oxygen sensor? 90005 90006 We warrant performance to -20 90430 o 90431 C and lower temperature limit of use is -30 90430 o 90431 C.We specify performance to 55 90430 o 90431 C, but spikes to 60 90430 o 90431 C will not harm the sensor. 90007 90004 How does temperature affect Oxygen sensors? 90005 90006 Temperature dependence is due primarily to the change of viscosity of the gas. Rapid changes in temperature will create transient peaks. Alphasense sensors show very good temperature repeatability. 90007 90006 For more information, see Application Note AAN 005. 90007 90004 How does humidity affect Oxygen sensors? 90005 90006 Ambient Oxygen concentration decreases slightly at higher humidities due to dilution of Oxygen by water vapour.Rapid humidity changes can cause transient performance: Alphasense Oxygen sensors are designed to minimise humidity transient. 90007 90006 For more information, see Application Note AAN 008. 90007 90004 How does pressure affect Oxygen sensors? 90005 90006 Mass flow controlled Oxygen sensors show transient behaviour to pressure pulses. Positive pressure steps force more air into the sensor (following Fick's Law), increasing the measured current. Negative pressure steps reduce air flow and hence reduce the measured current, giving a negative spike.Alphasense Oxygen sensors have a unique design that minimises pressure spikes. 90007 90006 For more information, see Application Note AAN 004 90007 90004 Is vacuum or very low absolute pressures a problem? 90005 90006 Alphasense do not recommend use of our sensors in vacuum pressure. Very low pressures will deplete the liquid electrolyte through evaporation 90007 90004 Can acetone or MEK damage Oxygen sensors? 90005 90006 Yes, they will react with the sensor body, which is made from ABS (Acrylonitrile Butadiene Styrene), causing solvent-induced crazing.This crazing and even solvation of the polymer is very fast and irreversible. Generally if the solvent attacks ABS then it will damage the sensor. 90007 90004 What is the difference between Galvanic Lead and Lead-free 3-electrode Oxygen sensors? 90005 90006 Traditional mass-flow Oxygen sensors respond rapidly, require the simplest of circuits to measure the sensor, they require no power and are very stable over time. However, eventually the internal lead is completely oxidised and the sensor then needs to replaced after one, two or three years, depending on the sensor.90007 90006 The lead-free Oxygen sensor does not have a fixed, limited lifetime so 5 years or more are quoted for its lifetime, which theoretically is unlimited. However, this advantage is countered by the need to power the sensor continuously, even when the gas detector is off, requiring a permanent power supply. 90007 90002 General 90003 90004 Where I can find technical information regarding Alphasense sensors. 90005 90006 Individual product datasheets can be downloaded direct from our website at Downloads.90007 90006 Alphasense Application Notes, which are easily accessible at www.alphasense.com provide detailed technical information. You can also contact us direct if something is needs further explanation: email [email protected] or telephone +44 (0) 1376 556700 90007 90004 Does Alphasense test 100% of its products? 90005 90006 Yes, the performance of every sensor is tested before leaving the factory. We ensure that all sensors perform to the specifications in our individual product data sheets, which are easily accessible on our web site www.alphasense.com. Alphasense can trace all test results for individual sensors using the bar code or serial number on the sensor label. 90007 90004 How often should I check sensor calibration? 90005 90006 Calibration interval depends on the application, sensor technology, industry-required performance and legal requirements. As good practice, sensor calibration should be checked on receipt and then about 30 days after installation. Once readings are stable, the calibration check period can be extended to 3, 6 or even 12 months, depending on your application.90007 90006 For more information, see Application Note AAN 105 90007 90004 What is recommended flow rate for Alphasense sensors? 90005 90006 The recommended flow rate is 500sccm = 0.5L / min. Lower flow rates may not provide adequate gas to the sensor and higher flow rates may cause pressure errors, leading to high readings. 90007 90004 What are the design rules when constructing a gas sampling train? 90005 90006 a. Gas flow should be always across / parallel to the sensor face, not onto / perpendicular to the sensor face.90007 90006 b. If you need to restrict flow, then place the restrictor upstream of the sensor. 90007 90006 c. Pumps create oscillatory pressure changes which can lead to high readings and should be upstream of the sensor if possible. 90007 90006 d. Sensor outlet should ideally exhaust to ambient to minimise pressure drops / variations. 90007 90006 e. Include a particulate filter on your inlet if sampling in dirty environments. If measuring reactive gases such as NO2, h3S, O3, Cl2 then use filters constructed from fluorinated substrates if possible.90007 90006 f. Avoid condensation in your gas train. The sensor temperature should be at least 5oC above the dewpoint temperature. Nafion dryer systems are frequently used to regulate the humidity of the sampled gas. 90007 90006 g. In-line gas filters should be considered to reduce cross-sensitivity effects. 90007 90004 Can I purchase calibration accessories from Alphasense for development testing? 90005 90006 We do offer accessories such as gas hoods and suitable tubing however we can not provide calibration gases.For more information please contact Alphasense, email [email protected] or telephone +44 (0) 1376 556700. 90007 .90000 What the Home Mechanic Needs to Know about O2 Sensors 90001 Download PDF 90002 Today's computerized engine control systems rely on inputs from a variety of sensors to regulate engine performance, emissions and other important functions. The sensors must provide accurate information otherwise driveability problems, increased fuel consumption and emission failures can result. 90003 90002 One of the key sensors in this system is the oxygen sensor. It's often referred to as the "O2" sensor because O2 is the chemical formula for oxygen (oxygen atoms always travel in pairs, never alone).90003 90002 The first O2 sensor was introduced in 1976 on a Volvo 240. California vehicles got them next in 1980 when California's emission rules required lower emissions. Federal emission laws made O2 sensors virtually mandatory on all cars and light trucks built since 1981. And now that OBD-II regulations are here (1996 and newer vehicles), many vehicles are now equipped with multiple O2 sensors, some as many as four! 90003 90002 The O2 sensor is mounted in the exhaust manifold to monitor how much unburned oxygen is in the exhaust as the exhaust exits the engine.Monitoring oxygen levels in the exhaust is a way of gauging the fuel mixture. It tells the computer if the fuel mixture is burning rich (less oxygen) or lean (more oxygen). 90003 90002 A lot of factors can affect the relative richness or leanness of the fuel mixture, including air temperature, engine coolant temperature, barometric pressure, throttle position, air flow and engine load. There are other sensors to monitor these factors, too, but the O2 sensor is the master monitor for what's happening with the fuel mixture.Consequently, any problems with the O2 sensor can throw the whole system out of whack. 90003 90012 Loops 90013 90002 The computer uses the oxygen sensor's input to regulate the fuel mixture, which is referred to as the fuel "feedback control loop." The computer takes its cues from the O2 sensor and responds by changing the fuel mixture. This produces a corresponding change in the O2 sensor reading. This is referred to as "closed loop" operation because the computer is using the O2 sensor's input to regulate the fuel mixture.The result is a constant flip-flop back and forth from rich to lean which allows the catalytic converter to operate at peak efficiency while keeping the average overall fuel mixture in proper balance to minimize emissions. It's a complicated setup but it works. 90003 90002 When no signal is received from the O2 sensor, as is the case when a cold engine is first started (or the 02 sensor fails), the computer orders a fixed (unchanging) rich fuel mixture. This is referred to as "open loop" operation because no input is used from the O2 sensor to regulate the fuel mixture.If the engine fails to go into closed loop when the O2 sensor reaches operating temperature, or drops out of closed loop because the O2 sensor's signal is lost, the engine will run too rich causing an increase in fuel consumption and emissions. A bad coolant sensor can also prevent the system from going into closed loop because the computer also considers engine coolant temperature when deciding whether or not to go into closed loop. 90003 90012 How it Works 90013 90002 The O2 sensor works like a miniature generator and produces its own voltage when it gets hot.Inside the vented cover on the end of the sensor that screws into the exhaust manifold is a zirconium ceramic bulb. The bulb is coated on the outside with a porous layer of platinum. Inside the bulb are two strips of platinum that serve as electrodes or contacts. 90003 90002 The outside of the bulb is exposed to the hot gases in the exhaust while the inside of the bulb is vented internally through the sensor body to the outside atmosphere. Older style oxygen sensors actually have a small hole in the body shell so air can enter the sensor, but newer style O2 sensors "breathe" through their wire connectors and have no vent hole.It's hard to believe, but the tiny amount of space between the insulation and wire provides enough room for air to seep into the sensor (for this reason, grease should never be used on O2 sensor connectors because it can block the flow of air). Venting the sensor through the wires rather than with a hole in the body reduces the risk of dirt or water contamination that could foul the sensor from the inside and cause it to fail. The difference in oxygen levels between the exhaust and outside air within the sensor causes voltage to flow through the ceramic bulb.The greater the difference, the higher the voltage reading. 90003 90002 An oxygen sensor will typically generate up to about 0.9 volts when the fuel mixture is rich and there is little unburned oxygen in the exhaust. When the mixture is lean, the sensor's output voltage will drop down to about 0.1 volts. When the air / fuel mixture is balanced or at the equilibrium point of about 14.7 to 1, the sensor will read around 0.45 volts. 90003 90002 When the computer receives a rich signal (high voltage) from the O2 sensor, it leans the fuel mixture to reduce the sensor's reading.When the O2 sensor reading goes lean (low voltage), the computer reverses again making the fuel mixture go rich. This constant flip-flopping back and forth of the fuel mixture occurs with different speeds depending on the fuel system. The transition rate is slowest on engines with feedback carburetors, typically once per second at 2500 rpm. Engines with throttle body injection are somewhat faster (2 to 3 times per second at 2500 rpm), while engines with multiport injection are the fastest (5 to 7 times per second at 2500 rpm).90003 90002 The oxygen sensor must be hot (about 600 degrees or higher) before it will start to generate a voltage signal, so many oxygen sensors have a small heating element inside to help them reach operating temperature more quickly. The heating element can also prevent the sensor from cooling off too much during prolonged idle, which would cause the system to revert to open loop. 90003 90002 Heated O2 sensors are used mostly in newer vehicles and typically have 3 or 4 wires.Older single wire O2 sensors do not have heaters. When replacing an O2 sensor, make sure it is the same type as the original (heated or unheated). 90003 90012 A New Role for O2 Sensors with OBDII 90013 90002 Starting with a few vehicles in 1994 and 1995 року, and all 1996 and newer vehicles, the number of oxygen sensors per engine has doubled. A second oxygen sensor is now used downstream of the catalytic converter to monitor the converter's operating efficiency. On V6 or V8 engines with dual exhausts, this means up to four O2 sensors (one for each cylinder bank and one after each converter) may be used.90003 90002 The OBDII system is designed to monitor the emissions performance of the engine. This includes keeping an eye on anything that might cause emissions to increase. The OBDII system compares the oxygen level readings of the O2 sensors before and after the converter to see if the converter is reducing the pollutants in the exhaust. If it sees little or no change in oxygen level readings, it means the converter is not working properly. This will cause the Malfunction Indicator Lamp (MIL) to come on.90003 90012 Sensor Diagnosis 90013 90002 O2 sensors are amazingly rugged considering the operating environment they live in. But O2 sensors do wear out and eventually have to be replaced. The performance of the O2 sensor tends to diminish with age as contaminants accumulate on the sensor tip and gradually reduce its ability to produce voltage. This kind of deterioration can be caused by a variety of substances that find their way into the exhaust such as lead, silicone, sulfur, oil ash and even some fuel additives.The sensor can also be damaged by environmental factors such as water, splash from road salt, oil and dirt. 90003 90002 As the sensor ages and becomes sluggish, the time it takes to react to changes in the air / fuel mixture slows down which causes emissions to go up. This happens because the flip-flopping of the fuel mixture is slowed down which reduces converter efficiency. The effect is more noticeable on engines with multiport fuel injection (MFI) than electronic carburetion or throttle body injection because the fuel ratio changes much more rapidly on MFI applications.If the sensor dies altogether, the result can be a fixed, rich fuel mixture. Default on most fuel injected applications is mid-range after three minutes. This causes a big jump in fuel consumption as well as emissions. And if the converter overheats because of the rich mixture, it may suffer damage. One EPA study found that 70% of the vehicles that failed an I / M 240 emissions test needed a new O2 sensor. 90003 90002 The only way to know if the O2 sensor is doing its job is to inspect it regularly.That's why some vehicles (mostly imports) have a sensor maintenance reminder light. A good time to check the sensor is when the spark plugs are changed. 90003 90002 You can read the O2 sensor's output with a scan tool or digital voltmeter, but the transitions are hard to see because the numbers jump around so much. Here's where a PC based scantool such as AutoTap really shines. You can use the graphing features to watch the transitions of the O2 sensors voltage. The software will display the sensor's voltage output as a wavy line that shows both it's amplitude (minimum and maximum voltage) as well as its frequency (transition rate from rich to lean).90003 90002 A good O2 sensor should produce an oscillating waveform at idle that makes voltage transitions from near minimum (0.1 v) to near maximum (0.9v). Making the fuel mixture artificially rich by feeding propane into the intake manifold should cause the sensor to respond almost immediately (within 100 milliseconds) and go to maximum (0.9v) output. Creating a lean mixture by opening a vacuum line should cause the sensor's output to drop to its minimum (0.1v) value. If the sensor does not flip-flop back and forth quickly enough, it may indicate a need for replacement.90003 90002 If the O2 sensor circuit opens, shorts or goes out of range, it may set a fault code and illuminate the Check Engine or Malfunction Indicator Lamp. If additional diagnosis reveals the sensor is defective, replacement is required. But many O2 sensors that are badly degraded continue to work well enough not to set a fault code-but not well enough to prevent an increase in emissions and fuel consumption. The absence of a fault code or warning lamp, therefore, does not mean the O2 sensor is functioning properly.90003 90012 Sensor Replacement 90013 90002 Any O2 sensor that is defective obviously needs to be replaced. But there may also be benefits to replacing the O2 sensor periodically for preventive maintenance. Replacing an aging O2 sensor that has become sluggish can restore peak fuel efficiency, minimize exhaust emissions and prolong the life of the converter. 90003 90002 Unheated 1 or 2 wire wire O2 sensors on тисячі дев'ятсот сімдесят шість through early 1990s vehicles can be replaced every 30,000 to 50,000 miles.Heated 3 and 4-wire O2 sensors on mid-1980s through mid-1990s applications can be changed every 60,000 miles. On OBDII equipped vehicles (1996 & up), a replacement interval of 100,000 miles is recommended. 90003 .

Отправить ответ

avatar
  Подписаться  
Уведомление о