Под динамикой автомобиля понимают его свойство перевозить грузы и пассажиров с максимально возможной средней скоростью при заданных дорожных условиях. Чем лучше динамика автомобиля, тем выше его производительность. Кроме того, динамика автомобиля в полной мере определяет безопасность его эксплуатации. Динамика автомобиля зависит от его тяговых и тормозных свойств.
Содержание
Сопротивление движению вычисляется как (рис. «Силы сопротивления движению» ):
FW=FRo + FL+FSt
Мощность, которая должна поступить на ведущие колеса автомобиля для преодоления сопротивления движению (силы сопротивления движению), равна:
PW = FW v или PW = FWV /3600
где:
Pw в кВт,
Fw в Н,
v в км/ч.
Сопротивление качению является следствием возникающих процессов деформации в зоне контакта шины с дорогой. При этом применимо следующее:
Fro =f G cosa — fmg cosa
Приближенный расчет сопротивления качению может быть выполнен путем использования коэффициентов, представленных в приведенной ниже таблице «Коэффициенты сопротивления качению» и на рис. «Сопротивление качению радиальных шин по ровной, горизонтальной дороге при нормальных нагрузке и внутреннем давлении».
Увеличение коэффициента сопротивления качению f прямо пропорционально уровню деформации и обратно пропорционально радиусу шины. Следовательно, коэффициент будет увеличиваться при увеличении нагрузки, скорости и при снижении давления в шине.
При прохождении поворотов сопротивление качению увеличивается за счет добавочного сопротивления повороту:
Fk=fкG
Коэффициент сопротивления повороту fк является функцией скорости движения автомобиля, радиуса поворота, геометрических характеристик подвески автомобиля, типа шин, давления в шинах и поведения автомобиля под действием поперечного ускорения.
Таблица.«Коэффициент аэродинамического сопротивления и мощность, затрачиваемая на преодоление аэродинамического сопротивления, для различных типов кузова»
Определяется по формуле:
FL = 0,5 p⋅ cw⋅ А (v + v0)2
или
FL =0,0386⋅ р⋅ cw⋅ А (v + v0)2,
где: v в км/ч, FL в Н, р в кг/м3, А в м2, плотность воздуха р = 1,202 кг/м3 на высоте 200 м.
Аэродинамическое сопротивление:
PL = FL = 0,5 р cw Av (v + v0)2
или
PL = 12,9-10-6 cw A v (v + v0)2
где: PL в кВт, FL в Н, v и v0 в км/ч, А в м2, р = 1,202 кг/м3.
Максимальное поперечное сечение автомобиля: А ≈0,9 х ширина колеи х высота.
Автомобиль движется накатом на нейтральной передаче в условиях безветрия по ровной дороге. Для двух заданных значений скоростей движения, v1 (высокая скорость) и v2 (малая скорость), замеряется время, необходимое, чтобы автомобиль при этих условиях замедлил свое движение. Эта информация используется для расчета средних замедлений a1 и а2. Формулы и примеры из табл. «Эмпирические определения коэффициентов аэродинамического сопротивления и сопротивления качению» приведены для автомобиля массой m = 1450 кг с площадью поперечного сечения А = 2,2 м
Этот метод применим для скоростей движения автомобиля до 100 км/ч.
Сопротивление движению на подъем (Fst со знаком плюс) и силы, действующие на автомобиль при движении под уклон (Fst со знаком минус) рассчитываются следующим образом:
Fst = G sinа = m g sina
или приближенно:
Fst ≈ 0,01 m g p
Эти уравнения применимы с уклонами до р ⩽ 20%, поскольку при малых углах применимо следующее:
sina ≈ tana (погрешность менее 2 %).
Мощность, затрачиваемая на преодоление подъема, равна:
Pst = Fst v или если Pst измеряется в кВт, Fst в Н и v в км/ч:
Pst = Fst v/3600 = m g v sina/3600
или приближенно:
Pst = m g p v / 3600
Продольный уклон дороги равен:
р = (h/l)⋅100 % или р = (tanа) ⋅100 %
где h соответствует проекции наклонной поверхности l на вертикальную ось.
В англоязычных странах продольный уклон определяется отношением 1 в 100/р .
Например, при р =50% отношение 1 к 2.
Сила тяги
Чем больше крутящий момент двигателя М и общее передаточное число трансмиссии i между двигателем и ведущими колесами, и чем ниже потери мощности в трансмиссии, тем выше сила тяги F на ведущих колесах автомобиля.
F = (Mi/r)⋅η или F = P η / v
η — КПД привода. Для двигателя продольного расположения η ≈ 0,88 — 0,92, для двигателя поперечного расположения η ≈0,91 -0,95.
Сила тяги частично затрачивается на преодоление сопротивления движению. При большом сопротивлении движению, имеющем место на подъемах, следует включать в коробке передач пониженную передачу (т. е. увеличивать передаточное число трансмиссии).
Частота вращения коленчатого вала вычисляется как:
n = 60vi / 2 πr
или при v в км/ч:
n = 1000vi / 2π·60r
Избыточная сила F-Fw вызывает ускорение автомобиля. Или замедление, когда Fw превышает F
a = (F-Fw) / km m
или
a = (P η — Pw) / v km m
Коэффициент учета вращающихся масс km (рис. «Определение коэффициента учета вращающихся масс k
Когда уравнение силы тяги применяется для автомобилей с автоматической трансмиссией с гидротрансформатором или гидромуфтой, крутящий момент двигателя заменяется крутящим моментом турбины гидротрансформатора, а частота вращения коленчатого вала двигателя — частотой вращения турбины гидротрансформатора. Используя кривую характеристики гидротрансформатора, можно определить зависимость между
Mturb = f (nturb)
и скоростной характеристикой двигателя
MMot = f (nMot)
Силовой баланс для отдельных передач в функции скорости движения может быть определена из диаграммы силы тяги/сопротивления движению. На диаграмме можно увидеть точки излома, типичные для гидротрансформатора, возникающие вследствие мультипликации крутящего момента. Максимальную скорость в каждом случае для данной передачи можно определить по точкам пересечения линий тягового усилия с линиями сопротивления движению.
В следующей статье я расскажу об образовании смеси в бензиновых двигателях.
press.ocenin.ru
Динамика автомобиля — это показатель, за которым гоняются многие любители эффектно стартовать со светофора и ценители драйва. У всех машин динамика разная, и влияет она не только на степень удовольствия от вождения, но, к сожалению, и на стоимость автомобиля. Давайте разберемся, что же это за показатель? Не будем сильно углубляться в теорию. В жизни, динамика разгона — это эксплуатационная характеристика, указанная в техпаспорте.
Динамика автомобиля определяется очень просто — это время, которое понадобится ему, чтобы с места достичь скорости 100 км/ч. У крупных производителей есть полигоны, где проводятся испытания новых машин и систем и, конечно, специальные трассы, где и определяют этот параметр.
Но здесь есть одна особенность: измерения проводятся в идеальных погодных условиях без ветра, на сухом и гладком асфальте и только с одним водителем, т.е. без груза. А какие сегодня показатели динамики у разных классов? Ведь они точно отличаются.
Бюджетные машины с двигателем 1,2 и 1,5 литра — это все-таки городские тихони, они разгоняются до сотни за 9-12 секунд. А вот машина подороже и помощнее — от 150 до 200 лошадиных сил, — это уже 7-9 секунд. Ну а 3-5 секунд — это спорткары или заряженные автомобили. Причем независимо от класса это может быть и легковушка, и внедорожник.
Так, от чего же зависит динамика? Может от навороченности мотора и вида топлива? Современные бензиновые и дизельные двигатели по показателям примерно одинаковые. Всё будет зависеть от мощности и наличия турбины или компрессора для нагнетания воздуха. Ну, а чем больше возможности двигателя, тем он дороже и время разгона меньше. Отсюда и выходит, что за каждую секунду приходится платить, и не мало.
А какой вариант коробки передач эффективнее? Ведь всегда считалось, что человек действует быстрее, а значит механика предпочтительнее? Не всё так однозначно. Современные автоматические коробки настолько совершенны, что именно они, а не механические коробки, дают возможность полностью раскрыть потенциал двигателя. Но это относится только к полноценным АКПП, вариаторы и роботы здесь точно не игроки.
Ну, а теперь о динамичном стиле езды. Он пришел к нам из автоспорта. Это не только резкий старт, но и быстрое ускорение во время движения. Но надо учитывать, что в таком режиме максимальные нагрузки испытывает весь автомобиль, в т.ч. двигатель и трансмиссия, сильно увеличивается расход топлива и изнашивается резина.
Резкий старт и ускорение в повседневных ситуациях, как правило, не нужны, да и невозможны. Это как с резвым, породистым скакуном, который раскрывается только на ипподроме, в городе ему делать нечего.
ПОХОЖИЕ СТАТЬИ:Вы можете пропустить чтение записи и оставить комментарий. Размещение ссылок запрещено.
drivee.ru
Давайте разберемся, каким образом определяется динамика автомобиля, как она связана со стоимостью, безопасностью и расходом топлива, и какие варианты двигателя динамичнее остальных?
Представляя автомобиль, производители показывают практически все его характеристики, в том числе и динамику. Но мы почему-то не всегда обращаем на неё внимание, а ведь показатель этот не менее важный, чем расход топлива.
Динамику определяют во время испытаний на динаметрической трассе, когда автомобиль несколько раз проезжает дистанцию с замером времени разгона до 100 км/ч сначала в одну сторону, затем в другую. Показатель динамики зависит и от класса, и от мощности двигателя, и от типа трансмиссии.
Сначала о двигателях. Чем больше лошадиных сил, тем выше у него крутящий момент, а значит и показатель динамики. А вот тип: бензиновый или дизельный двигатель значений не имеет. Важна и трансмиссия. Раньше считалось, что ручной вариант быстрее. Но сегодня связка: коробка, компьютер, двигатель опережает реакцию человека.
Динамичнее всего в обычной жизни заряженные версии, машины бизнес-класса и люксовые внедорожники с двигателями мощностью от 250 л.с. и больше с разгоном от 4 до 7 секунд. Для обычных легковушек этот показатель составляет 9-11 секунд, чего в городе вполне достаточно для среднестатистического движения.
Минивэни и покорители бездорожья, внедорожники, хоть и обладают мощными моторами, но разгон у них, скажем так, спокойный – в диапазоне 11-13 секунд. Это и понятно, ведь все-таки они предназначены для спокойной степенной езды или преодоления препятствий, где динамика совершенно не нужна.
А как обстоят дела с обслуживанием таких авто? Есть ли отличия по стоимости? Конечно, у машин помощнее обслуживание будет подороже. Это связано с более сложной конструкцией мотора. У них усиленная подвеска, коробка, более мощные тормоза и даже другая резина, да и масло им требуется более совершенное, а значит и дорогое.
Кстати, ТО на таких автомобилях тоже нужно проводить чаще. Всё это удовольствие обходится в копеечку. Расход топлива при динамичном режиме значительно увеличивается и может превышать средний более чем в 2 раза, причем производители это почему-то не указывают.
Связана динамика, как не странно, и с безопасностью. В первую очередь, она нужна чтобы завершить маневр. Требуется это, правда, не часто, но такая возможность поможет избежать аварии.
Сегодня производители предоставляют нам широкий выбор. Одна и та же модель может быть представлена с разными моторами попроще или помощнее. Самое главное, подобрать его под свой стиль вождения. Кому-то важнее выиграть несколько дорогих секунд, а кому-то спокойная безопасная езда.
avtomobilprost.ru
раздел теории машин и механизмов, в котором изучается движение механизмов и машин с учётом действующих на них сил. Д. м. и м. решает следующие основные задачи: установление законов движения звеньев механизмов, регулирование движения звеньев, нахождение потерь на трение, определение реакций в кинематических парах, уравновешивание машин и механизмов.
Определение законов движения звеньев механизма по заданным характеристикам внешних сил решают с помощью дифференциальных уравнений движения механической системы или машинного агрегата, состоящего обычно из двигателя, передаточного механизма, рабочей машины и иногда управляющего устройства. Число уравнений равняется числу степеней свободы этой механической системы. В плоских механизмах с одной степенью свободы для удобства решения задачи все силы и массы приводят к одному звену или точке механизма, которые называются звеном приведения или точкой приведения. Условный момент, приложенный к звену приведения, называется моментом приведения. Момент приведения равен совокупности всех моментов и сил, приложенных к звеньям механизма. Условный момент инерции звена приведения называется приведённым моментом инерции. Кинетическая энергия звена приведения равна сумме кинетических энергий всех звеньев механизма. Аналогично определяют приведённые силу и массу в точке приведения (рис., а):
где Мп — приведённый момент; Jп — приведённый момент инерции; Рп — приведённая сила; mп — приведённая масса; M1, M2, P2, P3 — моменты и силы, приложенные к звеньям механизма; ω1, ω2 — угловые скорости звеньев; υB, υC — скорости точек В и С механизма; υS2 — скорость центра тяжести звена 2; υK — скорость точки К приложения силы P2; α2 — угол между векторами P2 и υK; α3 — угол между векторами P3 и υC. Уравнение движения для данного случая:
т. е, Мп в общем случае зависит от времени, положения, скорости.
Уравнения движения обычно являются нелинейными. Методов точного решения их не существует, поэтому пользуются приближёнными графическими, графо-аналитическими и численными методами интегрирования. Установить закон движения механической системы сложнее, если учитывать трение и зазоры в кинематических парах, упругость и переменность масс звеньев. Иногда, например при изучении быстротекущих процессов в машинах, некоторые внешние силы нельзя считать заданными, т.к. движение механизма может оказать обратное воздействие на характеристику этих сил. Например, в некоторых режимах с большими ускорениями нельзя принимать механическую характеристику электродвигателя как заданную зависимость момента на валу двигателя от угловой скорости, т.к. на этот момент существенное влияние могут оказать электромагнитные процессы в электродвигателе. В этом случае к дифференциальным уравнениям движения механической системы добавляют дифференциальное уравнение электромагнитных процессов в электродвигателе и решают их совместно.
Вопросы регулирования движения машинного агрегата и управления им рассматриваются в теории регулирования. Различают неустановившийся, переходный и установившийся режимы движения. При установившемся режиме скорости точек механизма являются периодическими функциями времени или положения или остаются постоянными. Регулирование установившегося движения сводится к обеспечению угловой скорости звена приведения, не превышающей допустимого отклонения от её значения. Для этого рассчитывают и устанавливают на машину специальную массу — Маховик. Необходимость регулирования неустановившегося движения возникает в том случае, когда, несмотря на непериодическое изменение внешних сил или масс, в механизме требуется поддерживать среднюю скорость звена приведения постоянной. Для этого на машину устанавливают специальные автоматические регуляторы. Основной задачей при этом является определение устойчивости движения системы машина — регулятор. Если же скорость какого-либо звена (или др. параметра) нужно изменять по заданному закону (программе), то в машину встраивают программное устройство. Примером может служить программное управление металлорежущими станками. Конкретная задача, рассматриваемая теорией регулирования, — отыскание оптимальных режимов движения машин (оптимальное управление). Например, определение движения с наибыстрейшим переходным режимом при ограниченном ускорении, т. е. оптимального по быстродействию, или движения с минимумом затрачиваемой в переходном режиме энергии, т. е. оптимального по потерям.Нахождение непроизводительных потерь в машинах сводится к определению потерь на трение, которые являются основными и влияют на эффективность работы машин и механизмов. Степень использования энергии в машине оценивается механическим кпд.
Кинетостатический расчёт механизмов, выполняемый при известном законе движения механизма, производится определением реакций в кинематических парах от всех заданных внешних сил, а также сил инерции звеньев и сил трения в кинематических парах. Значения этих реакций входят в расчёты звеньев на прочность и необходимы для подбора подшипников и расчёта их смазки.
Уравновешивание машин и механизмов осуществляется рациональным подбором и размещением Противовесов, снижающих динамические давления в кинематических парах механизмов. На практике осуществляют уравновешиванием машины на фундаменте (предотвращение вибраций (См. Вибрация)) или уравновешиванием вращающихся масс — балансировкой (См. Балансировка). Инерционные силы в современных быстроходных машинах достигают больших значений. Переменные по величине и направлению силы инерции нарушают нормальную работу узлов машины, являются источником вибраций и шума, которые вредно воздействуют на обслуживающий персонал и нарушают нормальную работу др. механизмов и приборов. В вибрационных машинах (См. Вибрационная машина) рассчитывают условия создания интенсивных колебаний их исполнительных органов. Динамические исследования в машинах непосредственно связаны с расчётами на прочность и жёсткость элементов машин, которые проводятся с целью выбора размеров и конструктивных форм деталей. Методы таких расчётов обычно излагаются в учебных дисциплинах: сопротивление материалов, динамика сооружений, детали машин.Динамические исследования проводят также для пространственных механизмов со многими степенями свободы. Системы подобного типа обладают большой универсальностью выполняемых операций.
Лит.: Кожешник Я., Динамика машин, пер. с чешск., М., 1961; Зиновьев В. А., Бессонов А. П., Основы динамики машинных агрегатов, М., 1964; Артоболевский И. И., Теория механизмов, 2 изд., М., 1967; Кожевников С. Н., Теория механизмов и машин, 3 изд., М., 1969.
И. И. Артоболевский, А. П. Бессонов.
Действие сил и моментов кривошипно-ползунного механизма (а) в звене приведения (б) и в точке приведения (в): 1 — кривошип; 2 — шатун: 3 — ползун; М — приведённый момент МП; А — неподвижная опора.
dic.academic.ru
Вы смотрите на технические характеристики автомобиля перед покупкой? На что вы в первую очередь обращаете внимание? Конечно, большинство из нас после стоимости авто интересует динамика разгона машины и ее расход топлива. Но задумывались ли вы, как происходят замеры динамики автомобиля при разгоне с 0 до 100 км/ч? Как вы считаете, реальны ли цифры, указанные в технической спецификации на автомобиль? Давайте разбираться.
Каждый автопроизводитель, перед тем как запустить автомобиль в серию, проводит множество различных тестов, с помощью которых проверяет его на надежность, качество и безопасность. В случае выявления каких-то проблем инженеры вносят изменения в устройство машины. Далее перед самым серийным производством автомобили проходят тестирование для составления технических характеристик. Наибольший интерес, конечно, представляют тесты, которые замеряют расход топлива того или иного автомобиля в городском режиме и при движении по шоссе.
Затем производитель вычисляет средний расход топлива. Также для полных данных технической спецификации каждый автомобиль проходит тесты, определяющие динамику машины при разгоне с 0-100 км/час. В некоторых случаях, например для спорткаров, автомобили проходят тесты на скорости 0-200 км/час и даже 0-300 км/час.
Как правило, динамику разгона в большинстве случаев определяет автопроизводитель во время специальных тестов. Обычно испытание на скорость разгона проходит на специальной динаметрической автодороге. Во время этого испытания тестируемый автомобиль проезжает определенную дистанцию, разгоняясь до 100 км/час. Сначала движение осуществляется в одну сторону, затем в другую.
Естественно, показатель динамики разгона зависит и от класса автомобиля, и от мощности двигателя. Не последнюю роль играет и тип коробки передач, которая передает крутящий момент на колеса. Также на скорость разгона автомобиля влияют аэродинамические характеристики кузова.
Итак, мощность двигателя в первую очередь влияет на максимальный крутящий момент (сила). И, как правило, чем больше мощность мотора, тем выше в нем крутящий момент. Таким образом, автомобили с более мощными двигателями более динамичные.
Кстати, тип двигателя не влияет обычно на динамику разгона. То есть неважно, какой двигатель стоит под капотом вашего авто – дизель или бензин. Если мотор имеет большую мощность, то автомобиль будет более динамичным.
Что касаемо коробки передач, то раньше считалось, что механическая коробка передач быстрее автоматической передает крутящий момент от двигателя на колеса. Соответственно, раньше автомобили с МКПП разгонялись быстрее с 0-100 км/час.
Сегодня утверждать это нельзя. Дело в том, что современные автоматические или полуавтоматические трансмиссии – сложные электронные устройства, управляющиеся компьютером, который по реакции значительно опережает реакцию даже профессионального водителя. То есть современные АКПП быстрее переключают передачи, чем человек. Следовательно, многие новые автоматические трансмиссии опережают переключение передач в механических коробках.
Самыми быстрыми по разгону автомобилями, как правило, являются спорткары и различные люксовые седаны и внедорожники, которые зачастую комплектуются новейшими мощными моторами и сложными коробками передач. В основном в таких автомобилях мощность двигателей начинается от 200 л. с.
Особый класс автомобилей с мощными двигателями начинается с мощности 250 л. с. Правда, автомобили с такой мощностью подлежат немаленькому налогообложению. Например, ставка транспортного налога на автомобили мощностью более 250 л. с. самая высокая в стране. Но, как правило, тех, кто может себе позволить купить автомобиль мощностью 250 л. с., не особо волнует ставка транспортного налога. Ведь купить мощный люксовый автомобиль могут сегодня только состоятельные водители.
В большинстве своем автомобили мощностью более 250 л. с. имеют динамику разгона с 0-100 км/час в среднем от 4 до 7 секунд. Автомобили, которые разгоняются быстрее 4 секунд, имеют очень большую мощность и стоят огромных денег. В этом диапазоне разгона представлены в основном одни премиальные спорткары.
Что касаемо динамики разгона обычных автомобилей, которые массово используются большинством автолюбителей, то в среднем такие автомобили разгоняются с места до 100 км/час примерно от 9 до 11 секунд. В секундах это небольшая разница, если сравнивать с более дорогими премиальными автомобилями. Но на дороге это огромная разница. Хотя для среднестатистического движения в городе динамики разгона в 10 секунд вполне достаточно. Больше и не нужно.
А как насчет минивэнов и внедорожников? Какой разгон у этого типа автомобилей? Большинство внедорожников и минивэнов не отличаются какой-то особо быстрой динамикой. В целом у реальных недорогих внедорожников и минивэнов разгон достаточно спокойный. Средний диапазон разгона до «сотни» – 11-13 секунд. Но этому классу автомобилей этого вполне достаточно, поскольку они предназначены для неторопливой езды в городе. Для внедорожников важна не динамика разгона, а возможности на бездорожье, по которому зачастую нужно передвигаться на небольшой скорости.
Да, это действительно так. Большинство мощных машин обходятся владельцам намного дороже, чем менее мощные авто. Все дело в том, что более мощные автомобили оснащаются более сложными по конструкции двигателями. Также более мощные машины оснащаются более сложной тормозной системой, усиленной подвеской, более дорогими колесными дисками и резиной.
И самое важное, что большинству мощных автомобилей требуется более совершенное, дорогое моторное масло. А самое плохое то, что на более дорогих мощных автомобилях техническое обслуживание рекомендуется проходить чаще, чем на обычных современных авто.
Как правило, в основное время мы не вжимаем педаль газа в пол, для того чтобы тронуться с места со светофора. Но если вам необходимо разогнаться с места за минимальное количество времени, то необходимо с большей силой надавить на педаль газа. В этом случае машина начнет разгоняться динамичнее. Но, как говорится, в жизни за все нужно платить. Помните, что при максимально возможной для вашей машины динамике разгона вы расплатитесь рублем. Нет-нет, мы не о штрафах за превышение скорости. Речь идет о расходе топлива, который вырастает чуть ли не в 2 раза при быстром разгоне с места.
Самое интересное, что производители в своих технических характеристиках стараются не указывать расход топлива при динамичном разгоне автомобиля с 0-100 км/ч, скрывая этот показатель своими обычными спецификациями потребления топлива в городе, на шоссе и в смешанном цикле.
Как ни странно, динамика разгона автомобиля напрямую влияет на безопасность. Знаете, почему? Все дело в том, что очень часто на дороге происходят аварии по причине того, что какой-то автомобиль не успел завершить маневр. Но почему многие водители не успевают завершить маневр на дороге? Например, обгон. Как раз причина – в динамике разгона машины. Просто многие водители в момент начала обгона часто ошибочно полагают, что успеют его завершить, но в итоге их самоуверенность играет с ними злую шутку.
Да, быстрая динамика разгона в современном мире требуется не часто. Особенно в городе. Но чем мощнее и динамичнее автомобиль, тем меньше рисков аварии из-за маневров на дороге. Особенно при обгоне.
Кстати, в современном мире большинство автопроизводителей предлагают нам более широкий выбор автомобилей. Сегодня вы можете выбрать одну и ту же модель, но с разными моторами. Естественно, чем меньше мощность мотора, тем дешевле будет стоить машина. То есть в наши дни производители предлагают нам одинаковые модели под разный размер кошелька и разные предпочтения автолюбителей.
Так что при покупке автомобиля думайте, что вам важнее: экономичность или мощность. Ведь чем меньше мощность машины, тем меньше она будет расходовать топлива. Но за это вы расплатитесь динамикой разгона. Советуем вам при выборе автомобиля учитывать свой стиль вождения. Если вы предпочитаете более динамичный стиль управления транспортным средством, то советуем брать машину помощней. Если для вас неважна динамика разгона с 0 до 100 км/час и для вас самый важный показатель авто – это потребление топлива, то тогда покупайте автомобиль с немощным мотором. Он не только обойдется вам дешевле, но и сэкономит деньги при обслуживании и при заправке на АЗС.
www.1gai.ru
Тяговая динамика автомобиля имеет важнейшее значение для повышения его производительности и снижения затрат на перевозки. Чем более динамичен автомобиль, тем быстрее он перевозит пассажиров и грузы, тем выше его средняя скорость. Условия движения автомобиля непрерывно меняются, что приводит к изменению его скорости. Для обеспечения безопасности необходимо, чтобы скорость движения в любой момент времени соответствовала дорожным условиям и психофизиологическим возможностям водителя.
Во время дорожного движения происходят события, нарушающие это соответствие и влекущие за собой отрицательные последствия. Тяжесть этих последствий, как правило, возрастает с увеличением скорости. Таким образом, для дорожного движения характерно наличие двух тенденций. С одной стороны, желательно увеличить скорость транспортного потока, так как это сокращает время доставки грузов и пассажиров, повышает производительность подвижного состава, с другой стороны — с ростом скорости движения увеличивается вероятность возникновения ДТП и тяжесть их последствий. Поэтому повышение скорости автомобилей возможно лишь при одновременном обеспечении безопасности их движения.
Показателями тяговой динамики автомобиля являются максимальные скорость и ускорение, минимальные время и путь разгона.
Повышение этих показателей должно сопровождаться повышением конструктивной безопасности автомобиля, улучшением дорожных условий и организации движения.
При движении автомобиля в транспортном потоке часто происходит обгон попутных автомобилей. Обгон является одним из самых сложных и опасных маневров, так как связан с выездом на полосу встречного движения и требует наличия свободного пространства перед обгоняющим автомобилем. Во время совершения обгона происходит значительное количество ДТП, тяжесть которых возрастает с увеличением скорости транспортного потока.
Маневр обгона можно условно разделить на три фазы: отклонение обгоняющего автомобиля влево и выезд на полосу встречного движения; движение по этой полосе параллельно с обгоняемым автомобилем и его опережение; возвращение на свою полосу движения.
Для простоты расчетов время, затраченное на переход обгоняющего автомобиля с одной полосы движения на другую, не учитывают, так как оно мало по сравнению с общим временем обгона.
В зависимости от дорожных условий и интенсивности движения обгон может совершаться либо с постоянной скоростью, либо с ускорением.
При обгоне с постоянной скоростью:
из схемы, путь обгона будет составлять: So6. =D1+L2+S2+D2+L1 или So6. =S1=V1* tоб
где Di и D2 — дистанции безопасности между обгоняемым и обгоняющим автомобилями в начале и в конце обгона, м; L1 и L2 — габаритные длины обгоняемого и обгоняющего автомобилей, м; S2 — путь обгоняемого автомобиля за время обгона, м.
Приравняв выражения для определения пути обгона, с учетом того, что путь обгоняемого автомобиля равен S2 = V2 * to6, получим: D1+L2+V2*to6 +D2+L1=V1*to6
Отсюда время обгона
Тогда путь обгона
studfiles.net
Тяговые свойства автомобиля — совокупность свойств, определяющих возможные по характеристикам двигателя или сцепления ведущих колес с дорогой, диапазоны изменения скоростей движения и предельные интенсивности разгона автомобиля при его работе на тяговом режиме в различных дорожных условиях.
Тяговым режимом считается режим работы двигателя, при котором от двигателя к ведущим колесам подводится мощность, достаточная для преодоления сопротивления движению.
Чем тяжелее дорожные условия, тем меньше диапазон возможных скоростей и меньше возможность ускорения. В некоторых условиях, называемых предельными, диапазон скоростей снижается до одного значения. При более тяжелых условиях движение невозможно.
Динамичность — свойство автомобиля перевозить грузы и пассажиров с максимально возможной средней скоростью. Чем выше динамичность автомобиля, тем больше его производительность. Динамичность автомобиля во многом зависит от его тяговых и тормозных свойств.
Топливная экономичность — свойство автомобиля рационально использовать энергию топлива при выполнении единицы транспортной работы.
Снижение расходов топлива транспортными средствами является важнейшей задачей. От того, насколько экономичен автомобиль, зависит себестоимость автоперевозок.
Управляемость — способность автомобиля сохранять заданное направление движения или изменять его при воздействии водителя на рулевое управление автомобиля.
Управляемость заивисит от конструкции автомобиля, технического состояния рулевого управления, подвески и шин, а также условий окружающей среды.
Устойчивость — свойство автомобиля сохранять направление движения и противодействовать силам, стремящимся увести в сторону или опрокинуть автомобиль.
Управляемость и устойчивость тесно связаны друг с другом.
Устойчивость вместе с управляемостью и тормозной динамичностью автомобиля обусловливают безопасность движения.
Проходимость — свойство автомобиля свободно двигаться по плохим (разбитым, размокшим) дорогам и пересеченной местности, преодолевая естественные и искусственные препятствия (канавы, рвы, пороги) без вспомогательных устройств и посторонней помощи.
Проходимость является одним из основных эксплуатационных свойств, определяющих эффективность использования данного транспортного средства. Этим качеством должны обладать автомобили всех типов, но в зависимости от их назначения — в различной степени.
Автомобили обычной проходимости предназначены для движения по шоссейным и грунтовым дорогам. К ним относятся автомобили обшетранспортного назначения колесной формулой 4×2 или 6×4 с обычными тороидными или низкопрофильными шинами и не блокируемыми дифференциалами.
К автомобилям повышенной проходимости относятся автомобили колесной формулой 4×4, 6×4, 6×6 и т. д. с широкопрофильными шинами, шинами регулируемого давления воздуха, с частично или полностью блокируемыми дифференциалами.
К автомобилям высокой проходимости относятся полноприводные автомобили с шинами сверхнизкого давления, арочными шинами или пневмокатками Эти автомобили могут быть плавающими и работать в особо тяжелых климатических условиях, например на севере.
Плавность хода — свойство автомобиля двигаться по дорогам и местности с заданными скоростями без толчков и колебаний кузова, которые могут нарушить нормальную работу механизмов автомобиля, оказывать вредное влияние на водителя и пассажиров.
Выступы и впадины от 100 м до 10 см называют микропрофилем дороги, который является основной причиной колебаний автомобиля на подвеске.
Мелкие неровности дорожной поверхности менее 10 см называются шероховатостью. Они могут создать высокочастотные вибрации отдельных элементов шасси и кузова автомобиля и высокий уровень шума как внутри кузова, так и вокруг машины.
Надежность — свойство автомобиля безотказно перевозить грузы и пассажиров в течение определенного срока и без ухудшения основных эксплуатационных показателей автотранспортного средства.
Надежность — это совокупность свойств, которая может включать в себя безотказность, долговечность и ремонтопригодность объекта.
Безотказность — свойство автомобиля (двигателя) сохранять работоспособность в течение определенного интервала времени или пробега определенной величины.
Долговечность — свойство автомобиля сохранять работоспособность до определенного времени, когда установлено проведение технического обслуживания и ремонта автотранспортного средства.
Ремонтопригодность — приспособленность автомобиля к предупреждению, обнаружению и устранению неисправностей и отказов.
ustroistvo-avtomobilya.ru