Ремонт и обслуживание АКПП
Прежде чем начинать ремонт АКПП транспортного средства Шевроле, посмотрите, какая коробка на нем стоит.
Масло для АКПП
Продлить ресурс агрегата можно регулярным техобслуживанием, в которое входит замена масла в АКПП. Необслуживаемые
Все про автоматическую коробку передач
Фильтр АКПП является главным комплектующим в жизни автомата. Не было бы его, то автовладельцу
Масло для АКПП
Однажды меня попросили сделать замену масла в АКПП автомобиля Хонда Аккорд 7. Серьезных сложностей
Масло для АКПП
Поговорим о замене масла в АКПП автомобиля Шкода Октавия. На этот автомобиль устанавливается коробка,
Определение типа АКПП
Квалифицированному специалисту по силовым агрегатам не составит труда определить тип АКПП, однако, бывают ситуации,
Все про автоматическую коробку передач
Как ездить на автомате, чтобы избежать поломок и продлить ресурс агрегата? Вы покупаете машину
Ремонт и обслуживание АКПП
На первый ремонт АКПП Тойота может попасть после 300 000 км, при условии регулярного
Масло для АКПП
Продлить ресурс агрегата можно регулярным техобслуживанием, в которое входит замена масла в АКПП. Необслуживаемые
Все про автоматическую коробку передач
Шкода Рапид с автоматической коробкой сочетает в себе европейское качество исполнения с бюджетно-адаптированной ценой.
Все про автоматическую коробку передач
Недавно друг задал мне вопрос, в чем причина поломки, когда коробка автомат не переключает
Масло для АКПП
Принцип работы АКПП и гидроусилителя руля основан на работе жидкостей, таких как ATF Dexron
Масло для АКПП
Сегодня речь пойдет о замене масла в АКПП транспортного средства Санг Енг Актион. Эти
Масло для АКПП
Привезли ко мне на днях Инфинити FX 35 со словами: «А как сделать замену
Все про автоматическую коробку передач
Разговоры о том, что лучше типтроник или автомат, не утихают уже многие годы. Чтобы
Ремонт и обслуживание АКПП
Ремонт АКПП своими руками подарит много сюрпризов владельцу машины. Кроме впечатлений от одарённости конструкторов,
Все про автоматическую коробку передач
Автомат или механика — что лучше выбрать, покупая автомобиль? Обсуждение этой темы продолжается с
Ремонт и обслуживание АКПП
Ремонт АКПП Ситроен С4 эксперты не рекомендуют откладывать на завтрашний день. Так как приГидротрансформатор по своему принципу работы представляет собой асинхронную машину, то есть его работа – передача крутящего момента — возможна только при относительном скольжении его лопастных колес. В лучшем случае это скольжение достигает 5-10% и больше у легковых автомобилей и доходит до 2-4% у тяжелых автомобилей. Это значит, что при частоте вращения двигателя, например, 2000 об/мин турбинное колесо будет отставать от двигателя на 100-200 об/мин. Это приводит к увеличению расхода топлива по сравнению с обычным сцеплением на 3-5%.
Для устранения этого недостатка в него встраивается дополнительное сцепление блокировки, которое связывает вал турбинного колеса (входной вал коробки передач) с двигателем, минуя гидравлическую часть.
Сцепление блокировки включается по команде с гидравлической системы управления.
Для большей экономии топлива на современных автомобилях стремятся включать блокировку гидротрансформатора как можно раньше, на частоте вращения 1200-1500 об/мин, но на такой частоте высока вероятность вибрации из-за неравномерной работы двигателя. Поэтому включение происходит не полностью, а частично, и вибрации гасятся гидравлической связью между его колесами, а крутящий момент передается двумя потоками частично через сцепление, а частично через колеса гидротрансформатора. По мере увеличения частоты вращения двигателя доля крутящего момента, передаваемая сцеплением, увеличивается, и доходит до 100% примерно при 1800- 2000 об/мин, когда неравномерность вращения двигателя практически отсутствует. Данный режим работы называется скользящая или частичная блокировка.
Конструкция сцеплений
Наиболее распространенной является конструкция, приведенная на рисунке выше. Она представляет собой сцепление с одной поверхностью трения, при этом фрикционная накладка может быть наклеена как на поверхность поршня, так и на поверхность крышки ГТ. Жидкость под давлением, подаваемая в полость между поршнем и крышкой, отжимает поршень, далее попадает в полость колес и отводится на охлаждение по кольцевому зазору между валами. Для включения блокировки гидравлическая система меняет каналы местами – полость между крышкой и поршнем соединяется со сливом, а в полость между колесами подается жидкость под давлением, прижимая поршень к крышке. Величина давления жидкости определяет величину крутящего момента, передаваемого сцеплением блокировки.
Конструкция сцепления блокировки Мерседес 722.6.
Мерседес применяет в своих коробках многодисковую муфту с 3-х канальным управлением. Два канала используются для организации циркуляции жидкости в рабочих полостях, а третий канал – для включения сцепления блокировки.
Аналогичная конструкция применяется и в 5 и 7-ступенчатых коробках JATCO, причем у обоих производителей даже размерности дисков одинаковы.
Фирма ZF применила в этой серии коробок конструкцию с предварительно поджатым сцеплением. Это обеспечивает уменьшение времени задержки включения сцепления, но при этом сильно усложняет его устройство.
Поджатие осуществляется тарельчатой пружиной, расположенной между диском ступицы поршня и прижимающей его к дискам сцепления.У нового гидротрансформатора эта пружина обеспечивает момент срыва сцепления в диапазоне 8-12 н*м, допустимый разброс от 4 до 20 н*м. В дальнейших коробках семейства 8HP ZF отказался от такой конструкции.
Неисправность гидротрансформатора АКПП связана с системой сцепления блокировки. Основные проблемы, которые могут возникнуть.
С этого поршня фрикционная накладка сошла полностью
При возникновении одного из признаков неисправности гидротрансформатора АКПП необходимо сначала проверить гидравлическую систему управления, а при отсутствии дефектов в ней снимать коробку передач и производить работы по его ремонту.
Центр АТ МАИ производит ремонт гидротрансформаторов любой сложности в течение 1-2 дней, включая замену дисков или накладок сцепления блокировки.
Идея внедрения гидродинамической передачи крутящего момента изначально принадлежит военным. Конструкторы искали способ повысить проходимость автомобилей путем уменьшения риска срыва верхнего слоя грунта. Осуществить эту цель помог гидродинамический трансформатор, который за счет проскальзывания насосного и турбинного колес позволял плавно передать крутящий момент на ведущие колеса. Давайте рассмотрим устройство, принцип работы и неисправности гидротрансформатора автоматической коробки передач (АКПП).
На маховик гидротрансформатора напрессован зубчатый венец. С его помощью стартер вращает коленчатый вал при запуске двигателя.
Назначение гидротрансформатора АКПП – передавать крутящий момент и при необходимости отсоединять коленчатый вал от первичного вала коробки передач. В насосное колесо от масляного насоса подается рабочая жидкость (ATF), которая при его вращении центробежной силой выталкивается от центра к краям. Лопастные колеса гидропередачи образуют в плоскости оси вращения круг циркуляции жидкости АТФ. Созданный вихревой поток посредством лопастей воздействует на реактор, перенаправляющий поток жидкости к турбинной части.
Воздействие рабочей жидкости на лопасти турбинного колеса заставляет его вращаться, передавая крутящий момент на выходной вал КПП. Прошедшая через турбинную часть жидкость возвращается на реактор, увеличивая общее давление жидкости на его лопасти. Таким образом, внутри гидротрансформатора до момента уравнения скорости вращения насосной и реакторной частей устанавливается циркуляция масла.
Из-за потерь энергии в жидкости в режиме проскальзывания скорость вращения турбины будет ниже частоты вращения насоса. На практике это приводит к значительной потере КПД. Для увеличения коэффициента полезного действия в конструкцию всех современных автоматических коробок передач внедрена муфта блокировки гидротрансформатора.
Муфта блокировки установлена на шлицах входного вала АКПП и предназначена для механического соединения насосной части и ротора.
Составные части муфты блокировки:
Работа системы невозможна без клапана муфты гидротрансформатора и блока управления АКПП, который считывает показания датчиков и управляет исполнительными механизмами.
Регулирует режимы работы электромагнитный клапан гидротрансформатора, а точнее, мехатроник, который управляет питающим напряжением на клапане. Изменение силы тока на клапане регулирует распределение жидкости между каналами и силу нажима поршня блокировки. В выборе режима блокировки ЭБУ ориентируется на следующие входные параметры:
Новости
[13.10.2021] График работы на День украинского казачества: 14-15 октября — рабочие дни.
[26.08.2021] ВНИМАНИЕ! C 26.08.2021 заказы общей стоимость до 10$ больше нельзя оформить в нашем интернет-магазине.
[11.08.2021] График работы на День Независимости: 24 августа (вторник) — выходной день.
[29.07.2021] ВНИМАНИЕ! Отделение Новой Почты №46 — временно не работает, посылки отправляйте на НП №20.
[23.06.2021] График работы на День Конституции: 28 июня (понедельник) — рабочий день.
[15.06.2021] График работы на праздник Троицы: 21 июня (понедельник) — рабочий день.
[16.04.2021] График работы на 1 мая: 1-3 мая — выходные дни.
[26.02.2021] График работы на 8 марта: 8 марта — выходной день.
[15.12.2020] График работы на Новый Год: 31 декабря — 3 января — выходные дни. 6-7 января — выходные дни.
[18.08.2020] График работы на День Независимости: 24 августа — выходной день.
[03.07.2020] График работы на Ивана Купала: 6, 7 и 8 июля — рабочие дни.
[27.04.2020] График работы на майские праздники: 1, 2 и 3 мая — выходные дни; 8, 9 и 11 мая — рабочие дни.
[10.04.2020] График работы на Пасху: 20.04.2020 (понедельник) — выходной день.
[04.03.2020] График работы на 8 марта: 09.03.2020 (понедельник) — выходной день.
[03.01.2020] 11.01.2020 — рабочий день, СТО и интернет-магазин работают в обычном режиме.
[02.01.2020] С 01.03.2020 на заказы оформляемые по телефону (с помощью менеджера) скидка НЕ РАСПРОСТРАНЯЕТСЯ.
[27.12.2019] ВАЖНО! С 01.01.2020 станет НЕВОЗМОЖНЫМ оформление заказа в офисах компании «Мактранс». Вы можете самостоятельно оформить заказ на сайте, либо же позвонив в отдел продаж.
Читать все новости
[11.12.2019] График работы на Новый Год: 29 декабря — 1 января — выходные дни. С 2 января СТО и магазин работают в обычном режиме.
[07.10.2019] График работы на День защитника Украины: 14 октября — рабочий день.
[22.08.2019] График работы на День Независимости Украины: 24 августа — выходной, 26 августа — рабочий день.
[19.07.2019] В связи с увеличенной загрузкой склада возможна задержка отправок на 1 рабочий день.
[25.06.2019] График работы на День Конституции: 28 и 29 июня — работает только СТО, 30 июня — выходной.
[31.05.2019] График работы на Троицу: 15 июня — работает только СТО, 17 июня — интернет-магазин и СТО работают в обычном режиме.
[17.04.2019] Если вы приобрели ремонтный комплект аккумулятора 0AM после 01.09.2018 — у вас есть возможность бесплатно заменить стальной стакан на новую усиленную версию. Обращайтесь в отдел продаж.
[15.04.2019] График работы на Пасху и майские праздники: 27, 28, 29, 30 апреля и 1 мая — выходные дни. 9 мая — рабочий день.
[05.03.2019] График работы на 8 и 9 марта: СТО и интернет-магазин работают в обычном режиме. В субботу (9 марта) — работает только СТО.
[25.02.2019] ВНИМАНИЕ! Гидроблоки и корпуса в ремонт отправлять по новому адресу: г. Киев, Новая Почта №225 — получатель Рабизо Дмитрий тел. +380505272236
[23.01.2019] С 24.01.2019 цена на фрикционные и стальные диски Lintex увеличится на 20%
[17.12.2018] График работы на новогодние праздники — 24-25 декабря выходные, 29 декабря — рабочий день, 30 декабря — 1 января — выходные дни, 7 января — выходной день
[26.01.2018] Новые оригинальные соленоиды блокировки гидротрансформатора 722.6 (без оригинальной упаковки) — $50
[26.01.2018] В продаже появились НОВЫЕ комплекты шестерен переднего кардана 722.9 Mercedes W221 4-matic. Всего $807.95
[22.01.2018] Пополнение ассортимента хонинговальных щеток! Скидки 25%
[03.01.2018] Новое поступление радиаторов! Снижение цен на все модели на 10%
[22.12.2017] Выходные дни в Новогодние праздники 1, 2, 8 января 2018 года.
[13.11.2017] Снижение цены на дифференциал AW TF-80SC AW TF-81SC — всего 390$
[31.10.2017] C 01.01.2018 снижение цен на радиаторы от 5% до 10%
[14.10.2017] C 15.12.2017 снижение цены на резиновые и бумажные уплотнения от 20% до 30%
[08.09.2017] Освоена технология ремонта гидроблоков TOYOTA, LEXUS K110, K111, K114, K310, K311, K410 (CVT)
[05.09.2017] Уменьшение цены на электронную плату управления 722.6 — теперь всего 130$
[29.08.2017] Уменьшение цены на популярные фильтры на 20%.
[29.08.2017] Уменьшение цены на планетарные передачи и насосы от 20% до 30%.
[29.08.2017] С 01 октября 2017 уменьшение цены на ремонт гидротрансформаторов с фрикционными дисками от 20% до 40%.
[29.08.2017] Отправка заказов в субботу до 13:00 Новой Почтой.
[29.08.2017] Самовывоз заказов в субботу до 18:00, при условии самостоятельного заказа.
[29.08.2017] Оплата товаров и услуг платежными картами в офисе и онлайн.
[29.08.2017] Диагностика АКПП вашего автомобиля с описанием сути дефекта и стоимости работ стоит 500 грн.
Комплект бустерного клапана блокировки гидротрансформатора АКПП 01M / 01N / 01P, 119940-01K
Симптомы, возникающие при поломке клапана:
— перегрев гидротрансформатора АКПП;
— двигатель глохнет при остановке автомобиля;
— двигатель глохнет при переключении с нейтральной передачи (N) на Drive.
Причиной, возникновения неисправностей является износ между клапаном блокировки гидротрансформатора АКПП и втулкой, что препятствует возможности перемещения управляющего клапана гидротрансформатора в положение, при котором блокировка отключена.
Комплект состоит из клапана (анодированный алюминий), втулки (износостойкий алюминий), пружинки.
Все есть в инете, ты видимо искать не пробовал. Если грубо, то ГТ блокируется на высоких скоростях, когда уже нет необходимости в механическом разрыве связи между мотором и АКПП. На малых же скоростях, при остановке допустим, ГТ не может быть по определению блокирован. Если бы он был блокирован, то ты бы ахринел от того, какие Удары с большой буквы были бы при переключении передач. Это тоже самое что на МКПП торомозить двигателем и при этом переключать передачи вниз без выжима сцепления ))))))Прежде чем поумничать, не поленился бы и прочитал бы что речь идет о ЧАСТИЧНОЙ блокировке гидротрансформатора!!Написано по русский.Из этого вытекает два следствия:
1 связывать пинки при остановке с блокировкой ГТ нельзя.
2 отключать блокировку ГТ есть идея сама по себе глупая.Нажмите, чтобы раскрыть…
Изучаем мат часть :
Обычной автомат работает в двух режимах — или как гидротрансформатор (ГДТ), передавая момент через жидкость, или в режиме жесткой блокировки, когда коленвал двигателя, корпус ГДТ и входной вал коробки жестко соединены фрикционной муфтой и момент передается в автомат чисто механически, без потерь (как в традиционном сцеплении). В коробке с частичной блокировкой есть и промежуточный режим, когда с высокой частотой срабатывает клапан блокировки трансформатора, кратковременно подводя и отводя муфту к корпусу ГДТ, чтобы в момент касания передать усилие через нее. Вот практически и все. Если при этом, по какой либо причине не хватит силы трения для передачи момента через муфту, то коробка все равно будет работать — в режиме нормальной гидропередачи. Из самых неприятных последствий, которые можно ожидать — немного повышенный расход топлива и немного меньшая эффективность торможения двигателем (да и то, не обязательно).
Т.е. у современных коробок(возможно не всех) не 2 режима как ты выше написал а 3
Муфта гидротрансформатора (TCC) создает однозначное соединение между двигателем и трансмиссией, что увеличивает расход топлива и снижает температуру трансмиссионной жидкости. Проскальзывание потребляет мощность во время фазы соединения. Фиксация корпуса преобразователя на валу турбины предотвращает проскальзывание.
Муфта находится внутри картера гидротрансформатора; он содержит фрикционный материал, который фиксирует вал турбины внутри корпуса гидротрансформатора.TCM отправляет импульсный сигнал напряжения на соленоид TCC. Соленоид перемещает клапан, который отправляет жидкость под давлением в цепь сцепления, включая TCC. Когда сцепление выключено, преобразователь крутящего момента позволяет двигателю вращаться без остановки. Пока автомобиль замедляется и приближается к остановке, применение TCC нежелательно. Как и сцепление в механической коробке передач, оно заставляет автомобиль глохнуть.
Диск сцепления содержит пружину и поршни с гидравлическим управлением.Поршни приводят диск сцепления в контакт с корпусом, обеспечивая механическое соединение 1: 1. Он включается только в определенное время, в зависимости от таких условий, как скорость и температура. TCM принимает эти решения на основе входных данных от различных датчиков. Он сравнивает информацию с таблицами заводских настроек перед включением или отключением TCC.
Датчик ECT контролирует температуру охлаждающей жидкости двигателя. TCM откладывает включение TCC до тех пор, пока двигатель не достигнет заданной температуры.
Датчик MAF контролирует объем воздуха, проходящего через воздушную трубку. TCM отключает TCC во время разгона двигателя. Большинство трансмиссий отключают TCC во время замедления, чтобы предотвратить высокие выбросы.
Датчик TP показывает угол наклона дроссельной заслонки. Если водитель ускоряется до полностью открытой дроссельной заслонки, TCM отключает TCC для переключения на пониженную передачу.
TCM использует выключатель тормоза . Сигнал предназначен для отключения TCC, когда транспортное средство замедляется или останавливается.
TFT контролирует температуру трансмиссионной жидкости. TCM использует эту информацию для включения или отключения TCC в зависимости от температуры трансмиссионной жидкости.
U1000 | Не удается установить связь с TCM / Class 2 Ошибка связи |
U0101 | Нарушение связи с TCM |
U0402 | Недействительные данные, полученные от модуля управления коробкой передач |
P0218 | Превышение температуры трансмиссии |
P0700 | Система управления трансмиссией (запрос MIL) |
P0701 | Диапазон / рабочие характеристики системы управления коробкой передач |
P0702 | Электрооборудование системы управления коробкой передач |
P0703 | Цепь переключателя B крутящего момента / тормоза |
P0704 | Неисправность цепи включения выключателя сцепления |
P0705 | Неисправность цепи датчика диапазона передачи (вход PRNDL) |
P0706 | Цепь датчика диапазона трансмиссии вне диапазона рабочих характеристик |
P0707 | Низкий входной сигнал цепи датчика диапазона передачи данных |
P0708 | Высокий входной сигнал цепи датчика диапазона трансмиссии |
P0709 | Неисправность цепи датчика диапазона передачи |
P0710 | Цепь датчика температуры трансмиссионной жидкости |
P0711 | Цепь датчика температуры трансмиссионной жидкости вне диапазона / рабочих характеристик |
P0712 | Низкий входной сигнал цепи датчика температуры трансмиссионной жидкости |
P0713 | Высокий входной сигнал цепи датчика температуры трансмиссионной жидкости |
P0714 | Прерывистый сигнал цепи датчика температуры трансмиссионной жидкости P0715 |
P0715 | Цепь датчика скорости входного сигнала / турбины |
P0716 | Входной сигнал / диапазон датчика скорости вращения турбины |
P0717 | Нет сигнала входной цепи датчика скорости вращения турбины |
P0718 | Неустойчивый сигнал цепи датчика скорости входного сигнала / турбины |
P0719 | Гидротрансформатор / выключатель тормоза B — низкий уровень сигнала |
P0720 | Цепь датчика выходной скорости |
P0721 | Цепь датчика выходной скорости вне диапазона / рабочих характеристик |
P0722 | Отсутствует сигнал в цепи датчика выходной скорости вращения |
P0723 | Прерывистый сигнал цепи датчика выходной скорости |
P0724 | Гидротрансформатор / выключатель тормоза B, высокий уровень сигнала |
P0725 | Входная цепь частоты вращения двигателя |
P0726 | Диапазон / рабочие характеристики входной цепи скорости двигателя |
P0727 | Нет сигнала входной цепи скорости двигателя |
P0728 | Неустойчивый входной сигнал цепи оборотов двигателя |
P0729 | Неправильное передаточное число 6 шестерни |
P0730 | Неправильное передаточное число |
P0731 | Неправильное передаточное число 1 передачи |
P0732 | Неправильное передаточное число 2 передачи |
P0733 | Неправильное передаточное число 3 шестерни |
P0734 | Неправильное передаточное число 4 шестерни |
P0735 | Неправильное передаточное число 5 шестерни |
P0736 | Обратное неправильное передаточное число |
P0738 | TCM Выходная цепь частоты вращения двигателя |
P0739 | TCM Низкий уровень выходной цепи оборотов двигателя |
P0740 | Неисправность цепи муфты гидротрансформатора |
P0741 | Цепь сцепления гидротрансформатора |
P0742 | Цепь муфты гидротрансформатора застряла на |
P0743 | Электрическая цепь муфты гидротрансформатора |
P0744 | Неисправность цепи муфты гидротрансформатора |
P0745 | Электромагнитный клапан регулировки давления ‘A’ |
P0746 | Электромагнитный клапан управления давлением «А» работает или заедает в выключенном состоянии |
P0747 | Электромагнитный клапан управления давлением « А » застрял на |
P0748 | Электромагнитный клапан регулирования давления A, электрический |
P0749 | Электромагнитный клапан управления давлением ‘A’ Прерывистый |
P0750 | Соленоид переключения передач ‘A’ |
P0751 | Электромагнит переключения передач «А» работает или заедает в выключенном состоянии |
P0752 | Электромагнитный клапан переключения передач ‘A’ заедал на |
P0753 | Электромагнитный клапан переключения передач A, электрический |
P0754 | Электромагнитный клапан переключения передач ‘A’ Прерывистый |
P0755 | Соленоид переключения передач ‘B’ |
P0756 | Электромагнит переключения передач B работает или заедает в выключенном состоянии |
P0757 | Электромагнитный клапан переключения передач ‘B’ заедал на |
P0758 | Электромагнитный клапан переключения передач B, электрический |
P0759 | Электромагнитный клапан переключения передач B, прерывистый сигнал |
P0760 | Соленоид переключения передач ‘C’ |
P0761 | Электромагнит переключения передач ‘C’ работает или заедает в выключенном состоянии |
P0762 | Электромагнитный клапан переключения передач ‘C’ застрял на |
P0763 | Электромагнитный клапан переключения передач ‘C’, электрические |
P0764 | Электромагнитный клапан переключения передач ‘C’ Прерывистый |
P0765 | Соленоид переключения передач ‘D’ |
P0766 | Электромагнит переключения передач D работает или заедает |
P0767 | Электромагнитный клапан переключения передач D застрял на |
P0768 | Электромагнитный клапан переключения передач D, электрический |
P0769 | Электромагнитный клапан переключения передач ‘D’ Прерывистый |
P0770 | Соленоид переключения передач ‘E’ |
P0771 | Электромагнит переключения передач E работает или заедает |
P0772 | Электромагнитный клапан переключения передач «E» заедал на |
P0773 | Электромагнитный клапан переключения передач E, электрический |
P0774 | Электромагнитный клапан переключения передач ‘E’ Прерывистый |
P0775 | Электромагнитный клапан регулировки давления ‘B’ |
P0776 | Электромагнитный клапан управления давлением B работает или заедает в выключенном состоянии |
P0777 | Электромагнитный клапан управления давлением ‘B’ застрял на |
P0778 | Электромагнитный клапан регулировки давления B, электрический |
P0779 | Электромагнитный клапан управления давлением ‘B’ Прерывистый |
P0780 | Неисправность переключения передач |
P0781 | 1-2 Shift |
P0782 | 2-3 Shift |
P0783 | 3-4 Shift |
P0784 | 4-5 Shift |
P0785 | Соленоид переключения / синхронизации |
P0786 | Электромагнит переключения передач / синхронизации Диапазон / рабочие характеристики |
P0787 | Низкий уровень соленоида переключения / синхронизации |
P0788 | Высокий уровень соленоида переключения / синхронизации |
P0789 | Электромагнит переключения передач / синхронизации, прерывистый режим |
P0790 | Цепь переключателя нормальных / рабочих характеристик |
P0791 | Цепь датчика скорости промежуточного вала |
P0792 | Цепь датчика скорости промежуточного вала вне диапазона рабочих характеристик |
P0793 | Отсутствует сигнал в цепи датчика скорости промежуточного вала |
P0794 | Неисправность цепи датчика скорости промежуточного вала |
P0795 | Электромагнитный клапан регулирования давления ‘C’ |
P0796 | Электромагнитный клапан регулирования давления «C» работает или заедает в выключенном состоянии |
P0797 | Электромагнитный клапан контроля давления ‘C’ заедал на |
P0798 | Электромагнитный клапан регулирования давления C, электрический |
P0799 | Электромагнитный клапан регулирования давления ‘C’ Прерывистый |
P0810 | Ручной переключатель положения клапана давления трансмиссионной жидкости |
P0811 | Максимальное адаптивное и долгосрочное время переключения |
P0812 | Перегрев трансмиссионной жидкости |
P0813 | Неисправность соленоида управления крутящим моментом |
P0814 | Перенапряжение гидротрансформатора |
P0816 | Переключатель положения ручного клапана давления трансмиссионной жидкости Парковка / Нейтраль с передаточным числом |
P0817 | Переключатель положения ручного клапана давления трансмиссионной жидкости в обратном направлении с передаточным числом |
P0818 | Привод ручного переключателя положения клапана давления трансмиссионной жидкости без передаточного числа |
P0819 | Переключатель внутреннего режима Нет запуска / неправильный диапазон |
P0820 | Низкий уровень сигнала внутренней цепи переключателя режима «A» |
P0802 | Обрыв цепи запроса системы управления трансмиссией |
P0812 | Обратный входной контур |
P0813 | Цепь обратного выхода |
P0814 | Цепь отображения диапазона передачи |
P0816 | Цепь переключателя понижающей передачи |
P0817 | Цепь отключения стартера |
P0819 | Переключатель переключения передач вверх и вниз для корреляции диапазона передачи |
P0820 | Цепь датчика положения X-Y рычага переключения передач |
P0821 | Цепь положения X рычага переключения передач |
P0822 | Цепь положения рычага переключения передач по оси Y |
P0823 | Перемежающийся контур положения рычага переключения передач по X |
P0824 | Перемежающийся контур положения рычага переключения передач по оси Y |
P0825 | Двухтактный переключатель рычага переключения передач (с ожиданием переключения) |
P0826 | Цепь переключателя передач вверх и вниз |
P0827 | Низкий сигнал цепи переключателя переключения передач вверх и вниз |
P0829 | 5-6 Shift |
P0840 | Датчик / переключатель давления трансмиссионной жидкости «A» |
P0841 | Датчик давления трансмиссионной жидкости / переключатель «A» Диапазон / рабочие характеристики цепи |
P0842 | Датчик / выключатель давления трансмиссионной жидкости Низкий уровень цепи |
P0843 | Датчик давления трансмиссионной жидкости / переключатель «A», высокий уровень сигнала |
P0844 | Датчик давления трансмиссионной жидкости / переключатель «A» Неустойчивый сигнал цепи |
P0845 | Цепь датчика / переключателя давления трансмиссионной жидкости «B» |
P0846 | Датчик давления трансмиссионной жидкости / переключатель «B» Диапазон / рабочие характеристики цепи |
P0847 | Датчик / выключатель давления трансмиссионной жидкости «B», низкий уровень сигнала |
P0848 | Датчик / переключатель давления трансмиссионной жидкости «B», высокий уровень сигнала |
P0849 | Датчик / выключатель давления трансмиссионной жидкости «B» Неустойчивый сигнал цепи |
P0850 | Входная цепь переключателя парковочного / нейтрального положения |
P0851 | Низкий сигнал входной цепи переключателя парковочного / нейтрального положения |
P0852 | Высокий уровень входного сигнала переключателя парковочного / нейтрального положения |
P0853 | Входная цепь переключателя привода |
P0854 | Низкий сигнал входной цепи переключателя привода |
P0856 | Входной сигнал системы контроля тяги |
P0857 | Диапазон / рабочие характеристики входного сигнала системы контроля тяги |
P0858 | Низкий уровень входного сигнала системы контроля тяги |
P0859 | Высокий уровень входного сигнала системы управления тяговым усилием |
P0860 | Цепь связи модуля переключения передач |
P0861 | Низкий уровень сигнала в цепи связи модуля переключения передач |
P0862 | Высокий уровень сигнала в цепи связи модуля переключения передач |
P0863 | Цепь связи TCM |
P0864 | Цепь связи TCM вне диапазона рабочих характеристик |
P0865 | Низкий уровень сигнала в цепи связи TCM |
P0866 | Высокий уровень сигнала в цепи связи TCM |
P0867 | Давление трансмиссионной жидкости |
P0868 | Низкое давление трансмиссионной жидкости |
P0869 | Высокое давление трансмиссионной жидкости |
P0870 | Цепь датчика / переключателя давления трансмиссионной жидкости «C» |
P0871 | Датчик / переключатель давления трансмиссионной жидкости «C» Диапазон / рабочие характеристики цепи |
P0872 | Датчик / выключатель давления трансмиссионной жидкости «C», низкий уровень сигнала |
P0873 | Датчик / переключатель давления трансмиссионной жидкости «C», высокий уровень сигнала |
P0874 | Датчик / выключатель давления трансмиссионной жидкости «C» Неустойчивый сигнал цепи |
P0875 | Цепь датчика / переключателя давления трансмиссионной жидкости «D» |
P0876 | Датчик давления трансмиссионной жидкости / переключатель D Диапазон / рабочие характеристики цепи |
P0877 | Датчик / переключатель давления трансмиссионной жидкости «D», низкий уровень сигнала |
P0878 | Датчик / переключатель давления трансмиссионной жидкости «D», высокий уровень сигнала |
P0879 | Датчик / переключатель давления трансмиссионной жидкости «D» Неустойчивый сигнал цепи |
P0880 | TCM Входной сигнал питания |
P0881 | TCM Диапазон входного сигнала питания / рабочие характеристики |
P0882 | Низкий уровень входного сигнала питания TCM |
P0883 | Высокий уровень входного сигнала питания TCM |
P0884 | Прерывистый входной сигнал питания TCM |
P0885 | Обрыв цепи управления реле мощности TCM |
P0886 | Низкий уровень сигнала цепи управления реле мощности TCM |
P0887 | Высокий уровень сигнала цепи управления реле мощности TCM |
P0888 | Цепь датчика реле мощности TCM |
P0889 | Цепь контроля реле мощности TCM вне диапазона рабочих характеристик |
P0890 | Низкий уровень сигнала цепи реле мощности TCM |
P0891 | Высокий уровень сигнала цепи реле мощности TCM |
P0892, | ,, Неустойчивый разрыв цепи датчика силового реле TCM, |
P0893 | Включено несколько передач |
P0894 | Проскальзывание компонента трансмиссии |
P0895 | Слишком короткое время переключения |
P0896 | Слишком долгое время переключения |
P0897 | Изношенность трансмиссионной жидкости |
P0898 | Низкий уровень сигнала контрольной лампы неисправности системы управления трансмиссией |
P0899 | Высокий уровень сигнала контрольной лампы неисправности системы управления трансмиссией |
P0900 | Обрыв цепи привода сцепления |
P0901 | Цепь привода сцепления вне диапазона рабочих характеристик |
P0902 | Низкий сигнал цепи привода сцепления |
P0903 | Высокий сигнал цепи привода сцепления |
P0904 | Цепь выбора положения ворот |
P0905 | Диапазон / рабочие характеристики цепи выбора положения ворот |
P0906 | Цепь выбора положения ворот, низкий сигнал |
P0907 | Высокий уровень сигнала в цепи выбора положения ворот |
P0908 | Цепь выбора положения ворот прерывистая |
P0909 | Ошибка управления выбором ворот |
P0910 | Цепь привода выбора ворот / обрыв |
P0911 | Диапазон / рабочие характеристики цепи привода выбора ворот |
P0912 | Низкий уровень сигнала цепи исполнительного механизма выбора ворот |
P0913 | Высокий сигнал цепи привода выбора ворот |
P0914 | Цепь положения переключения передач |
P0915 | Цепь положения переключения передач вне диапазона / рабочих характеристик |
P0916 | Низкий уровень сигнала цепи переключения передач |
P0917 | Высокий уровень сигнала цепи переключения передач |
P0918 | Перемежающийся контур положения переключения передач |
P0919 | Ошибка управления положением переключения передач |
P0920 | Привод переключения передач вперед |
P0921 | Цепь исполнительного механизма переключения передач переднего хода вне диапазона рабочих характеристик |
P0922 | Цепь привода переднего переключения передач, низкая |
P0923 | Высокий сигнал цепи привода переднего переключения передач |
P0924 | Обрыв цепи исполнительного механизма переключения передач заднего хода |
P0925 | Цепь исполнительного механизма переключения передач заднего хода вне диапазона / рабочих характеристик |
P0926 | Цепь исполнительного механизма переключения передач заднего хода, низкая |
P0927 | Цепь исполнительного механизма переключения передач заднего хода, высокий сигнал |
P0928 | Цепь управления соленоидом блокировки переключения передач / обрыв |
P0929 | Цепь управления соленоидом блокировки переключения передач вне диапазона рабочих характеристик |
P0930 | Цепь управления соленоидом блокировки переключения передач, низкая |
P0931 | Цепь управления соленоидом блокировки переключения передач, высокий сигнал |
P0932 | Цепь датчика давления в гидросистеме |
P0933 | Диапазон / рабочие характеристики датчика гидравлического давления |
P0934 | Низкий сигнал цепи датчика давления в гидросистеме |
P0935 | Высокий сигнал цепи датчика давления в гидросистеме |
P0936 | Неисправность цепи датчика давления в гидросистеме |
P0937 | Цепь датчика температуры гидравлического масла |
P0938 | Диапазон рабочих характеристик датчика температуры гидравлического масла |
P0939 | Низкий сигнал цепи датчика температуры гидравлического масла |
P0940 | Высокий уровень сигнала в цепи датчика температуры гидравлического масла |
P0941 | Неисправность цепи датчика температуры гидравлического масла |
P0942 | Блок гидравлического давления |
P0943 | Слишком короткий период цикла блока гидравлического давления |
P0944 | Гидравлический блок давления Потеря давления |
P0945 | Цепь реле гидронасоса / обрыв |
P0946 | Цепь реле гидравлического насоса вне диапазона / рабочих характеристик |
P0947 | Низкий сигнал цепи реле гидравлического насоса |
P0948 | Высокий показатель цепи реле гидронасоса |
P0949 | Адаптивное обучение при автоматическом переключении вручную не завершено |
P0950 | Цепь ручного управления автоматическим переключением передач |
P0951 | Цепь ручного управления автоматическим переключением передач вне диапазона / рабочих характеристик |
P0952 | Низкий уровень сигнала цепи ручного управления автоматическим переключением передач |
P0953 | Высокое напряжение цепи ручного управления автоматическим переключением передач |
P0954 | Неустойчивый контур ручного управления автоматическим переключением передач |
P0955 | Цепь ручного режима автоматического переключения передач |
P0956 | Цепь ручного режима автоматического переключения передач вне диапазона / рабочих характеристик |
P0957 | Низкий уровень сигнала цепи ручного режима автоматического переключения передач |
P0958 | Высокое напряжение цепи ручного режима автоматического переключения передач |
P0959 | Неустойчивая цепь ручного режима автоматического переключения передач |
P0960 | Электромагнитный клапан регулирования давления «A» Обрыв цепи / обрыв цепи |
P0961 | Электромагнитный клапан управления давлением «A» Диапазон / рабочие характеристики цепи управления |
P0962 | Электромагнитный клапан управления давлением «А», низкий уровень сигнала |
P0963 | Высокий уровень сигнала в цепи управления электромагнитным клапаном управления давлением «А» |
P0964 | Цепь управления электромагнитным клапаном управления давлением «B» / обрыв |
P0965 | Электромагнитный клапан управления давлением «B» Диапазон / рабочие характеристики цепи управления |
P0966 | Электромагнитный клапан управления давлением «B», низкий уровень сигнала |
P0967 | Высокий уровень сигнала в цепи управления электромагнитным клапаном управления давлением «B» |
P0968 | Электромагнитный клапан регулирования давления «C» Обрыв / обрыв цепи |
P0969 | Электромагнитный клапан управления давлением «C» Диапазон / рабочие характеристики цепи управления |
P0970 | Электромагнитный клапан контроля давления «C» Низкое напряжение цепи управления |
P0971 | Высокий уровень сигнала в цепи управления электромагнитным клапаном управления давлением «C» |
P0972 | Электромагнитный клапан переключения передач «A» Диапазон / рабочие характеристики цепи управления |
P0973 | Электромагнитный клапан переключения передач «A», низкий уровень сигнала |
P0974 | Электромагнит переключения передач «A», высокий уровень сигнала |
P0975 | Электромагнитный клапан переключения передач «B» Диапазон / рабочие характеристики цепи управления |
P0976 | Электромагнит переключения передач «B», низкий уровень сигнала |
P0977 | Электромагнит переключения передач «B», высокий уровень сигнала |
P0978 | Электромагнитный клапан переключения передач «C» Диапазон / рабочие характеристики цепи управления |
P0979 | Электромагнитный клапан переключения передач «C», низкий уровень сигнала |
P0980 | Электромагнит переключения передач «C», высокий уровень сигнала |
P0981 | Электромагнитный клапан переключения передач «D» Диапазон / рабочие характеристики цепи управления |
P0982 | Электромагнит переключения передач «D», низкий уровень сигнала |
P0983 | Электромагнит переключения передач «D», высокий уровень сигнала |
P0984 | Электромагнитный клапан переключения передач «E» Диапазон / рабочие характеристики цепи управления |
P0985 | Электромагнит переключения передач «E», низкий уровень сигнала |
P0986 | Электромагнит переключения передач «E», высокий уровень сигнала |
P0987 | Цепь датчика / переключателя давления трансмиссионной жидкости «E» |
P0988 | Датчик / переключатель давления трансмиссионной жидкости «E» Диапазон / рабочие характеристики цепи |
P0989 | Датчик / выключатель давления трансмиссионной жидкости Низкий уровень сигнала в цепи |
P0990 | Датчик / переключатель давления трансмиссионной жидкости «E», высокий уровень сигнала |
P0991 | Датчик / выключатель давления трансмиссионной жидкости «E» Неустойчивый сигнал цепи |
P0992 | Цепь датчика / переключателя давления трансмиссионной жидкости «F» |
P0993 | Датчик / переключатель давления трансмиссионной жидкости «F» Диапазон / рабочие характеристики цепи |
P0994 | Датчик / переключатель давления трансмиссионной жидкости «F» Низкий уровень сигнала |
P0995 | Датчик / переключатель давления трансмиссионной жидкости «F», высокий уровень сигнала |
P0996 | Датчик / переключатель давления трансмиссионной жидкости «F» Неустойчивый сигнал цепи |
P0997 | Электромагнитный клапан переключения передач «F» Диапазон / рабочие характеристики цепи управления |
P0998 | Электромагнит переключения передач «F», низкий уровень сигнала |
P0999 | Электромагнит переключения передач «F», высокий уровень сигнала |
P1702 | Nissan DTC: Модуль управления трансмиссией не может получить доступ к оперативной памяти |
P1703 | Nissan DTC: Модуль управления коробкой передач не может получить доступ к ПЗУ |
P1705 | Nissan DTC: Неисправность цепи датчика положения дроссельной заслонки |
P1706 | Nissan DTC: Неисправность цепи переключателя нейтрального положения парковки |
P1710 | Nissan DTC: Цепь датчика температуры трансмиссионной жидкости |
P1716 | Nissan DTC: Цепь датчика частоты вращения турбины |
P1721 | Nissan DTC: Датчик скорости автомобиля MTR |
P1730 | Nissan DTC: Блокировка АКП |
P1731 | Nissan DTC: A / T 1st Engine Braking / 1-2 Shift Malfunction |
P1752 | Nissan DTC: Электромагнитный клапан входной муфты |
P1754 | Nissan DTC: Работа электромагнитного клапана входной муфты |
P1757 | Nissan DTC: Электромагнитный клапан переднего тормоза |
P1759 | Nissan DTC: Работа электромагнитного клапана переднего тормоза |
P1762 | Nissan DTC: Электромагнитный клапан прямого сцепления |
P1764 | Nissan DTC: Работа электромагнитного клапана прямого сцепления |
P1767 | Nissan DTC: Электромагнитный клапан муфты высокого и низкого уровня передачи заднего хода |
P1769 | Nissan DTC: Работа электромагнитного клапана муфты высокого и низкого уровня передачи заднего хода |
P1772 | Диагностический код неисправности Nissan: Электромагнитный клапан аварийного торможения с малым накатом |
P1774 | Диагностический код неисправности Nissan: работа электромагнитного клапана аварийного тормоза с малым накатом |
P1821 | Низкий уровень внутренней цепи переключателя режима «B» |
P1822 | Внутренняя цепь переключателя режима «B», высокий уровень |
P1822 | Внутренняя цепь переключателя режима «B», высокий уровень |
P1823 | Низкий уровень внутренней цепи переключателя режима «P» |
P1824 | Внутренняя цепь переключателя режима «P», высокий уровень |
P1825 | Неверный диапазон внутреннего переключателя режима |
P1826 | Внутренняя цепь переключателя режима «C», высокий уровень |
P1831 | Низкое напряжение цепи питания соленоида управления давлением |
P1832 | Высокое напряжение цепи питания соленоида управления давлением |
P1833 | GM — Низкое напряжение цепи управления мощностью соленоида TCC |
P1834 | GM — Цепь управления мощностью соленоида TCC, высокое напряжение |
P1835 | Цепь выключателя Kick-Down |
P1836 | Kick-Down Switch Failed Open |
P1837 | Короткое замыкание выключателя Kick-Down |
P1842 | Низкое напряжение электромагнитного клапана переключения передач 1-2 передач |
P1843 | Высокое напряжение электромагнитного клапана переключения передач 1-2 передач |
P1844 | Subaru — Датчик давления трансмиссионной жидкости «A» Неисправность цепи |
P1845 | Низкое напряжение электромагнитного клапана переключения 2-3 передач |
P1847 | Высокое напряжение соленоида переключения 2-3 передач |
P1850 | Тормозная лента применяет цепь соленоида |
P1851 | Тормозная лента применяет работу соленоида |
P1852 | Тормозная лента применяет низкое напряжение соленоида |
P1853 | Тормозная лента подает высокое напряжение соленоида |
P1860 | TCC PWM Электромагнитная цепь |
P1864 | Электрическая неисправность соленоида включения гидротрансформатора |
P1866 | Цепь соленоида TCC PWM, низкое напряжение |
P1870 | Пробуксовка компонентов трансмиссии: трансмиссия GM |
P1871 | Неопределенное передаточное число |
P1873 | Низкое напряжение цепи переключателя температуры статора муфты гидротрансформатора |
P1874 | Высокое напряжение цепи переключателя температуры статора муфты гидротрансформатора |
P1886 | Работа соленоида синхронизации переключения передач в сборе с главной передачей |
P1887 | Выключатель муфты гидротрансформатора |
P1890 | Система контроля скорости вариатора |
P1891 | Проблема в системе управления стартовой муфтой |
P2700 | Фрикционный элемент трансмиссии A Применить временной диапазон / рабочие характеристики |
P2701 | Фрикционный элемент трансмиссии B Применить временной диапазон / рабочие характеристики |
P2702 | Фрикционный элемент трансмиссии C Применение временного диапазона / рабочих характеристик |
P2703 | Фрикционный элемент трансмиссии D Применить временной диапазон / рабочие характеристики |
P2704 | Фрикционный элемент трансмиссии E Применить временной диапазон / рабочие характеристики |
P2705 | Фрикционный элемент трансмиссии F Применить временной диапазон / рабочие характеристики |
P2706 | Фрикционный элемент трансмиссии F Неисправность |
P2707 | Работа соленоида F переключения передач / заедание |
P2708 | Электромагнит переключения передач F заедает на |
P2709 | Электромагнит переключения передач F, электрический |
P2710 | Электромагнит переключения передач F Прерывистый |
P2711 | Unexpected Mechanical Gear Disengagement |
P2712 | Hydraulic Power Unit Leakage Intermittent |
P2713 | Pressure Control Solenoid D |
P2714 | Pressure Control Solenoid D Performance or Stuck Off |
P2715 | Pressure Control Solenoid D Stuck On |
P2716 | Pressure Control Solenoid D Electrical |
P2717 | Pressure Control Solenoid D Intermittent |
P2718 | Pressure Control Solenoid D Circuit Open |
P2719 | Pressure Control Solenoid D Circuit Range/Performance |
P2720 | Pressure Control Solenoid D Control Circuit Low Voltage |
P2721 | Pressure Control Solenoid D Control Circuit High Voltage |
P2722 | Pressure Control Solenoid E Malfunction |
P2723 | Pressure Control Solenoid E Stuck Off |
P2724 | Pressure Control Solenoid E Stuck On |
P2725 | Pressure Control Solenoid E Electrical |
P2726 | Pressure Control Solenoid E Intermittent |
P2727 | Pressure Control Solenoid E Ctrl Circ / Open |
P2728 | Pressure Control Solenoid E Ctrl Circ Range/Perf |
P2729 | Pressure Control Solenoid E Ctrl Circ Low Voltage |
P2730 | Pressure Control Solenoid E Ctrl Circ High Voltage |
P2731 | Pressure Control Solenoid F |
P2732 | Pressure Control Solenoid F Performance or Stuck Off |
P2733 | Pressure Control Solenoid F Stuck On |
P2734 | Pressure Control Solenoid F Electrical |
P2735 | Pressure Control Solenoid F Intermittent |
P2736 | Pressure Control Solenoid F Ctrl Circ/Open |
P2737 | Pressure Control Solenoid F Ctrl Circuit Range/Performance |
P2738 | Pressure Control Solenoid F Ctrl Circuit Low Voltage |
P2739 | Pressure Control Solenoid E Ctrl Circuit High Voltage |
P2740 | Transmission Fluid Temperature Sensor B Circuit |
P2741 | Transmission Fluid Temperature Sensor B Circuit Range Performance |
P2742 | Transmission Fluid Temperature Sensor B Circuit Low |
P2743 | Transmission Fluid Temperature Sensor B Circuit High |
P2744 | Transmission Fluid Temperature Sensor B Circuit Intermittent |
P2745 | Intermediate Shaft Speed Sensor B Circuit |
P2746 | Intermediate Shaft Speed Sensor B Circuit Range/Performance |
P2747 | Intermediate Shaft Speed Sensor B Circuit No Signal |
P2748 | Intermediate Shaft Speed Sensor B Circuit Intermittent |
P2749 | Intermediate Shaft Speed Sensor C Circuit |
P2750 | Intermediate Shaft Speed Sensor C Circuit Range/Perf |
P2751 | Intermediate Shaft Speed Sensor C Circuit No Signal |
P2752 | Intermediate Shaft Speed Sensor C Circuit Intermittent |
P2753 | Transmission Cooler Ctrl Circuit Open |
P2754 | Transmission Cooler Ctrl Circuit Low |
P2755 | Transmission Cooler Ctrl Circuit High |
P2756 | Torque Converter Clutch Press Ctrl Solenoid |
P2757 | Torque Converter Clutch Pressure Control Solenoid Ctrl Circuit Performance or Stuck Off |
P2758 | Torque Converter Clutch Pressure Control Solenoid Ctrl Circuit Stuck On |
P2759 | Torque Converter Clutch Pressure Control Solenoid Ctrl Circuit Electrical |
P2760 | Torque Converter Clutch Pressure Control Solenoid Ctrl Circuit Intermittent |
P2761 | Torque Converter Clutch Pressure Control Solenoid Ctrl Circuit Open |
P2762 | Torque Converter Clutch Pressure Control Solenoid Ctrl Circuit Range/Performance |
P2763 | Torque Converter Clutch Pressure Control Solenoid Ctrl Circuit High |
P2764 | Torque Converter Clutch Pressure Control Solenoid Ctrl Circuit Low |
P2765 | Input/Turbine Speed Sensor B Circuit |
P2766 | Input/Turbine Speed Sensor B Circuit Range/Performance |
P2767 | Input/Turbine Speed Sensor B Circuit No Signal |
P2768 | Input/Turbine Speed Sensor B Circuit Intermittent |
P2769 | Torque Converter Clutch Circuit Low |
P2770 | Torque Converter Clutch Circuit High |
P2775 | Upshift Switch Circuit Range/Performance |
P2776 | Upshift Switch Circuit Low |
P2777 | Upshift Switch Circuit High |
P2778 | Upshift Switch Circuit Intermittent |
P2779 | Downshift Switch Circuit Range/Performance |
P2780 | Downshift Switch Circuit Low |
P2781 | Downshift Switch Circuit High |
P2782 | Downshift Switch Circuit Intermittent |
P2783 | Torque Converter Temp Too High |
P2784 | Input/Turbine Speed Sensor A/B Correlation |
P2786 | Gear Shift Actuator Temp Too High |
P2787 | Clutch Temp Too High |
P2788 | Auto Shift Manual Adaptive Learning at Limit |
P2789 | Clutch Adaptive Learning at Limit |
P2790 | Gate Select Direction Circuit |
P2791 | Gate Select Direction Circuit Low |
P2792 | Gate Select Direction Circuit High |
P2793 | Gear Shift Direction Circuit |
P2794 | Gear Shift Direction Circuit Low |
P2795 | Gear Shift Direction Circuit High |
When the impeller and the turbine are rotating at nearly the same speed, no torque multiplication is taking place.Гидротрансформатор передает входной крутящий момент от двигателя к трансмиссии в соотношении почти 1: 1. Однако разница в скорости вращения турбины и рабочего колеса составляет примерно 4-5%. Гидротрансформатор не передает 100% мощности, вырабатываемой двигателем, на трансмиссию, поэтому возникают потери энергии.
Чтобы предотвратить это и снизить расход топлива, муфта блокировки механически соединяет крыльчатку и турбину, когда автомобиль движется со скоростью около 37 миль в час или выше.Когда муфта блокировки включена, 100% мощности передается через гидротрансформатор.
Муфта блокировки установлена на ступице турбины перед турбиной. Амортизирующая пружина поглощает скручивающую силу при включении муфты, предотвращая передачу удара. Фрикционный материал, прикрепленный к поршню блокировки, такой же, как и материал, используемый в многодисковых дисках сцепления в трансмиссии.
Когда муфта блокировки приводится в действие, она вращается вместе с крыльчаткой и турбиной.Включение и выключение муфты блокировки определяется точкой, в которой жидкость входит в гидротрансформатор. Жидкость может быть либо в гидротрансформаторе перед муфтой блокировки, либо в основном корпусе преобразователя за муфтой блокировки. Разница в давлении с обеих сторон муфты блокировки определяет включение или выключение.
Жидкость, используемая для управления блокировкой гидротрансформатора, также используется для отвода тепла от преобразователя и передачи его в систему охлаждения двигателя через теплообменник в радиаторе.
Управление гидравлической жидкостью преобразователя осуществляется с помощью релейного и сигнального клапанов. Оба клапана подпружинены до положения, при котором муфта остается в выключенном положении. На фотографии выше давление гидротрансформатора проходит через релейный клапан на переднюю муфту блокировки. Обратите внимание, что основной корпус гидравлического контура преобразователя соединен с охладителем коробки передач через нижнюю часть релейного клапана.
Сигнальный клапан регулирует давление в линии до основания релейного клапана. Когда регулирующее давление или линейное давление прикладывается к основанию сигнального клапана, линейное давление проходит через сигнальный клапан и прикладывается к основанию промежуточного клапана. Релейный клапан перемещается вверх против натяжения пружины, отводя давление преобразователя к основному корпусу преобразователя.
Когда автомобиль движется на малых скоростях, жидкость под давлением попадает в переднюю часть муфты блокировки. Давление на передней и задней сторонах муфты блокировки остается одинаковым, поэтому муфта блокировки отключается.
Когда автомобиль движется со средней или высокой скоростью, жидкость под давлением течет в область позади муфты блокировки. Положение релейного клапана открывает слив в область перед муфтой блокировки, создавая область низкого давления. Таким образом, поршень блокировки прижимается к корпусу гидротрансформатора из-за разницы гидравлического давления с каждой стороны муфты блокировки. В результате муфта блокировки и картер гидротрансформатора вращаются вместе.
источников —
http: // www.procarcare.com/icarumba/resourcecenter/encyclopedia
http://www.catalogs.com/info/automotive/automatic-transmission.html
http://www.autoshop101.com
Вы когда-нибудь задумывались, что у автоматической коробки передач вместо сцепления? Он называется гидротрансформатором, и он делает всю тяжелую работу за вас
Передача мощности от любой трансмиссии к трансмиссии может быть довольно сложным процессом с сотнями движущихся частей, которые все должны быть синхронизированы одновременно.Из кабины вы просто нажимаете на педаль и перемещаете рычаг переключения передач или, может быть, просто переворачиваете весло, но все, что происходит под днищами пола, тщательно спроектировано и разработано, чтобы обеспечить плавное соединение длинного списка компонентов, чтобы ваша машина была на месте. двигаться.
В автомобиле с ручным управлением у вас есть узел сцепления, который позволяет соединять и разъединять двигатель и трансмиссию — и, следовательно, приводить к колесам. У двигателей есть холостой ход, который устанавливается с помощью упора дроссельной заслонки, что означает минимальную скорость двигателя, при которой двигатель может работать, прежде чем он заглохнет из-за нехватки воздушно-топливной смеси, поступающей в цилиндры.
Таким образом, без сцепления при замедлении до полной остановки двигатель заглох бы, поскольку нагрузка от трансмиссии затащила бы его ниже допустимого предела оборотов. Сцепление обеспечивает отключение, необходимое для поддержания работы двигателя, а затем повторное включение вместе с некоторым дросселем, чтобы автомобиль снова заработал.
Гидротрансформатор во всей красеОднако в автомобиле с автоматической коробкой передач надлежащего сцепления нет — вместо него установлен гидротрансформатор.Он должен выполнять ту же работу, что и сцепление — позволяя двигателю продолжать работать, пока трансмиссия и колеса замедляются до полной остановки, — но он делает это по-другому и довольно изобретательно. Гидротрансформатор — это так называемая гидравлическая муфта — устройство, используемое для передачи механической энергии вращения посредством движения жидкости от одной механической движущейся системы к другой.
Он может заменить сцепление, поскольку позволяет двигателю свободно вращаться за счет значительного уменьшения передачи крутящего момента от трансмиссии к трансмиссии.Он никогда не отключается полностью, так как вы можете почувствовать «ползание», которое возникает, если вы снимаете ногу с тормоза автомобиля с автоматической коробкой передач из неподвижного состояния.
Регулировка крутящего момента достигается за счет использования насоса, который перекачивает жидкость вокруг преобразователя крутящего момента в зависимости от вращения коленчатого вала. Внутри преобразователя крутящего момента находится турбина, которая вращается, когда перекачиваемая жидкость входит в контакт с лопатками турбины, таким образом измеряя величину крутящего момента, который передается на передачу через входной вал.
Koenigsegg Regera использует систему, аналогичную гидротрансформатору, чтобы обеспечить плавное переключение между выходной электрической мощностью и внутренним сгоранием.Корпус гидротрансформатора соединен с маховиком (который, следовательно, вращается с той же скоростью, что и коленчатый вал), а внутри корпуса находится турбина, гидравлический центробежный насос (или рабочее колесо) и статор.Центробежный насос эффективно перекачивает трансмиссионную жидкость в лопасти турбины, которая, в свою очередь, вращается и передает крутящий момент на трансмиссию. Статор служит препятствием для сброса жидкости обратно в турбину, а не обратно в насос, что значительно увеличивает эффективность системы.
На этом вырезе показаны лопатки центробежного насоса вместе с муфтой блокировки, зажатой посередине и закрывающей обзор турбины.Таким образом, на холостом ходу скорость жидкости, перекачиваемой в турбину, очень низкая, что означает, что очень маленький крутящий момент проходит от двигателя к трансмиссии.Затем, когда коленчатый вал вращается быстрее с увеличением дроссельной заслонки и, в свою очередь, вращает маховик, больше жидкости перемещается с большей скоростью от насоса в турбину.
При этом турбина вращается быстрее, передавая на трансмиссию больший крутящий момент. К сожалению, передача энергии от насоса к турбине никогда не может быть эффективной на 100 процентов — через эту систему происходят дополнительные потери энергии, которые усиливаются, когда крутящий момент двигателя также передается через коробку передач и из дифференциала.
Послушайте Томаса здесь, чтобы получить краткий обзор. Видео на YouTube-канале Thomas Schwenke
Эта небольшая потеря энергии между насосом и турбиной означает, что турбина всегда вращается немного медленнее, чем насос, что является основной причиной того, что автоматические системы в целом имеют более низкие показатели топливной эффективности, чем их аналоги с ручным управлением.К счастью, недавно были разработаны гидротрансформаторы, содержащие муфту блокировки, которая на определенной скорости блокирует турбину и насос вместе, чтобы исключить падение энергии.
Компоненты гидротрансформатора, включая муфту блокировкиТаким образом, хотя автоматические трансмиссии могут показаться простыми из-за руля, технология, заложенная в туннеле трансмиссии, на самом деле довольно сложна, но чрезвычайно эффективна.
Конструкция, лежащая в основе системы гидротрансформатора, действительно впечатляет и определенно заслуживает большого уважения, поскольку она способна плавно соединять и регулировать привод от двигателя к колесам, что большинство водителей, вероятно, считают это полностью само собой разумеющимся. .
Поскольку сегодня подавляющее большинство трансмиссий являются полностью автоматическими, дни простого педального сцепления кажутся немногочисленными и далекими друг от друга, что делает гидротрансформатор одним из самых важных компонентов большинства автомобилей, производимых сегодня.
Вы когда-нибудь задумывались, как ваша трансмиссия умеет переключать передачи? Почему при остановке двигатель не глохнет? Мы здесь, чтобы показать вам, как работают автомобили. Недавно мы посмотрели на МКПП. На этой неделе это обычное время для барахла.
Автоматические коробки передач — это черная магия. Огромное количество движущихся частей делает их очень трудными для понимания.Давайте немного упростим его, чтобы получить общее представление о том, как все это работает в традиционной системе на основе гидротрансформатора.
Ваш двигатель соединяется с трансмиссией в месте, называемом колоколом. В колокольном корпусе находится гидротрансформатор для автомобилей с автоматической коробкой передач, в отличие от сцепления на автомобилях с механической коробкой передач. Гидротрансформатор — это гидравлическая муфта, работа которой заключается в соединении вашего двигателя с трансмиссией и, следовательно, с вашими ведущими колесами. Трансмиссия содержит планетарные передачи, которые обеспечивают различные передаточные числа.Чтобы лучше понять, как работает вся автоматическая трансмиссия, давайте взглянем на преобразователи крутящего момента и планетарные редукторы.
Гидротрансформатор
Прежде всего, гибкая пластина вашего двигателя (в основном маховик для автоматической коробки передач) подключается непосредственно к гидротрансформатору. Когда коленчатый вал вращается, вращается и корпус гидротрансформатора. Преобразователь крутящего момента предназначен для подключения и отключения мощности двигателя от ведомой нагрузки.Гидротрансформатор заменяет сцепление в обычной механической коробке передач. Как работает гидротрансформатор? Что ж, посмотрите видео выше. В нем объясняются основные принципы гидравлической муфты. После того, как вы это увидели, продолжайте читать, чтобы увидеть, чем гидротрансформатор отличается от стандартной гидравлической муфты.
G / O Media может получить комиссию
Основными компонентами преобразователя крутящего момента являются: крыльчатка, турбина, статор и муфта блокировки.Крыльчатка является частью корпуса гидротрансформатора, который соединен с двигателем. Он приводит в движение турбину за счет сил вязкости. Турбина соединена с входным валом трансмиссии. По сути, двигатель вращает крыльчатку, которая передает силу жидкости, которая затем вращает турбину, передавая крутящий момент на трансмиссию.
Трансмиссионная жидкость течет по петле между рабочим колесом и турбиной. Гидравлическая муфта на видео выше страдает от серьезных потерь при взбалтывании (и, как следствие, накопления тепла), поскольку жидкость, возвращающаяся из турбины, имеет компонент своей скорости, который препятствует вращению крыльчатки.То есть жидкость, возвращающаяся из турбины, работает против вращения крыльчатки и, таким образом, против двигателя.
Статор находится между крыльчаткой и турбиной. Его цель — минимизировать потери на перемешивание и увеличить выходной крутящий момент за счет перенаправления жидкости по мере ее возврата от турбины к крыльчатке. Статор направляет жидкость так, чтобы большая часть ее скорости приходилась на крыльчатку, помогая крыльчатке двигаться и, таким образом, увеличивая крутящий момент, создаваемый двигателем.Благодаря этой способности увеличивать крутящий момент мы называем их преобразователями крутящего момента, а не гидравлическими муфтами.
Статор установлен на односторонней муфте. Он может вращаться в одном направлении только тогда, когда турбина и крыльчатка движутся примерно с одинаковой скоростью (например, при движении по шоссе). Статор либо вращается вместе с крыльчаткой, либо не вращается совсем. Однако статоры не всегда увеличивают крутящий момент. Они обеспечивают вам больший крутящий момент, когда вы находитесь либо на месте (например, при торможении на стоп-сигнале), либо при ускорении, но не во время движения по шоссе.
Помимо односторонней муфты в статоре, некоторые преобразователи крутящего момента содержат муфту блокировки, работа которой заключается в блокировке турбины с корпусом преобразователя крутящего момента, так что турбина и рабочее колесо механически связаны. Исключение гидравлической муфты и ее замена механическим соединением гарантирует, что весь крутящий момент двигателя передается на входной вал трансмиссии.
Планетарные передачи
Фото из Википедии
Итак, теперь, когда мы выяснили, как двигатель передает мощность на трансмиссию, пришло время выяснить, как в случае трения он переключает передачи.В обычной трансмиссии переключение передач выполняется составным планетарным редуктором. Понять, как работают планетарные передачи, немного сложно, поэтому давайте взглянем на базовую планетарную передачу.
Планетарный ряд (также известный как планетарный ряд) состоит из солнечной шестерни в центре, планетарных шестерен, которые вращаются вокруг солнечной шестерни, водила планетарной передачи, соединяющего планетарные шестерни, и зубчатого венца снаружи, который входит в зацепление. с планетарной передачей. Основная идея планетарного ряда заключается в следующем: с помощью сцеплений и тормозов вы можете предотвратить перемещение определенных компонентов.При этом вы можете изменить вход и выход системы и, таким образом, изменить общее передаточное число. Подумайте об этом так: планетарный ряд позволяет изменять передаточное число без необходимости включать другие передачи. Все они уже помолвлены. Все, что вам нужно сделать, это использовать сцепления и тормоза, чтобы изменить, какие компоненты вращаются, а какие остаются неподвижными.
Конечное передаточное число зависит от того, какой компонент закреплен. Например, если коронная шестерня закреплена, передаточное число будет намного короче, чем если бы солнечная шестерня закреплена.Прекрасно зная о рисках, связанных с составлением здесь уравнения, я все равно добавлю его. Следующее уравнение подскажет вам ваши передаточные числа в зависимости от того, какой компонент зафиксирован, а какой находится в движении. R, C и S представляют коронную шестерню, водило и солнечную шестерню. Омега просто представляет угловую скорость шестерен, а N — количество зубьев.
Принцип работы таков: допустим, мы решили оставить водило планетарной передачи неподвижным и сделать солнечную шестерню нашим входом (таким образом, кольцевая шестерня является нашим выходом).Планеты могут вращаться, но они не могут двигаться, так как носитель не может двигаться. Omega_c равно нулю, поэтому левая часть приведенного выше уравнения пропала. Это означает, что когда мы вращаем солнечную шестерню, она передает крутящий момент через планетарные шестерни на кольцевую шестерню. Чтобы выяснить, каким будет передаточное число, мы просто решаем приведенное выше уравнение для Omega_r / Omega_s. В итоге мы получаем -N_s / N_R, то есть передаточное число, когда мы фиксируем водило и делаем кольцевую шестерню нашим выходом, а солнечную шестерню — нашим входом, это просто отношение количества зубьев между солнечной шестерней и кольцевой шестерней.Это отрицательно, поскольку кольцо вращается в направлении, противоположном солнечной шестерне.
Вы также можете заблокировать коронную шестерню и сделать солнечную шестерню своим входом, а вы можете заблокировать солнечную шестерню и сделать водило своим входом. В зависимости от того, что вы заблокируете, вы получите разные передаточные числа, то есть вы получите разные «шестерни». Чтобы получить передаточное число 1: 1, вы просто соединяете компоненты вместе (для этого нужно заблокировать только два), так что коленчатый вал вращается с той же скоростью, что и выходной вал трансмиссии.
Итак, как тормоза и сцепления перемещаются для переключения передач? Ну, гидротрансформатор также отвечает за работу насоса трансмиссионной жидкости. Давление жидкости приводит в действие муфты и тормоза планетарной передачи. Насос часто представляет собой насос типа геротера (шестеренчатый насос), что означает, что ротор вращается в корпусе насоса и, когда он вращается, он «сцепляется» с корпусом. Эта «сетка» создает камеры, которые изменяются по объему. Когда объем увеличивается, создается вакуум — это вход насоса.Когда объем уменьшается, жидкость сжимается или перекачивается за счет зацепления шестерен — это выход насоса. Гидравлический блок управления посылает гидравлические сигналы для переключения передач (через ленточные тормоза и сцепления) и для блокировки гидротрансформатора.
Обратите внимание, что в большинстве современных автоматических трансмиссий используется составная планетарная передача Ravigneaux. Этот набор передач имеет две солнечные шестерни (малую и большую), два набора планет (внутреннюю и внешнюю) и одно водило. По сути, это две простые планетарные передачи в одной.
Итак, теперь, когда мы рассмотрели гидротрансформаторы и планетарные передачи, давайте посмотрим на видео ниже, чтобы увидеть, как все это сочетается:
Автор фотографии: Vestman
Все мы почти инстинктивно знаем, что механическая коробка передач имеет для правильной работы сцепление , устройство, которое позволяет включать или отключать передачи в зависимости от скорости автомобиля.
Двигатель — это компонент, который во время использования транспортного средства большую часть времени вращается, однако мы можем не захотеть вращать трансмиссию транспортного средства с той же скоростью, что и двигатель, особенно при трогании с места.При этом сцепление может обеспечивать плавное зацепление (в зависимости от нагрузки!) Между вращающимся двигателем и невращающейся трансмиссией путем отсоединения двигателя от входного вала коробки передач.
Теперь важный вопрос, который возобновляет тему этого сообщения в блоге, но как насчет АКПП , они тоже используют сцепления? В этих типах трансмиссии используется совершенно другое устройство под названием «Преобразователь крутящего момента », хотя реализована та же концепция, которая заключается в разделении или разрешении относительной угловой скорости между двигателем и коробкой передач.
СТРУКТУРА
Гидротрансформатор состоит из турбины, насоса или рабочего колеса, статора и муфты блокировки (имеется только в современных преобразователях крутящего момента), как показано на Рисунке 1.
Рисунок 1. Пример гидротрансформатораЭКСПЛУАТАЦИЯ
Этап 1 — Срыв
Фаза 2 — Разгон
Фаза 3 — муфта
ТИПЫ
На основе таблицы — K-фактор (также существуют составы C и MPC).
Гидротрансформатор, работающий на основе входной таблицы К-фактора.
K-фактор = об / мин / кв {крутящий момент}
динамический
Гидротрансформатор, моделирующий поведение трансмиссионной жидкости на основе механики жидкости.
СРАВНЕНИЕ
В этом сообщении блога было проведено сравнение преобразователя крутящего момента на основе таблицы и гидротрансформатора с целью выявить их различия.
Было проведено два моделирования с использованием одного и того же эксперимента (TCRig в VeSyMA — Powertrain) , единственная разница заключалась в настройках гидротрансформатора.
Рисунок 2. TCRig экспериментРисунок 3 отображает полученные результаты. Для первого графика гидротрансформатор был настроен на характеристики К-фактора, а для второго — на динамические характеристики.
Рисунок 3. Результаты гидротрансформатораХарактеристики К-фактора (вверху)
Из рисунка 3 видно, что нет задержки между входным и выходным крутящими моментами, равно как и долгота между сигналами почти одинакова (небольшая разница из-за умножения крутящего момента).Значит, речь идет об идеальном случае.
Динамические характеристики (внизу)
Между тем, из второго графика можно понять, что динамические характеристики вызывают явную задержку между входным и выходным сигналами и затухающий крутящий момент на выходном валу по сравнению с результатами K-фактора.
Задержка крутящего момента и уменьшение амплитуды связаны с инерцией жидкости и трением, которые моделируются в динамическом преобразователе крутящего момента.
ВЫВОДЫ
После проведения сравнения между обеими моделями преобразователя крутящего момента можно сделать вывод, что динамические характеристики воссоздают более реалистичную модель, поскольку она четко показывает задержку движения трансмиссионной жидкости от рабочего колеса к турбине (фазовый сдвиг) и потери энергии. внутри системы (уменьшение амплитуды выходного крутящего момента).
В противном случае, если требуемые результаты должны быть консервативными, может быть реализована модель К-фактора.В VeSyMA — Powertrain существует функция калибровки, позволяющая откалибровать динамический преобразователь крутящего момента.
ПОСЛЕДНИЕ ИНТЕРЕСНЫЕ ЗАЯВКИ
Шведский бренд Koenigsegg популярен для разработки собственных компонентов, таких как 7-сцепление и 9-ступенчатая автоматическая трансмиссия LST или Light Speed Transmission (о чем говорилось в предыдущем сообщении блога — Synchronisers in Dymola ), на этот раз это не было исключением.
Одно из его последних творений называется «Регера» .Подключаемый гиперкар с 5,0-литровым V8 с двойным турбонаддувом и тремя электромоторами, что делает эту машину мощностью 1500+ л.с.
Рисунок 4. Карбоновое волокно Koenigsegg RegeraОднако здесь нас не совсем интересует источник питания, это автомобиль, не похожий ни на какой другой из-за отсутствия трансмиссии. Основным устройством, соединяющим трансмиссию с колесами, является гидротрансформатор , способный передавать крутящий момент 1475 фунт-футов на задние колеса.
Скажем так, так как настоящих редукторов нет, двигатель все время находится в режиме «переменной передачи».Вот область, в которой преобразуется гидротрансформатор, поскольку он призван мгновенно передавать мощность на дорогу без включения и выключения, требуемых кроме муфты блокировки, если она установлена.
Автор: Хосе Мигель Ортис Санчес, инженер проекта
Пожалуйста, свяжитесь с нами, если у вас есть вопросы или тема, о которой вы хотели бы, чтобы мы написали. Вы можете отправить свои вопросы / темы через: Вопросы из технического блога / Предложение по теме.
Гидротрансформатор заменяет сцепление в автомобилях с автоматической коробкой передач. В отличие от ручного сцепления, в нем используется жидкость для передачи механической энергии от двигателя к коробке передач. В то время как механическая трансмиссия имеет маховик и диски сцепления, автоматические трансмиссии имеют гибкую пластину и гидротрансформатор. Гидротрансформатор расположен между гибкой пластиной и самой трансмиссией.
В преобразователе крутящего момента используется гидравлическая муфта для передачи мощности двигателя на трансмиссию.Крутящий момент также умножается, чтобы избежать потери мощности, связанной с переносом жидкости. Здесь нет механического прерывания, в отличие от системы сцепления в механической коробке передач. Это означает плавное переключение передач, не требующее вмешательства пользователя.
Чтобы поддерживать выходную мощность двигателя в оптимальном диапазоне, гидротрансформатор увеличивает крутящий момент на низких оборотах. Это необходимо, чтобы хватило мощности для разгона.
Во время эксплуатации автомобиля двигатель всегда должен работать.Однако, когда автомобиль останавливается, колеса, оси и карданный вал больше не вращаются. Коленчатый вал двигателя должен продолжать вращаться, пока карданный вал неподвижен. Гидротрансформатор позволяет двигателю и трансмиссии вращаться независимо друг от друга. Это предохраняет автомобиль от остановки при остановке.
Основными компонентами преобразователя крутящего момента являются крыльчатка, турбина и статор. Также есть сама жидкость и часто блокирующая муфта.Все они находятся в корпусе гидротрансформатора, который соединяется с гибкой пластиной двигателя (иногда называемой маховиком).
Рабочее колесо — Деталь, который соединен с двигателем. Коленчатый вал двигателя вращает гибкую пластину, которая вращает весь корпус гидротрансформатора. Крыльчатка приварена к корпусу гидротрансформатора. Следовательно, рабочее колесо всегда вращается с той же скоростью, что и двигатель, когда он работает. Рабочее колесо также известно как насос .
Турбина — Турбина воспринимает силу, создаваемую крыльчаткой, и отражает ее движение. Когда турбина вращается, она приводит в движение входной вал трансмиссии. В отличие от крыльчатки турбина может свободно вращаться на любой скорости. Когда автомобиль остановлен, он совсем не крутится.
Статор — Статор находится между крыльчаткой и турбиной. Это компонент, который фактически превращает устройство в преобразователь крутящего момента. В противном случае это была бы обычная гидромуфта.
Статор принимает жидкость от турбины и отбрасывает ее обратно к крыльчатке, увеличивая создаваемый крутящий момент. Увеличение крутящего момента особенно эффективно, когда рабочее колесо и турбина вращаются с очень разными скоростями.
Жидкость — Корпус гидротрансформатора заполнен трансмиссионной жидкостью. Эта жидкость передает энергию между рабочим колесом, турбиной и статором.
Блокирующая муфта — Блокирующая муфта блокирует рабочее колесо и турбину вместе на высоких скоростях, поэтому они вращаются с одинаковой скоростью.Это делает систему более эффективной за счет устранения естественной потери крутящего момента, которая происходит с гидравлической муфтой. Когда автомобиль снова замедлится, муфта блокировки выключится. Система снова превратилась в гидравлическую муфту, предотвращающую остановку двигателя.
Чтобы понять, как работает гидротрансформатор, представьте два вентилятора, сидящих лицом к лицу. Один вентилятор, крыльчатка, приводится в действие, потому что он подключен к двигателю.Другой вентилятор, турбина, не подключен, потому что он подключен к трансмиссии. Когда подключенный вентилятор вращается, другой вентилятор также вращается. Тот же эффект происходит внутри гидротрансформатора, но именно гидравлическая жидкость приводит в движение вентиляторы, а не воздух. Ниже приводится простой пошаговый обзор этого сложного процесса.
Когда турбина вращается, мощность передается через трансмиссию на колеса. Когда трансмиссия переключается на повышенную передачу, крутящий момент, необходимый для удержания шестерен в движении, увеличивается. Другими словами, с повышением передач турбина становится «тяжелее» двигаться. Гидротрансформатор помогает справиться с этим несоответствием за счет увеличения крутящего момента.
Когда турбина (трансмиссия) достигает скорости рабочего колеса (двигателя), включается муфта блокировки.Это позволяет им вращаться с одинаковой скоростью, повышая эффективность.
Когда автомобиль останавливается, двигатель продолжает работать, а крыльчатка продолжает вращаться. Однако при включенных тормозах турбина удерживается на месте, поэтому она не вращается. Это предотвращает остановку двигателя во время остановки автомобиля.
Крыльчатка всегда вращается, пока трансмиссия находится в режиме «Привод». По этой причине снятие ноги с тормоза в автомобиле с автоматической коробкой передач заставит ее «ползти» вперед даже без нажатия на педаль газа.Некоторые современные автомобили предотвращают это, автоматически применяя тормоза до тех пор, пока не будет нажата педаль газа.
Нет, не во всех автомобилях, известных как «автоматика», используется гидротрансформатор. Это связано с тем, что некоторые трансмиссии, такие как автоматическая коробка передач с двойным сцеплением, механически ближе к механической трансмиссии. Во всех автоматических коробках с двойным сцеплением вместо гидротрансформатора используются физические муфты. Исключением является 8-ступенчатая DCT Honda, в которой используются как гидротрансформатор, так и сцепление.
В вариаторахили бесступенчатых трансмиссиях обычно используется преобразователь крутящего момента. Но некоторые типы вместо этого используют сцепление.
Неисправность гидротрансформатора часто является результатом плохой трансмиссионной жидкости или утечки жидкости. Трансмиссионная жидкость должна естественным образом протекать через гидротрансформатор. В противном случае мощность не может быть эффективно передана от двигателя к трансмиссии.
Общие симптомы неисправного преобразователя крутящего момента могут включать дрожание, перегрев или проскальзывание шестерен.Для того, чтобы правильно выявить и диагностировать проблему, может потребоваться обученный механик.
Замена гидротрансформатора может стоить около 300-600 долларов. Общая сумма будет ближе к 1000 долларов, если включить рабочую силу.
ГидротрансформаторыPerformance, предназначенные для работы с гоночными автомобилями, будут стоить около 1000 долларов только за запчасти.
Хотя гидротрансформаторы — невероятное изобретение и важно для многих автоматических автомобилей, производители переходят на коробки передач с двойным сцеплением.Со временем они стали дешевле и обеспечивают более быструю смену. Даже малопроизводительные экономичные автомобили теперь часто оснащены автоматикой с двойным сцеплением.
Даже несмотря на то, что автоматические трансмиссии больше не являются столь высмеиваемыми «коробками для слякоти» прошлого, преобразователи крутящего момента все еще находятся в стадии разработки. Такие производители, как BMW, в некоторых случаях заменяют преобразователи крутящего момента на электродвигатели. К тому же у электромобилей вообще нет шестеренок. Хотя они никоим образом не вымерли, будет интересно посмотреть, как изменятся технологии в следующем десятилетии.
Си Джей — владелец Focus ST и любитель автомобильной промышленности. Он использует свой личный опыт и страсть к отрасли, чтобы создавать интересные и полезные темы для коллег-энтузиастов. Читать полную биографию →
Источники: Как работает гидротрансформатор? Физика, лежащая в основе разработки | Как работает автоматическая коробка передач?, Автомобиль и водитель | Что такое гидротрансформатор?, AAMCO
Эта статья была исследована, написана, отредактирована и рецензирована в соответствии с шагами, изложенными в нашем редакционном процессе.