Menu

Низкотемпературные припои: Применение высокотемпературных и низкотемпературных припоев

Содержание

Применение высокотемпературных и низкотемпературных припоев

Согласно классификации, приведенной в государственном стандарте, припои разделяются на группы по нескольким признакам, одним из которых является температура плавления. В процессе пайки при температуре, превышающей 450 ℃, могут применяться только высокотемпературные припои.

Другие составы такой термической нагрузки не выдержат. Высокотемпературная пайка осуществляется в разных режимах. При проведении процесса до 1100 ℃ пригодны к использованию составы со средней плавкостью.

В интервале от 1100 ℃ до 1850 ℃ следует применять высокоплавкие смеси. При более высоких температурных показателях годятся только тугоплавкие композиции.

Общие свойства

Удивительно, что, несмотря на классификацию ГОСТа, даже в учебниках существует разная подача материалов.

Так, некоторые авторы в качестве минимальной температуры, рекомендуемой для применения высокотемпературных припоев, называют 500 °С.

Существует большое количество готовых композиций, рекомендуемых к применению при повышенных температурах. Часто в состав высокотемпературных припоев входит:

  • медь;
  • серебро;
  • цинк;
  • фосфор.

Для изменения свойств в высокотемпературные сплавы добавляют кремний, германий и некоторые другие элементы. Низкотемпературными считаются припои:

  • на основе свинца;
  • олова;
  • с добавлением сурьмы.

Выбор конкретных припоев определяется видом сплава, из которого сделаны детали, и условиями пайки.

Иногда в низкотемпературные припои вводят цинк для повышения коррозионной стойкости шва, и разрабатывают специальные низкотемпературные сплавы для конкретных условий использования. В быту низкотемпературную пайку проводят с применением паяльника, а высокотемпературную – газовой горелкой.

Для жаропрочных сплавов

Высокотемпературные припои применяют для нержавеющих и жаропрочных стальных сплавов. Пайку таких сплавов проводят с применением припоев на основе меди, меди с цинком, серебра.

Процесс осуществляется в печах в окружении водорода или паров раствора аммиака. При пайке с помощью меди, медно-цинковых композиций в качестве флюсовой добавки используют буру.

Серебряные высокотемпературные припои можно применять только в сочетании с активными флюсами. Полученные таким методом швы выдерживают нагревание до 600 ℃. Соединения, полученные с медьсодержащими составами, высокие температуры переносят хуже.

В качестве альтернативы иногда применяют никель-хромовые припои с платиной или палладием. Такие высокотемпературные материалы стоят дороже. Швы обладают большой термической и коррозионной устойчивостью.

При наличии на стальных изделиях из нержавеющих и жаропрочных сплавов больших зазоров, хорошее соединение дают порошковые припои, содержащие компоненты, идентичные химическим элементам сплавов.

Полученные швы выдерживают нагревание до 1000 ℃. Процесс проводят в вакуумированной среде, наполненной аргоном и газообразным флюсом.

Для алюминия и его сплавов

Алюминий и его сплавы – материалы, с которыми работать сложно. Низкотемпературная пайка алюминия усложняется наличием тугоплавкого поверхностного слоя оксидов.

Помочь могли бы активные флюсы, но их применение чревато усиленным образованием продуктов коррозии на месте шва. Разработаны специальные технологические приемы проведения спаивания по предварительно нанесенным покрытиям.

Помимо этого для алюминия используют низкотемпературные составы с добавками дорогостоящего галлия.

Высокотемпературную пайку проводят посредством применения высокотемпературных припоев на основе алюминия с добавками меди, цинка, кремния.

Чаще всего для спаивания алюминиевых деталей используют составы 34А, а также силумин. Для каждого из этих припоев предназначен соответствующий флюс. Припой 34А способствует образованию шва, устойчивого при 525 ℃.

Высокотемпературная припойная масса из алюминия и кремния позволяет получить соединение, выдерживающее 577 ℃. При проведении работы применяют флюсы, сделанные из хлоридов щелочных металлов. Прочность образованных швов не всегда соответствует требованиям производства.

При необходимости получения соединений высокой термической и коррозионной стойкости пайку проводят в глубоком вакууме в окружении паров магния.

Процесс выполняется без флюсов по сложной технологии. В качестве припоя применяют силумин. Полученный таким методом шов выдерживает значительные нагрузки.

Работа с медью

В системах водоснабжения, отопления и некоторых производственных схемах осуществляется монтаж медных труб, не предназначенных для повышенной термической нагрузки. В таких ситуациях для пайки допустимо применение низкотемпературного припоя.

Трубопроводы большого диаметра, сделанные из медных сплавов, иногда подвергаются большому нагреванию. В таких случаях для меди и сплавов на ее основе нужны специальные тугоплавкие композиты.

Обычно применяют высокотемпературные припои на медной, серебряной основе, содержащие другие металлы, а также кремний или фосфор.

Составы из меди и цинка обозначают сочетанием букв ПМЦ и числами, указывающими на процентное содержание меди. Такие высокотемпературные припои обладают многофункциональным действием, пригодны для работы с другими сплавами.

Образующиеся швы обладают умеренной стойкостью к механическим нагрузкам. Для улучшения прочностных качеств соединений припойные средства легируют различными добавками.

На основе меди и фосфора

Высокотемпературные составы на основе меди и фосфора обозначаются буквосочетанием ПМФ и числами, указывающими на концентрацию фосфора в общей массе.

Средство переходит в жидкое состояние при температуре 850 ℃, позволяет получать швы хорошей коррозионной стойкости. Припой применим не только для медных, но и ювелирных изделий из благородных металлов.

Только стали нельзя паять таким методом. В результате на стальных швах образуются фосфиты, которые уменьшаю механическую прочность шва, приводят к образованию хрупкого соединения. Достоинство медьсодержащих припоев с фосфором заключается в возможности проведения пайки без флюсов.

Для работы с медными, некоторыми стальными, чугунными деталями также рекомендуются высокотемпературные припои на основе латуни. Это может быть чистый латунный сплав или композит с оловом и кремнием. Средства обладают текучестью, достаточной для образования прочного, стойкого шва.

На основе серебра

Очень хорошие свойства имеют высокотемпературные припойные средства на основе серебра. Они подходят практически для всех металлических изделий. Единственный недостаток – цена благородного металла лимитирует возможности частого применения.

Существуют сплавы (ПСр-15) с невысокой концентрацией серебра. Они стоят меньше, чем концентрированные композиции, могут применяться чаще.

Составы (ПСр-45) с содержанием серебра – 45 %, меди – 30 %, цинка – 25 % обладают очень хорошими свойствами: вязкостью, текучестью, ковкостью, стойкостью к окислению и механическим воздействиям. Эти сплавы применяются по необходимости, при наличии финансовой возможности.

Варьируя соотношение указанных компонентов, можно изменять максимальные температурные значения, которые выдержит будущий шов. Еще лучшие качества демонстрирует высокотемпературная композиция с содержанием серебра 65 %, но стоит она очень дорого.

Работа с титаном

Для пайки тугоплавких металлов и сплавов возможностей большинства описанных припоев недостаточно. Нужны совершенно другие высокотемпературные компоненты. Таким химическим элементом является титан, имеющий температуру плавления около 1700 °С.

Он образует прочные швы даже на изделиях с остатками оксидов. Процесс нужно проводить в атмосфере чистого аргона или гелия при значительном понижении давления в рабочей зоне.

Высокотемпературные составы из титана и меди, никеля, кобальта, других металлов проявляют свойства эвтектических систем. Сами по себе они обладают хрупкостью, применяются в виде порошков, паст.

Проволоку, ленты, полосы их этих сплавов изготовить не удается. Работать паяльником с тугоплавкими композитами невозможно.

В некоторых случаях на практике реализуют технологию контактного плавления. В зазор изделия, подлежащего пайке, помещают фольгу из титана или его сплавов.

При достижении температуры 960 ℃ начинается, а при показаниях 1100 ℃ заканчивается образование эвтектического сплава, играющего роль припоя.

Изделия, подлежащие эксплуатации при очень высоких температурах, подлежат спайке при помощи сплавов с добавками кремния, железа. Для реализации таких технологических процессов нужны мощные источники энергии.

Требуемой температуры достигают в вакуумных печах, плазменными горелками. Можно применять с этой целью электроконтактный способ или воздействие электронным лучом.

Высокотемпературное спаивание деталей – трудоемкий процесс, требующий специальных знаний и квалификации. Располагая хорошими вспомогательными средствами, оборудованием можно справиться с производственной задачей любой степени сложности.

Припои низкотемпературные — Энциклопедия по машиностроению XXL

Пайка мягким припоем. Мягкие припои, низкотемпературная пайка.  [c.125]

Низкотемпературная пайкосварка чугунным присадочным металлом Низкотемпературная пайкосварка латунным припоем Низкотемпературная пайкосварка чугунным присадочным металлом Низкотемпературная пайкосварка латунным припоем То же  [c.98]

Газовая сварка, пайкосварка латунными припоями низкотемпературная пайкосварка с чугунным присадочным металлом пайка легкоплавкими припоями  [c.22]


При пайке паяльниками основной металл нагревают и припой расплавляют за счет теплоты, аккумулированной в массе металла паяльника, который перед пайкой или в процессе ее подогревают. Для низкотемпературной пайки применяют паяльники с периодическим нагревом, с непрерывным нагревом и ультразвуковые. Рабочую часть паяльника выполняют из красной меди. Паяльник с периодическим нагревом в процессе работы периодически подогревают от постороннего источника теплоты. Паяльники с постоянным нагревом делают электрическими. Паяльники с периодическим и непрерывным нагревом чаще используют для флюсовой пайки черных и цветных металлов легкоплавкими припоями с температурой плавления ниже 300—350 °С.  
[c.241]

Олово широко используют как главную составную часть большинства мягких (низкотемпературных) припоев, а также в электродных сплавах, особенно для германия, с которым оно легко сплавляется. В полупроводниковой технологии олово применяют в качестве носителя донорных элементов — так, оно является почти единственным носителем фосфора.  

[c.34]

Пайка боралюминия. Разработано несколько технологических процессов пайки боралюминия. Пайка низкотемпературными припоями производится в температурном интервале, не оказывающем разупрочняющего влияния на армирующие волокна [200]. Паяные соединения, полученные этим методом, способны работать при температурах до 315° С. Было опробовано несколько припоев для низкотемпературной пайки. Припой состава 55% Сс1, 45% Ag рекомендуется для рабочих температур до 90° С он обеспечивает прочность соединения на срез, равную 9 кгс/мм. Припой состава 95% цинка и 5% алюминия рекомендуется для рабочих температур до 315° С, при которых прочность соединения на срез составляет 3 кгс/мм .  [c.191]

Химический состав некоторых низкотемпературных висмутовых припоев приведен в табл. 69.  [c.98]

Некоторые низкотемпературные галлиевые припои приведены в табл. 70.  [c.99]

Для удобства применения порошкового припоя его применяют в виде паст. Пасты из низкотемпературных припоев обычно состоят из трех частей порошкообразного припоя, флюса и загустителя.  [c.101]

Усгановки для пайки погружением в расплав припоя. Пайку погружением в расплавленные припои разделяют на низко- и высокотемпературную. Низкотемпературная пайка погружением в припои имеет две разновидности погружением непосредственно в расплав припоя и волной или струями припоя.  [c.170]

Наряду с погружением в низкотемпературные припои в промышленности производят пайку изделий погружением в высокотемпературные припои. Подготовленные к пайке изделия погружают частично или полностью, например, в расплав латуни, покрытой слоем флюса. После предварительного подогрева до температуры около 200 °С их погружают в ванну с припоем, нагретую до температуры 950 °С и выдерживают там в зависимости от массы изделий 20—40 с.  [c.171]


В производстве тонколистовых паяных конструкций применяют установки с кварцевыми лампами (с температурой спирали 1000 °С). В установках с кварцевыми лампами применяют рефлекторы с одной или нескольких сторон. Такие установки могут быть с нагревом в вакууме, в контролируемых и воздушной средах. В последнем случае установки используют для соединения изделий низкотемпературными припоями ввиду ограниченной стойкости кварцевого стекла ламп при нагреве до высоких температур на воздухе.  [c.178]

Низкотемпературную пайку углеродистых и низколегированных сталей часто выполняют оловянно-свинцовыми припоями. В качестве флюса обычно применяют водные растворы хлористого цинка.  [c.233]

Низкотемпературные припои на основе цинка малопригодны для пайки углеродистых и низколегированных  [c.233]

Низкотемпературную пайку оловянно-свинцовыми припоями жаропрочных сталей и сплавов производят редко. Пайку осуществляют паяльником, газопламенным нагревом или погружением в расплавленный припой. В качестве флюсов применяют водный  [c.243]

Капиллярную пайку меди низкотемпературными припоями можно производить при зазорах 0,05—0,5 мм и температурах 650—900 °С в вакууме или аргоне. При этом соединения меди, паянные индием, галлием, оловом, припоями ПОС 61 и ПОС 40, хрупкие и малопрочные, предел прочности на срез не превышает 40—70 МПа.  [c.251]

Для низкотемпературной пайки никеля пригодны оловянно-свинцовые припои, содержащие 40—60 % Sn  [c.254]

Известны способы низкотемпературной пайки без применения флюсов, такие, как абразивная пайка или пайка трением. При этом способе пайки окисную пленку с поверхности алюминия можно удалить шабером, металлическими щетками, частицами абразива (асбест, металлические порошки, первичные кристаллы сплавов-припоев, в твердо-жидком состоянии и т. п.), находящимися в расплаве припоя. Для лужения алюминия применяют также абразивные паяльники, у которых рабочая часть представляет собой стержень из частиц припоя и абразива. Операция пайки осуществляется уже после абразивного лужения обеспечением плотного контакта по луженым поверхностям при температуре полного расплавления припоя возможна подпитка шва припоем.  [c.266]

Составы припоев, используемых для низкотемпературной пайки полупроводников, приведены в табл. 1. Для пайки полупроводников применяют также припои—пасты на основе галлия. Для обеспечения надежности смачивания контактной поверхности используют ультразвук. Составы при-  [c.272]

I, Составы низкотемпературных. припоев, применяемых при пайке германия и кремния  [c.272]

Для устранения различия в потенциалах контактирующих материалов часто используют технологические приемы. Например, для соединения ответственных изделий используют изотермическую выдержку изделий в процессе пайки. Помимо увеличения прочности соединений, это способствует выравниванию потенциалов контактирующих материалов в зоне паяного соединения. При пайке алюминиевых сплавов низкотемпературными припоями на паяемый материал наносят барьерные покрытия, имеющие значительно меньшую разность потенциалов с материалом припоя.  [c.323]

Первая группа состоит из двух обозначений. Первое выражает соотношение абсолютных температур начала плавления припоя и паяемого материала Tf, причем для низкотемпературных припоев, согласно выражению (50), принят символ Н, а для высокотемпературных в соответствии с выражением (51) — символ В. Второе обозначение определяет тип припоя в зависимости от его химиче-  [c.352]

Пайка низкотемпературными припоями  [c.379]

Многие четверные сплавы используются в качестве припоев и для низкотемпературной пайки они рассматриваются в разделе Области применения .  [c.274]

Флюсы, применяемые при пайке, могут быть классифицированы по следующим признакам (рис. 6) по характеру пх взаимодействия с металлами — химического и электрохимического действия по назначению (для флюсования и консервирования паяного соединения) по природе составляющих солей — оргаиптсскне и неорганические) по температурному интервалу действия (для пайки легкоплавкими припоями — низкотемпературные флюсы и дли пайки среднеплавкими и высокоплавкимн припоями — высокотемпературные флюсы) по природе растворителя (водные и неводиыс).  [c.26]

Разделительная резка блюмсов и слябов на установках непрерывной разливки стали Сплошная поверхностная зачистка блюмсов и слябов в потоке прокатки Точная фигурная вырезка заготовок и деталей из листовой низкоуглеродистой высоколегированной стали толщиной до 80 мм и алюминия толщиной до 100 мм Точная фигурная вырезка деталей и заготовок из листов Сварка стали малой толщины, чугуна, цветньсплавов Пайка легкоплавкими и тугоплавкими припоями, низкотемпературная пайкосварка чугуна чугунными припоями Механизированная высокопроизводительная пайка деталей из медных сплавов Наплавка цветных металлов и твердых сплавов на стальные и чугунные изделия Тонкослойная наплавка износостойких покрытий из порошковых твердосплавных материалов Нагрев до 300 °С изделий из черных и цветных металлов и неметаллических материалов, а также для оплавления поверхности битумной гидроизоляции Правка металлоконструкций до и после сварки  [c.6]


Припои на основе Ag и Си. Серебряные припои содержат медь, цинк, кадмий известны прппои, содержащие также золото. Температурный интервал пайки этих припоев 600—1000° С. Содержание серебра колеблется 6т 25 до 70%. В качестве примера моллегирующие элементы, образующие низкотемпературные эвтектики меди с фосфором при 707° С, с серебром при 779° С. Для снижения температуры плавления к припою добавляют олово и цинк. Медно-фосфористый припой МФ1 с содержанием 10% фосфора имеет. Т л = 714 850° С. Для пайки латуни применяют медно-цинковые припои с содержанием 50—60% Си. Их температура плавления составляет 850—940° С. В качестве флюсов для указанных припоев применяют, в основном смеси плавленой буры ЫагВ40, и борной кислоты. Бура плавится при 743° С для активирования в состав вводят фториды.  [c.283]

На основании полученных результатов исследования микроструктуры и микротвердости зоны сплавления рекомендуется для восстановления блоков цилиндров новый низкотемпературный процесс пайко-сварки ацетилено-кислородным пламенем с применением флюса ФНСН-2 в сочетании с припоем ЛОМНА. Разработанная технология внедряется на предприятиях Ворошиловградского автомобильного управления, Грозненского и Павловского автотранспортных объединений. Кроме этого, внедряется сварка деталей из сплавов алюминия в аргоне.  [c.62]

Соединения, паяные твердыми припоями. Твердые припои применяют дли пайки сильфонов из бериллиевой бронзы, а также для других дисперсионнотвер-деющих материалов. Сильфоны припаивают к арматуре до низкотемпературной термической обработки — облагораживания Пайка твердыми припоями сильфонов из других не дисперсионно твердеющих материалов не рекомендуется, так  [c.304]

Па различие в процессах растекания и течения в зазоре может влиять содержание в расплаве отдельных кристаллов и кристаллических образований. Если размеры их будут превышать величину капиллярного зазора, то течения припоя в нем не будет. Наряду с этим течение припоя в зазоре зависит еще от ряда факторов. При определении характера и глубины затекания низкотемпературных припоев системы олово—свинец в зазор между стальными пластинами при флюсовании водным раствором хлористого ципка установлено, что чистое олово затекает на глубину, равную трети глубины затекания сплавов олово—свинец, содержащих 20—60 % Sn. При этом глубина затекания меняется в зависимости от состава флюса. Так, для припоя, состоящего из равных долей олова и свинца при переходе от неорганического флюса на основе хлористого цинка на органический (молочная кислота, смеси смол), глубина затекания между стальными пластинками снижается примерно в 10 раз При пайке  [c.21]

Оловянно-свинцовые припои применяют в различных отраслях промышленности при низкотемпературной пайке сталей, никеля, меди и ее сплавов. Они обладают высокими технологическими свойствами, пластичны и при выполнении пайки не требуют дорогостоящего оборудования и сложных способов пайки. Пайку оловянносвинцовыми припоями производят обычно при нагреве паяльником, В зависимости от содержания в припоях олова изменяются свойства и температура плавления (рис. 18), Минимальной температуры плавления (183,3 °С) достигают при содержании в сплаве 61,9% Sn. Этот припой имеет эвтектическую структуру, весьма пластичен, обладает высокими технологическими свойствами.  [c.86]

Таким образом, боргалоидные соединения дают положительный эффект при пайке легированных сталей, жаропрочных сплавов и многих других металлов, кроме легких, таких, как А1, Mg и Ti. При этом трехфтористый бор обеспечивает пайку тугоплавкими припоями, а треххлористый бор — тугоплавкими и средиеплавкими. Трехбромистый бор может быть использован как для высокотемпературной пайки, так и для низкотемпературной.  [c.134]

При низкотемпературной пайке коррозионно-стойких сталей оловянно-свинцовыми припоями обычные канн-фольно-спкртовые флюсы непригодны. Непригодны и канифольно-спиртовые флюсы с малыми добавками хлористого цинка и хлористого аммония.  [c.236]

При низкотемпературной пайке чугуна оловянно-свинцовыми или другими легкоплавкими припоями паяемые поверхности можно подготовить путем их обработки флюсом ПВ209 или ПВ284Х при 600—700 °С или электрохимическим методом в соляной ванне, а затем обезжирить бензином, ацетоном или раствором щелочи. Пайку нужно производить паяльником или газовой горелкой с применением флюсов на основе хлористого цинка. Наиболее просто пайку чугуна осуществляют при использовании флюсов на основе хлористого цинка с добавками хлористых солей меди и олова. Для облегчения пайки легкоплавкими при-  [c.248]

Соединение меди при низкотемпературной пайке производится стандартными оловянно-свинцовыми припоями ПОССу 30—0,5 ПОС 40 ПОССу 40—0,5, ПОС 61 и свинцовосеребряными припоями ПСр 1,5 ПСр 2,5 ПСр 3 с использованием флюсов на основе хлористого цинка или канифольно-спиртовых. Соединения, паянные оловянно-свинцовыми припоями, теплостойки до температур 100—120 С. При снижении температуры до —196- —253 °С предел прочности этих соединений увеличивается в 1,5—2,5 раза, достигая 45—75 МПа, при этом пластичность соединений резко снижается.  [c.250]

Особенность низкотемпературной пайки латуней оловянно-свинцовыми н другими аналогичными припоями заключается в том, что удаление окисной пленки с поверхности латуней не обеспечивается канифольно-спиртовыми флюсами. Для этого необходимо применять более активные флюсы. Например, при пайке латуней ЛС59-1-1, Л63 используют флюсы на основе хлористого цинка с добавками азотной кислоты.  [c.252]

Пайка титановых сплавов оло-ВЯНН0-СВН1ГП0ВЫМИ и другими низкотемпературными припоями применяется редко. В этом случае перед пайкой титан покрывают никелем химическим или гальваническим способом. Для увеличения сцепления никеля с титаном детали подвергают нагреву до 250 °С в течение 1 ч. После этого пайку производят теми же припоями и флюсами, которые используют для чистого никеля.  [c.256]


Паять титан и его сплавы низкотемпературными припоями можно также после предварительного покрытия изделий оловом, серебром или медью. Для покрытия оловом подготовленное под пайку изделие быстро опускают на 10—20 мин в нагретое до 700 °С олово. Покрыть титан оловом можно и при помощи флюса, в состав которого входит хлористое олово. Компоненты флюса прогушивают и применяют в мелкоразмолотом ви.де. Изделие покрывают флюсом толщиной до 3 мм и нагревают в печи с нейтральной средой до 350—400 °С.  [c.256]

Низкотемпературную пайку алюминия и его сплавов припоями на основе олова можно осуществить с применением флюсов на основе высококипящих органйческих соединений типа три-  [c.265]

Бесфлюсовую низкотемпературную пайку алюминия можно осуществить Б газовых средах без применения защитных покрытий (контактно-реактивным методом). В качестве припоя применяют кремний, медь или серебро, которые наносят на алюминий гальванически, термовакуумным напылением или методом горячего плакирования. Высокое качество паяного соедин ения получают при пайке в вакууме 10 Па и толщине покрытия 10—12 мкм.  [c.266]

Низкотемпературную пайку используют в основном при изготовлении торцовых уплотнений, подпятников, радиальных и упорных подшипников, рабочая температура эксплуатации которых не превышает 200—250 С. При этой пайке применяют припои на основе олова, свинца, висмута, кадмия и сурьмы. Перечисленные припои не смачивают чистый графит, поэтому онн рекомендуются для пайки графита, пропитанного металлами, или графита с предварительно нанесенным покрытием. В качестве покрытий наиболее часто применяют медь и никель. Меднение графита производят в ванне следующего состава 160 г/л USO4, 15 г/л h3SO4, 50 мл/л этилового спирта. Шотность тока 1—5 А/дм , выдержка  [c.278]

Индий. Индий применяется как составная часть в амальгамах для люминесцентных ламп, в качестве излучающей добавки в газоразрядных ртутных лампах с иодвдами металлов и др. Индий и его сплавы являются превосходными низкотемпературными припоями, особенно для нанесения тонких пленок на стекло, кварц и керамику расплавленный индий хорошо смачивает стекло и способен проникать в тонкие слои металлов, предел прочности таких соединений при растяжении составляет 3,4-10 Па и обеспечивает хороший электрический контакт.  [c.91]

Припои. Иидий и многие его сплавы хорошо прилипают к многим металлам II неметаллам [33]. Благодаря этому широкое применение находят специальные припои, содержащие индий. Разработаны некоторые низкотемпературные припои, содержащие иидий, в том числе сплавы индий — медь — серебро и индий — медь — золото. Большое количество нидийсодержащих припоев в таблетках применяется в производстве транзисторов.  [c.240]

СоотЬетственно рабочему диапазону температур пайки, определяемому характером припоев, паяльные флюсы делятся на две основные группы низкотемпературные, или флюсы для мягкой пайки, и высокотемпературные, или флюсы для твердой пайки.  [c.117]


Пайка низкотемпературными припоями — Справочник химика 21

    При монтаже РЗА используют низкотемпературную пайку, при которой нагрев не превышает 450° С. Низкотемпературная пайка характеризуется капиллярным механизмом, при котором расплавленный припой заполняет паяльный зазор и удерживается в нем под действием капиллярных сил. Участок паяного соединения с литой структурой, закристаллизовавшийся в процессе пайки, называют паяным швом. Участок паяного шва, образовавшийся у края зазора на наружных поверхностях соединяемых деталей под действием капиллярных сил, называют галтелью паяного шва [7]. [c.21]
    Одним из путей решения вопроса о низкотемпературной пайке алюминиевых сплавов является предварительное нанесение на детали никелевого слоя, электродный потенциал которого находится между потенциалами алюминия и основных компонентов легкоплавких припоев. Кроме того, по никелевому подслою хорошо растекается припой, [c.193]

    При низкотемпературной пайке используется 20—25 % 5п от его общего потребляемого количества, которое в основном применяется для изготовления припоя ПОС 61. Этот припой обладает наиболее благоприятным сочетанием технологических свойств при пайке. [c.90]

    При пайке соединений из алюминия, меди и стали, работающих при температуре 100—150 °С, Танака Уру и другие предложили припой, содержащий 2—7 % Ag, 1—2,5 % Си 1—7 % А1, 0,5— 1 % Сг, Zn — остальное. Температура плавления такого припоя 380—415°С. При низкотемпературной пайке тонкостенных изделий небольшого размера из алюминия, стали или меди может быть [c.100]

    Низкотемпературная пайка в ваннах с расплавленным припоем. Известны две разновидности способа пайки погружением в ванны с расплавленным припоем погружением в покоящийся жидкий припой и погружением в подвижный жидкий припой. При пайке погружением изделие должно находиться в ванне до полного прогрева его до температуры пайки и затекания припоя в зазор. При опускании в ванну плоских изделий в горизонтальном положении под ними могут образоваться пары флюса, что приводит к появлению несмоченных мест в соединении, поэтому такие изделия погружают под некоторым углом к зеркалу ванны (рис. 37). [c.207]

    Для активирования заполнения зазора припоем при бесфлюсовой пайке иногда используют его подвод через металлическую губку. По данным Г. А. Яковлева, низкотемпературная пайка металлов меди, никеля, молибдена, алюминия и других, а также полупроводников (кремния,германия) припоями на основе свинца и олова в водороде возможна с применением никелевой ленты (губки) толщиной 140 мкм, катаной и спеченной из карбонильных порошков с пористостью 75 % и линейным размером капилляров 3 — 10 мкм. Ленту предварительно укладывают в зазор, а на ее свободный выступ припой. Паяемые материалы обезжиривают и травят (химически) пайку проводят в пружинных кассетах, обеспечивающих прижим соединяемых деталей под давлением от 0,5 до [c.249]

    С изложенной точки зрения, положительное влияние на коррозионную стойкость цинка в припоях с оловом и свинцом обусловлено повышением при этом растворимо,сти в припое алюминия и, как следствие, более активным развитием процесса диспергации оксидной пленки на поверхности алюминия при низкотемпературной пайке. Процессу диспергации способствуют также повышение температуры и длительности выдержки при пайке, а также введение в припои других элементов, обладающих достаточно высоким химическим сродством к алюминию, в том числе образующих с ним химические соединения, особенно выше температуры пайки. К таким элементам с высоким химическим сродством к алюминию относятся серебро, сурьма, никель, а также медь, титан, магний, литий и др. [c.264]


    Это направление в технологии низкотемпературной пайки алюминия получило впоследствии дальнейшее развитие. Оксидную пленку с поверхности алюминия удаляют не только шабером, но и металлическими щетками, абразивными частицами, погруженными в расплавленный припой и разрушающими оксидную пленку в процессе обратно-поступательного или вращательного перемещения их по облуживаемой поверхности. [c.269]

    Чем ниже температура пайки, чем более щадящими будут условия воздействия при групповой пайке. Поэтому оправдано стремление использовать более низкотемпературные припои, чем припой ПОС-61. При этом необходимо учитывать, что висмут, применяемый в составе оловянно-свинцовых припоев для снижения температуры пайки, относится к дефицитным металлам, и его количество в припое следует ограничивать. Сплавы должны быть эв-тектоидными или близкими к ним по составу, с минимальной крутизной линий ликвидуса у эвтектической точки. [c.27]

    Твердый припой имеет гораздо большую механическую прочность, но его нельзя применять для соединения деталей, изготовленных из сталей с высокими механическими свойствами, полученными путем закалки с низкотемпературным отпуском, так как температура плавления припоя настолько высока, что сталь отпускается. Для восстановления механических евойст з требуется повторная термообработка, что является сложной операцией, вредно действующей на пайку. [c.174]

    Припои ПСр 25 и ПСр 45 имеют наибольшее применение для пайки деталей из стали, меди и ее сплавов и обеспечивают механическую прочность паяного соединения (30—35 кгс/мм ). Припой ПСр65 рекомендуют для пайки, например, ленточных пил. Медно-цинковые припои (ГОСТ 1534—42) используют в качестве заменителей серебряных и низкотемпературных припоев (ГОСТ 1499—70) при пайке деталей из меди, латуни и бронзы, По прочности спая эти припои близки к серебряным, но более хрупки, их ирименяют в конструкциях, не работающих при ударных нагрузках. Добавка к медно-цинковым припоям до 1 % 5п значительно улучшает механические показатели паяного соединения и расширяет область его применения. [c.86]

    Есть данные о применении для пайки алюминиевых сплавов легкоплавкого припоя 8п— (8—15)% 2п — (2—5)% РЬ с температурой плавления 190 °С с флюсом в виде раствора борнофтористого и фтористого аммония в моноэтаноламине. Во флюсах для низкотемпературной пайки алюминия и его сплавов вместо канифоли предложено использовать пентаэритрит бензоата, который более термостоек, чем канифоль, а остатки его некорро-зионно-активны и в виде эластичной пленки предохраняют паяные швы от окисления. В качестве активатора флюса используют карбоновые кислоты. Паяные соединения (припой П250) не разрушаются в солевом растворе в течение 200 суток. Припой из проволоки (8п—РЬ—Ag) с сердцевиной из указанного флюса пригоден для пайки всех алюминиевых материалов, в которых содержится менее 3 % Mg и 3 % 81. [c.154]


Температура плавления припоя и технические характеристики

Припой — это металл или смесь металлов, используемых при пайке с целью соединения деталей. Как правило, используются сплавы на основе, олова, меди и никеля. Припой на базе олова входит в группу легкоплавких припоев. И температура плавления припоя здесь не превышает 450 °C. Эти составы широко используются для работы с радиоаппаратурой. Весьма распространенными являются припои на базе олова и свинца, они широко применяются в нашей металлопромышленности: аббревиатура ПОС.

Для сборки самодельных устройств простейшей конструкции достаточно наиболее распространенного припоя ПОС-61 или подобного. Сплав можно добыть из старой печатной платы от электронного прибора и собрать его паяльником с паяных контактов.

Виды и характеристики припоев

Бывают мягкими (легкоплавкими) и твердыми. Для монтажа радиоаппаратуры используются легкоплавкие, с температурой плавления 300−450 °C. Мягкие припои уступают по прочности твердым, хотя для сборки электроприборов используются как раз они.

Легкоплавкие сплавы — это обычно сплав свинца и олова главным образом. Немного есть легирующих элементов.

Примеси иных металлов вводятся для получения определенных характеристик:

  • пластичности;
  • температуры плавления;
  • прочности;
  • устойчивости к коррозии.

Число в обозначении марки говорит о том, сколько процентов олова в нем содержится. Так, у припоя ПОС-40 технические характеристики таковы, что в нем 40% Sn, а ПОС-60 — 60%.

Если марка неизвестна, состав можно оценить по косвенным признакам:

  • Температура плавления ПОС — 183−265 °C .
  • Если у припоя металлический блеск, значит, в нем достаточно много Sn (ПОС-61, ПОС-90). Если цвет темно-серый, а поверхность матовая, это говорит о высоком содержании свинца, именно он придает сероватый оттенок.
  • Припои, содержащие большое количество свинца очень пластичны, а олово придает прочности и жесткости.

Использование сплавов оловянно-свинцовой группы

К таким сплавам относятся следующие:

  • ПОС-90 содержит в составе: Pb — 10%, Sn — 90%. Используется для ремонта медицинского оборудования и пищевой посуды. Токсичного свинца немного, так как нельзя, чтобы он соприкасался с пищей и водой.
  • ПОС-40: Pb — 60%, Sn — 40%. Главным образом используется для пайки электроаппаратуры и изделий из оцинкованного железа, также с его помощью чинят радиаторы, латунные и медные трубопроводы.
  • ПОС-30: Sn — 30%, Pb — 70%. Применяется в кабельной промышленности, для пайки и лужения и листового цинка.
  • ПОС-61: Pb 39%, Sn 61%. Как с ПОС-60. Нет особой разницы.

С помощью ПОС-61 осуществляется лужение и пайке печатных плат радиоаппаратуры. Это — главный материал для сборки электроники. Плавиться начинает с 183 °C, полное расплавление при 190 °C. Паять с этим припоем можно при помощи обыкновенного паяльника, не боясь того, что радиоэлементы перегреются.

ПОС-30, ПОС-40, ПОС-90 расплавляются при 220−265 °C. Для многих радиоэлектронных элементов эта температура предкритическая. Сборку самодельных электронных устройств осуществлять лучше с ПОС-61, чьим зарубежным аналогом можно считать Sn63Pb37 (где Sn 63%, а Pb 37%). Также с его помощью паяется радиоаппаратура и самодельная электроника.

Припои продаются, как правило, в тюбиках или катушках по 10−100 г. Состав сплава можно прочесть на упаковке, к примеру: Alloy 60/40 («Сплав 60/40» — ПОС-60). Выглядит, как проволока диаметром 0,25−3 мм.

Нередко в его составе находится флюс (FLUX), заполняющий сердцевину проволоки. Содержание указывается в процентах и составляет 1−3,5%. Благодаря этому форм-фактору во время работы отсутствует необходимость подавать флюс отдельно.

Разновидность ПОС — ПОССу представляет собой оловянно-свинцовый сплав c сурьмой, и используется в автомобилестроении, в холодильном оборудовании, для пайки элементов электроаппаратуры, обмоток электромашин, кабельных изделий и моточных деталей; подходит для спаивания оцинкованных деталей. Кроме свинца и олова в сплаве 0,5−2% сурьмы.

Как показывает таблица, ПОССу-61−0,5 больше всего подходит для замены ПОС-61, ведь температура его полного расплавления — 189 °C. Существует также припой совершенно не содержащий свинца, оловянно-сурьмянистый ПОСу 95−5 (Sb 5%, Sn 95%) с температурой плавления 234−240 °C .

Низкотемпературные припои

Есть припои, предназначенные специально для пайки деталей с большой чувствительностью к перегреву. Наиболее «высокотемпературный» среди низкотемпературных — это ПОСК-50−18 с температурой плавления 142−145 °C. В ПОСК-50−18 содержится 8% кадмия, 50% олова и 32% свинца. Кадмий усиливает устойчивость к коррозии, однако наряду с тем придает токсичности.

По убыванию температуры следует РОЗЕ (Sn 25%, Pb 25%, Bi 50%), маркирующийся ПОСВ-50. Т пл. — 90−94 °C. Предназначен для пайки латуни и меди. Олова в составе этого сплава 25%, свинца — 25%, висмута — 50%. Соотношение металлов в процентах может несколько разниться, а количество их, как правило, указывается на упаковке в графе «Состав». Этот припой крайне популярен у электронщиков. Используется при демонтаже/монтаже элементов, чувствительных к перегреву. Помимо всего прочего сплав идеален для лужения медных дорожек новехонькой печатной платы.

Применяется в плавких защитных предохранителях в радиоаппаратуре.

Еще более низкотемпературный сплав ВУДА (Sn 10%, Cd 10%, Pb 40%, Bi 40%). Т плавления — 65−72 °C. Поскольку в сплаве содержится 10% кадмия, он токсичен, в отличие от РОЗЕ.

И РОЗЕ, и ВУДА — это довольно дорогие припои.

Паяльная паста

Главным образом используется для пайки компонентов монтируемых поверхностно (SMD’шек), а также безвыводных микросхем в BGA корпусах.

Выглядит как кашица серого цвета, состоит из мельчайших шариков сплава Sn62Pb36Ag2 (серебра 2%, свинца 36%, олова 62%), также в составе содержится безотмывочный флюс. О том, что флюс безотмывочный, говорят две буквы на упаковке NC (No Clean). Флюс, содержащий шарики припоя, высыхает на воздухе, поэтому хранится паста в закрытой упаковке.

Используется это средство при сложном ремонте сотовых и для пайки микросхем в корпусе BGA. Ее применение предполагает использование дополнительного оборудования для ремонта мобильных, к примеру, специальные трафареты. Стоит паста довольно дорого, поскольку содержит серебро.

Сейчас в производстве электроники массово применяются припои без свинца.

Припои — НПО СПЕЦСПЛАВ-РЕГИОН

Припо́й — материал, применяемый при пайке для соединения заготовок и имеющий температуру плавления ниже, чем соединяемые металлы. Применяют сплавы на основе олова, свинца, кадмия, меди, никеля и другие. Существуют неметаллические припои. Срок службы припоя зависит от правильности технологии и окружающей среды в эксплуатации.

Припои бывают в виде гранул, прутков, проволоки, порошка, фольги и закладных деталей.

Пайку осуществляют или с целью создания механически прочного (иногда герметичного) шва, или для получения электрического контакта с малым переходным сопротивлением. При пайке места соединения припой нагревают. Так как припой имеет температуру плавления значительно ниже, чем соединяемый металл (или металлы), то он плавится, в то время как основной металл остаётся твёрдым. На границе соприкосновения расплавленного припоя и твёрдого металла происходят различные физико-химические процессы. Припой смачивает металл, растекается по нему и заполняет зазоры между соединяемыми деталями. При этом компоненты припоя диффундируют в основной металл, основной металл растворяется в припое, в результате чего образуется промежуточная прослойка, которая после застывания соединяет детали в одно целое.

Выбирают припой с учётом физико-химических свойств соединяемых металлов (например, по температуре плавления), требуемой механической прочности спая, его коррозионной устойчивости и стоимости. При пайке токоведущих частей необходимо учитывать удельную проводимость припоя. Жидкотекучесть низкотемпературных припоев даёт возможность паять изделия сложной формы.

Температурой плавления мягких припоев до 300 °C и имеют предел прочности при растяжении 16—100 МПа, а твёрдые — 100—500 МПа.

Мягкими припоями являются оловянно-свинцовые сплавы (ПОС) с содержанием олова от 10 (ПОС 10) до 90 % (ПОС 90), остальное свинец. Проводимость этих припоев составляет 9—15 % чистой меди. Плавление этих припоев начинается при температуре 183 °C (температура плавления эвтектики системы олово-свинец) и заканчивается при следующих температурах (см. ликвидус):

ПОС 18 — 280 °C.

ПОС 25 — 260 °C.

ПОС 30 — 247 °C.

ПОС 40 — 238 °C

ПОС 61 — 191 °C

ПОС 90 — 220 °C

Припои ПОС 61 и ПОС 63 плавятся при постоянной температуре 183 °C, так как их состав практически совпадает с составом эвтектики олово-свинец. Кроме этих составов в качестве мягких припоев используются также:

  • сурьмянистые припои (ПОССу), применяемые при пайке оцинкованных и цинковых изделий и повышенных требованиях к прочности паяного соединения,
  • оловянно-свинцово-кадмиевые (ПОСК) для пайки деталей, чувствительных к перегреву и пайки выводов к конденсаторам и пьезокерамике,
  • оловянно-цинковые (ОЦ) для пайки алюминия,
  • бессвинцовые припои, содержащие наряду с оловом медь, серебро, висмут и др. металлы.
ХИМИЧЕСКИЙ СОСТАВ ПРИПОЕВ ПО ГОСТ 19738-2015

Химический состав, %

Марка припоя

Код ОКП

Основные компоненты

 

Олово

Сурьма

Кадмий

Медь

Свинец

Бессурьмянистые

ПОС 90

17 2311 1100 04

89-91

Остальное то же

ПОС 63

17 2312 0100

62,5-63,5

«

ПОС 61

17 2312 1100 10

59-61

«

ПОС 40

17 2314 1100 00

39-41

«

ПОС30

17 2321 1100 09

29-31

«

ПОС 10

17 2326 1100 06

9-10

«

ПОС 61М

17 2312 1200 07

59-61

1,2-2,0

«

ПОСК 50-18

17 2313 1200 02

49-51

17-19

«

ПОСК 2-18

17 2343 1100 09

1,8-2,3

17,5-18,5

«

Малосурьмянистые

ПОССу 61-0,5

17 2312 1400 01

59-61

Остальное то же

ПОССу 50-0,5

17 2313 1100 05

49-51

«

ПОССу 40-0,5

17 2314 1200 08

39-41

«

ПОССу 35-0,5

17 2315 1200 03

34-36

0,05-0,5

«

ПОССу 30-0,5

17 2321 1200 06

29-31

«

ПОССу 25-0,5

17 2322 1200 01

24-26

«

ПОССу 18-0,5

17 2323 1100 10

17-18

«

Сурьмянистые

ПОСу 95-5

17 2311 1200 01

Ост.

4,0-5,0

ПОССу 40-2

17 2314 1300 05

39-41

1,5-2,0

Остально то же

ПОССу 35-2

17 2315 1300 00

34-36

1,5-2,0

«

ПОССу 30-2

17 2321 1300 03

29-31

1,5-2,0

«

ПОССу 25-2

17 2322 1300 09

24-26

1,5-2,0

«

ПОССу 18-2

17 2323 1200 07

17-18

1,5-2,0

«

ПОССу 15-2

17 2324 1100 05

14-15

1,5-2,0

«

ПОССу 10-2

17 2326 1200 03

9-10

1,5-2,0

«

ПОССу 8-3

17 2326 1300 00

7-8

2,0-3,0

«

ПОССу 5-1

17 2327 1100 01

4-5

0,5-0,1

«

ПОССу 4-6

17 2327 1200 09

3-4

5,0-6,0

«

ПОССу 4-4

17 2327 1300 06

3-4

3,0-4,0

«

Массовая доля, %

Марка припоя

Примесей, не более

Бессурьмянистые

 

Сурьма

Медь

Висмут

Мышьяк

Железо

Никель

Сера

Цинк

Аллюминий

Свинец

ПОС 90

0,10

0,05

0,1

0,01

0,02

0,02

0,02

0,002

0,002

ПОС 63

0,05

0,05

0,1

0,02

0,02

0,02

0,02

0,002

0,002

ПОС 40

0,10

0,05

0,2

0,02

0,02

0,02

0,02

0,002

0,002

ПОС 30

0,10

0,05

0,2

0,02

0,02

0,02

0,02

0,002

0,002

ПОС 10

0,10

0,05

0,2

0,02

0,02

0,02

0,02

0,002

0,002

ПОС 61М

0,20

0,2

0,01

0,02

0,02

0,02

0,002

0,002

ПОСК 50-18

0,20

0,08

0,2

0,03

0,02

0,02

0,02

0,002

0,002

ПОСК 2-18

0,05

0,05

0,2

0,01

0,02

0,02

0,02

0,002

0,002

Малосурьмянистые

ПОССу 61-0.5

0,05

0,2

0,02

0,02

0,02

0,02

0,002

0,002

ПОССу 50-0,5

0,05

0,1

0,02

0,02

0,02

0,02

0,002

0,002

ПОССу 40-0,5

0,05

0,2

0,02

0,02

0,02

0,02

0,002

0,002

ПОССу 35-0,5

0,05

0,2

0,02

0,02

0,02

0,02

0,002

0,002

ПОССу 30-05

0,05

0,2

0,02

0,02

0,02

0,02

0,002

0,002

ПОССу 25-0,5

0,05

0,2

0,02

0,02

0,02

0,02

0,002

0,002

ПОССу 18-0,5

0,05

0,2

0,02

0,02

0,02

0,02

0,002

0,002

Сурьмянистые

ПОСу 95-5

0,05

0,1

0,04

0,02

0,02

0,02

0,002

0,002

0,07

ПОССу 40-2

0,08

0,2

0,02

0,02

0,08

0,02

0,002

0,002

ПОССу 35-2

0,08

0,2

0,02

0,02

0,08

0,02

0,002

0,002

ПОССу 30-2

0,08

0,2

0,02

0,02

0,08

0,02

0,002

0,002

ПОССу 25-2

0,08

0,2

0,02

0,02

0,08

0,02

0,002

0,002

ПОССу 18-2

0,08

0,2

0,02

0,02

0,08

0,02

0,002

0,002

ПОССу 15-2

0,08

0,2

0,02

0,02

0,08

0,02

0,002

0,002

ПОССу 10-2

0,08

0,2

0,02

0,02

0,08

0,02

0,002

0,002

ПОССу 8-3

0,1

0,2

0,05

0,02

0,08

0,02

0,002

0,002

ПОССу 5-1

0,08

0,2

0,02

0,02

0,08

0,02

0,002

0,002

ПОССу 4-6

0,1

0,2

0,05

0,02

0,08

0,02

0,002

0,002

ПОССу 4-4

0,1

0,2

0,05

0,02

0,08

0,02

0,002

0,002

 Области применения припоев

Области применения оловянно-свинцовых припоев

Марка припоя

Область применения

Бессурьмянистые

ПОС 90

Для лужения и пайки внутренних швов пищевой посуды и медицинской аппаратуры

ПОС 63

Групповая пайка печатного монтажа, пайка на автоматизированных линиях волной припоя, окунанием с протягиванием

ПОС 61

Для лужения и пайки электро- и радиоаппаратуры, печатных схем, точных приборов с высокогерметичными швами, где недопустим перегрев

ПОС 40

Для лужения и пайки электроаппаратуры, деталей из оцинкованного железа с герметичными швами

ПОС 10

Для лужения и пайки контактных поверхностей электрических аппаратов, приборов, реле, для заливки и лужения контрольных пробок топок паровозов

ПОС 61М

Для лужения и пайки электропаяльниками тонких (толщиной менее 0,2мм) медных проволок, фольги, печатных проводников в кабельной, электро- и радиоэлектронной промышленности, а также ювелирной техники. Применение припоя при лужении и пайке в тигелях и ванных не допускается

ПОСК 50-18

Для пайки деталей, чувствительных к перегреву, порошковых материалов, металлизированной керамики, для ступенчатой пайки конденсаторов

ПОСК 2-18

Для лужения и пайки металлизированных и керамических деталей

Малосурьмянистые

ПОССу 61-0,5

Для лужения и пайки электроаппаратуры, пайки элементов печатных плат, обмоток электрических машин, оцинкованных радиодеталей при жестких требованиях к температуре

ПОССу 50-0,5

Для лужения и пайки авиационных радиаторов, для пайки пищевой посуды с последующим лужением пищевым оловом

ПОССу 40-0,5

Для лужения и пайки жести, обмоток электрических машин, для пайки монтажных элементов, моточных и кабельных изделий, радиаторных трубок, оцинкованных деталей, холодильных агрегатов

ПОССу 35-0,5

Для лужения и пайки свинцовых кабельных оболочек электротехнических изделий неответственного назначения, тонколистовой упаковки

ПОССу 30-0,5

Для лужения и пайки листового цинка, радиаторов

ПОССу 25-0,5

Для лужения и пайки радиаторов

ПОССу 18-0,5

Для лужения и пайки трубок теплообменников, электроламп

Сурьмянистые

ПОССу 95-5

Для пайки в электропромышленности, для пайки трубопроводов, работающих при повышенных температурах

ПОССу 40-2

Для лужения и пайки холодильных устройств, тонколистовой упаковки. Припой широкого назначения

ПОССу 35-2

Для пайки свинцовых труб, для абразивной пайки

ПОССу 30-2

Для лужения и пайки в холодильном аппаратостроении, электроламповом производстве, автомобилестроении, для абразивной пайки

ПОССу 25-2
ПОССу 18-2
ПОССу 15-2
ПОССу 10-2

Для пайки в автомобилестроении

ПОССу 8-3

Для лужения и пайки в электроламповом производстве

ПОССу 5-1

Для лужения и пайки деталей, работающих при повышенных температурах, для лужения трубчатых радиаторах

ПОССу 4-6

Для пайки белой жести, для лужения и пайки деталей с закатанными и клепанными швами из латуни и меди, для шпатлевки кузовов автомобилей

ПОССу 4-4

Для лужения и пайки в автомобилестроении

Малосурьмянистые припои рекомендуются для пайки цинковых и оцинкованных деталей.

температура плавления олова для пайки, состав и технические характеристики

На чтение 7 мин Просмотров 2к. Опубликовано

Большинство начинающих радиолюбителей, не сталкивавшихся ранее с пайкой, задаются вопросом о том, какие могут быть припои, и чем они отличаются друг от друга.

является оловянно-свинцовым сплавом. В зависимости от соотношения данных элементов существуют различные маркировки. Самая распространенная – припой ПОС 61.

Разновидности припоев

Припой не всегда обязательно приобретать. Можно использовать старую радиодеталь и собрать его с дорожек платы при помощи жала паяльника. Такой вариант отлично подойдет тем, кто живет далеко от города, где нет возможности приобрести материал в магазине.

Стандартные свинцовые припои.

Однако они бывают разные и отличаются своими свойствами и характеристиками. В связи с этим каждый опытный мастер должен разбираться в данном вопросе. Для спаивания деталей необходимо использование специальных сплавов – припоев.

Последние обладают более низкой температурой плавления, чем отдельные части изделий.

Подобные сплавы делятся на две основные категории в зависимости от температуры плавления: мягкие и твердые. Первый тип широко используется в радиоэлектронике, как любителями, так и профессионалами.

К легкоплавким относят с температурой плавления менее 450°С. Их изготавливают из: галлия, индия, олова, висмута, свинца и кадмия. Высокотемпературные плавятся при нагреве, превышающем 450°С. В любом случае он представляет собой, как правило, сплав, состоящий из нескольких металлов и примесей.

Самым распространенным вариантом является оловянно-свинцовый сплав, который называется ПОС. Числа, стоящие после аббревиатуры, свидетельствуют о процентном содержании олова.

Отличить один сплав от другого можно и не зная марки. Например, при большем содержании олова появляется характерный металлический блеск, а при большей концентрации свинца цвет становится темно-серым.

Кроме того, температура плавления ПОСов не превышает 265°С. Еще одной отличительной особенностью сплавов с большей долей свинца является их пластичность и возможность легко согнуть руками.

Классификация сплавов осуществляется в соответствии с ГОСТами.

Физико-механические свойства припоев.

Наиболее распространенными являются:

  • припой ПОС 90;
  • ПОС 61;
  • ПОС 40;
  • ПОС 30.

На самом деле маркировок существенно больше. Их насчитывается несколько десятков. Каждая записывается таким образом, что уже из ее названия становится понятен состав сплава, все изготавливаются по ГОСТу 21930-76 припой оловянно-свинцовый.

Стоит отметить, что сплавы отличаются между собой не только химическим составом. В зависимости от формы выпуска они бывают в чушках, проволоке, трубке с канифолью или в прутке.

Например, ПОС 61 может продаваться в прутках или в форме проволоки различного диаметра. Необходимо понимать, что соотношение свинца и олова влияет на температуру плавления. Данный параметр в большей мере определяет выбор необходимого сплава.

Кроме того, сплав может выпускаться с флюсом, например, с ФРК525-2-Т1 – безгалоидным канифольным флюсом низкой активности.

В данном флюсе отсутствуют галогены. Благодаря этому факту он оказывает значительно меньше вреда на здоровье мастеров.

Использование сплавов различных марок определяется сферой их применения. ПОС тридцать и сорок относятся к мягким. Их температура плавления не превышает 300°С. Применяются в соединении оцинкованных изделий, лужения, ремонта электроприборов и т.д.

Низкотемпературные припои

Химический состав припоев разных видов.

Низкотемпературные сплавы используются для пайки радиодеталей, чувствительных к действию высокой температуры. К ним относятся: припой ПОС 40 и припой ПОС 30. Они широко применяются в промышленности, но их также берут и для частного использования.

ПОС 30 отлично подходит для пайки меди и сплавов не ее основе. Он используется и как присадочный материал и в целях лужения деталей. Особенностью данной марки является отсутствие в ее составе сурьмы.

ПОС 30 позволяет получать надежные герметичные соединения, что обусловило активное применение материала для трубопроводных систем. Кроме того, он характеризуется хорошей проводимостью и низким сопротивлением, что позволяет использовать его с целью получения мелких контактов.

Низкая температура плавления позволяет избежать перегрева радиодеталей при пайке. В то же время, после застывания, он надежно фиксирует части изделия.

С технической точки зрения выполнять пайку данным сплавом достаточно легко. Однако следует иметь в виду, что в случае его использования детали не должны работать при высоких температурах.

Выпускается ПОС 30 в форме проволоки различного диаметра от 0,5 до 8 мм. Толщину выбирают исходя из задач, которые необходимо решить. Чтобы соединить мелкие провода и детали, отлично подойдет наименьший вариант. А вот ремонт корпусов и спайку крупных изделий проще осуществлять 8 мм проволокой.

Припой ПОС 40 имеет близкие технические характеристики к ПОС 30. В состав также не входит сурьма. Он относится к низкотемпературному классу. Плотности отмеченных сплавов и начало температуры плавления также одинаковы.

Отличаются они друг от друга, конечно же, составом. Об этом свидетельствуют цифры в конце их маркировки.

Разновидности бессвинцовых припоев.

ПОС 40 позволяет получать качественные и надежные соединения. При работе с ним не появляются трещины, а также отсутствуют не пропаянные места и другие дефекты. Незначительное сопротивление и хорошая проводимость позволяют применять ПОС для пайки электроники.

Как уже было отмечено выше, данный имеет низкую температуру плавления. Это также накладывает ограничения на использование изделий паяемых с его применением.

Наиболее распространенная форма выпуска сплава – проволока. Ее диаметр варьируется от 0,5 до 7 мм. Однако он существует и в виде прутков, ленты фольги, небольших трубок.

Еще одним низкотемпературным припоем является ПОС 61. Однако у него в составе присутствует сурьма. Сплав отличается достаточно хорошей пластичностью. Наиболее широко используется для пайки полупроводниковой техники. Удельное сопротивление припоя ПОС 61 составляет 0,139 Ом*мм2/м.

Выпускается в виде металлических слитков весом около 25 кг, прутков с сечением от 8 до 15 мм, проволоки с диаметром от 0,5 до 6 мм. Существуют также такие форм-факторы, как ленты, аноды и трубки.

Паяльная паста

Пайку наиболее часто осуществляют с использованием припоя и флюса. В целях качественного выполнения работы необходимо выбирать правильную марку сплава для каждой конкретной задачи.

Паста отличается от обычного припоя тем, что в ней содержится сразу два компонента: и флюс, что значительно ускоряет процесс спаивания деталей, особенно когда речь идет о smd элементах.

Любая паста представляет собой густую плотную смесь различных веществ. Она получила широкое распространение в промышленности. Производители электроники активно используют ее на своем производстве.

Разновидности паяльных паст.

В зависимости от состава пасты различают следующие виды:

  • отмывочные;
  • водорастворимые;
  • галогеносодержащие;
  • безотмывочные;
  • без галогенов.

Ее свойства определяются типом флюса, который в нее добавляют. Если речь идет о первом типе, тогда там используется канифоль. Чтобы очистить изделие от такой пасты применяют растворитель.

Важно выбирать правильную пасту в зависимости от выполняемой работы. Например, если предстоит паять множество мелких деталей на плате, тогда лучше отдать предпочтение более густой пасте.

Для качественной пайки необходимо произвести подготовительные работы. Плату следует очистить и обезжирить. Все контакты следует залудить, используя легкоплавкий припой.

При работе с smd элементами необходимо наносить тонкий слой пасты. В противном случае можно замкнуть контакты микросхем.

При использовании платы большого размера целесообразно использовать нижний подогрев. Это лучше всего осуществить с помощью паяльной станции. Также в этих целях можно использовать термофен или другие средства, чтобы обеспечить нагрев до 150°С. Если об этом не позаботиться, тогда ее может «повести».

После окончания работы все излишки пасты удаляются, что можно легко осуществить с помощью паяльника с различными насадками.

Итог

Температура плавления олова делает этот материал отличным припоем для пайки. Особо широкое распространение получили припои марки ПОС. Они используются и в промышленности, и в частных мастерских, и радиолюбителями.

Множество марок данного припоя позволяет выбрать необходимый сплав, который идеально подойдет для решения практически любой задачи.

Сварка и пайка алюминия. Припои и флюсы.

Пайка различных металлов и сплавов

Изделия, очищенные и подготовленные для пайки, не должны храниться продолжительное время во избежание окисления. Их следует возможно скорее загружать в печь или контейнер с обеспечением защитной среды. Особенное внимание должно быть уделено удалению воздуха при пайке высоколегированных сталей и сплавов, содержащих легкоокисляемые элементы. Удаление воздуха может достигаться вакуумированием или продуванием защитного газа — аргона. При продувании температура должна повышаться постепенно, начиная от комнатной до 800—900 С (1073— 1173 К). Этот процесс требует значительного расход аргона. Вакуумирование более рационально, так как при этом значительно снижается расход аргона. Большое значение при пайке имеет контроль температуры нагрева изделия; перегрев может оказать вредное влияние.

Общее время пребывания припоя в расплавленном состоянии состоит из времени:

t = t1 + t2 + t3

где t1 — время нагрева от температуры плавления припоя до температуры пайки; t2 — время выдержки при пайке; t3 — время охлаждения от температуры пайки до температуры кристаллизации припоя.

В случае взаимодействия припоя с основным металлом t1 и следует, возможно, сокращать. После окончания процесса панки необходимо удалить флюс, очистить окисленные поверхности, устранить наплывы и участки растекания припоя, в особенности в тех местах, которые подлежат последующей обработке. Требование удаления флюса вызвано возможным отрицательным влияние его, например появлением коррозии (в алюминиевых сплавах).

Флюсы (для пайки алюминиевого сплава) удаляют промывкой горячей и холодной водой при условии последующей обработки в растворе хромового ангидрида. Флюсы на основе буры образуют на поверхности твердую корку. Их удаляют механическим путем или погружением деталей в горячую воду. Паяные швы на алюминиевых сплавах обрабатывают металлической щеткой и вторично промывают от флюсов, могущих остаться в порах швов. Растекающийся припой удаляют механическим, химическим или электромеханическим способами.

Для контроля качества паяных соединений применяют разные методы. Существенное значение имеет внешний осмотр швов. Швы проверяются на прочность, плотность, электропроводность. Паяные швы можно контролировать физическими методами: рентгеновским просвечиванием, применением радиоактивных изотопов, прозвучиванием.

Кроме испытания паяных образцов без их разрушения, нередко применяют испытания с доведением их до разрушения. Результаты, полученные при испытаниях до разрушения нескольких образцов, позволяют установить механические свойства серии аналогичных изделий.

К углеродистым и низколегированным сталям относится стали, имеющие температуру плавления 1450—1520 С (1723—1793 К). При низкотемпературной пайке сталей применяются главным образом оловянно-свинцовые припои с активными флюсами. Перед пайкой рекомендуется детали облуживать. Это ускоряет процесс пайки и позволяет обеспечивать высокие механические свойства соединений.

Более часто для пайки сталей применяют высокотемпературные медно-цинковые припои с добавкой серебра (температура плавления 940—700 С (1213—973 К). Однако вследствие легкого испарения цинка эти припои не применяют для вакуумной панки. Их целесообразно использовать при пайке в среде с низкими окислительными свойствами, например продуктов неполного сгорания азотно-водородной смеси с флюсом в виде буры, борного ангидрида и т. д. Для пайки углеродистых сталей в качестве припоя применяют также чистую медь, в особенности при пайке в печах в среде водорода. Медь хорошо растекается, заполняет малые зазоры. При этом прочность соединений превосходит прочность самой меди.

К высоколегированным сплавам относятся коррозионно-стойкие аустенитные стали 0Х18Н9, 12Х18Н9 со стабилизирующими добавками — титаном, ванадием, ниобием и т. д., кислотоупорные хромистые стали Х17, Х25 и другие ферритного класса, жароустойчивые никелевые сплавы, например, имеющие около 80% Ni и др.

Указанные сплавы могут паяться легкоплавкими припоями с применением активных флюсов. Однако пайка легкоплавкими припоями указанной группы сплавов технически нецелесообразна. Рациональнее применять для их соединений высокотемпературные припои (табл. 1).

В соответствии с маркой припоя применяются флюсы с различными составляющими. Некоторые припои при быстром нагреве т. в. ч. теряют свои составляющие.

Высоколегированные сплавы и стали можно паять в среде аргона, водорода, в вакуумных печах, Недостаток пайки в аргоне — не вполне удовлетворительная растекаемость припоя. Для улучшения растекаемости во флюсы вводят добавки, например литий. Пайка в атмосфере водорода требует высокой его чистоты; использование водорода всегда сопряжено с некоторой опасностью взрыва.

Пайка в вакууме дает хорошие результаты при применении припоев, не содержащих легко испаряющихся элементов (цинка и др.). При пайке указанных выше материалов могут возникать поры вследствие испарения некоторых составляющих припоя, например, цинка: непровары в результате неудовлетворительного смачивания расплавленным припоем соединяемых частей или недостаточной очистки поверхностей; трещины при проникновении жидкого припоя между границами зерен основного металла. Особенно часто образуются трещины при пайке медно-цинковыми и медно-серебряными припоями. Применением более высокотемпературных припоев можно избежать растрескивания паяных соединений.

Таблица 1. Состав припоев, %

Применение никелевых припоев иногда сопровождается образованием подрезов основного металла в местах перехода к швам. Это происходит вследствие того, что припой этого рода имеет способность растворять основной металл. Чтобы избежать этого явления, следует вести технологический процесс пайки при возможно более низкой температуре.

При помощи пайки хорошо соединяются изделия из чистой меди и медных сплавов. Чистая медь хорошо паяется при нагреве в вакуумных печах, а также в атмосфере хорошо очищенного водорода без каких-либо примесей кислорода. Медно-цинковые сплавы, содержащие 4—38% Zn, при длительном нагреве теряют его (цинк испаряется), поэтому латунные детали перед пайкой целесообразно покрывать медью.

Пайка широко применяется для соединений различных бронз; алюминиевых, содержащих 5—10% Аl; бериллиевых, применяемых в приборостроении и имеющих в своем составе 2—2,5% Be; хромовых, содержащих около 0,5% Сr; оловянных, применяемых при обработке давлением, содержащих олово, а также фосфор и др.

Медь и ее сплавы легко паяются при применении низкотемпературных припоев с использованием канифольных флюсов, не вызывающих коррозии. Нередко перед пайкой поверхности деталей облуживают чистым оловом слоем толщиной 0,005 мм на стали и 0,0075 мм на меди. Низкотемпературные припои не обеспечивают высокой прочности паяных соединений, поэтому рекомендуется пайка в печах высокотемпературными твердыми припоями. Целесообразно применение медно-фосфорных и серебряных припоев и флюсов на основе буры с добавлением фтористых соединений. Алюминиевые бронзы хорошо паяются серебряными припоями с никелем, который препятствует проникновению в припой алюминия и повышает производительность технологического процесса.

Титан и его сплавы паяют в электрических печах, т. в. ч., газопламенным горелками. Наилучшие механические свойства спая достигаются при пайке ТВЧ. Это объясняется тем, что в результате сокращения термического цикла при этом способе пайки отсутствует рост зерна, приводящий к охрупчиванию соединений. При пайке титановых сплавов целесообразно применять серебряные припои, имеющие температуру плавления ниже температуры рекристаллизации титана и выше температуры, требуемой для удовлетворения условий смачивания припоем паяных деталей.

Очень важная задача производства — соединение пайкой различного рода керамических материалов и окислов друг с другом и с металлами. Возможны разные случаи: металлы более тугоплавки, нежели керамика, при этом соединение обеих деталей происходит в твердом состоянии, контакт обеспечивается необходимым давлением, применением покрытий. В последнем случае соединение достигается при температурах ниже температуры плавления каждой из соединяемых деталей.

Особенно благоприятные условия для соединения, когда металлы имеют температуру плавления ниже температуры плавления керамики и в результате своих специфических химических свойств склонны к образованию связи с последней. Гак, например, титан и цирконий имеют большое сродство к кислороду и образуют твердые растворы со многими металлами и окислами. Окислы титана и циркония весьма тугоплавки. При некоторых условиях эти металлы восстанавливают окислы металлов, образующих керамику, и присоединяют к себе освобожденный кислород. Такое восстановление, необходимое для прессовой пайки, следует проводить в условиях вакуума или в среде аргона.

Серьезные затруднение пайки керамик с металлами — существенная разница в их температурных коэффициентах расширения, в результате чего в соединениях образуются остаточные напряжения значительной величины. В неблагоприятных случаях, при недостаточной пластичности материалов в них возникают трещины. Для устранения этого явления иногда между соединяемым металлом и керамикой прокладывают пластины из пластичного металла, например молибдена. При пластических деформациях последнего опасность возникновения трещин в керамике значительно уменьшается.

С помощью специальных присадочных металлов можно получать качественные соединения не только однородных элементов, например Al2O3 + Al2O3, но и разнородных. Сплавы, содержащие сильные карбидообразующие элементы — молибден, тантал, титан, цирконий и др., — хорошо смачивают графит.

 

Припои и флюсы для пайки

Большинство способов пайки осуществляют с применением различных припоев и лишь в тех случаях, когда в процессе пайки между металлами могут образоваться легкоплавкие эвтектики, пайка возможна без специального припоя.

К припоям предъявляют ряд требований общего характера. Припой должен хорошо растекаться по поверхности основного металла, смачивать и растворять его, легко заполнять зазоры между деталями, обеспечивать необходимую прочность соединения и т. п.
Припои применяют в виде лент, паст, прутьев. Особенно распространены припои в виде проволочных контуров и прокладок из фольги, штампуемых в соответствии с поверхностью соединяемых частей.

Широкое применение в качестве припоев получили высокотемпературные припои — сплавы на основе серебра, алюминия, меди и др., обладающие, как правило, температурой плавления выше 450—500 С (723—773 К). Медно-цинковые припои ПМЦ 36, ПМЦ 48, ПМЦ 54 имеют предел прочности σв = 21-35 кгс/мм2 (206,0—343,2 МН/м3), относительное удлинение до 26%, рекомендуются для пайки изделий из меди, томпака, латуни, бронзы. Серебряные припои имеют температуру плавления 740—830 С (413—1103 К). Согласно ГОСТ 8190-56 марки припоев разделяют в зависимости от содержания в сплавах серебра, которое изменяется в пределах от 10 (ПСр 10) до 72% (ПСр 72). В них также содержатся цинк, медь и в небольшом количестве свинец. Эти припои применяют для пайки тонких деталей, соединения медных проводов и в случаях, когда место спая не должно резко уменьшать электропроводность стыковых соединений.

Низкотемпературные припои имеют температуру плавления ниже 450—400 С (723—673 К). Они обладают небольшой прочностью. Их применяют для пайки почти всех металлов и сплавов в разных их сочетаниях. В большинстве случаев низкотемпературные припои содержат значительный процент олова. 

Низкотемпературные оловянно-свинцовые припои (ГОСТ 1499—70) имеют верхнюю критическую точку плавления 209—327° С (482—600 К). Олово имеет точку плавления 232 С (505 К). Его предел прочности при растяжении 1,9 кгс/мм2 (18,6 МН/м2), относительное удлинение 49%, НВ 6.2 кгс/мм2 (60,8 МН/м2). Оловянно-свинцовые припои ПОС-90, ПОС-61, ПОС-40 и др. применяют при пайке медных аппаратов, авиационных радиаторов, изделий из латуни и железа, медных проводов и т. д.

Образование качественного паяного соединения в значительной степени зависит от возможности наиболее полного удаления с поверхности металла окисных, адсорбированных газовых и жидких пленок. В практике пайки для удаления поверхностных пленок применяют различного рода флюсы, восстановительную атмосферу или вакуум. В последнее время для этой цели успешно используют механическое разрушение пленок с помощью ультразвуковых упругих колебаний.

Флюсы при пайке имеют несколько назначений. Они защищают основной металл и припои от окисления, растворяют или восстанавливают образовавшиеся окислы, улучшают смачивание поверхностей, способствуют растеканию припоев. Флюсы можно применять в твердом, жидком и газообразном виде (в виде порошков, паст, растворов газов). Роль флюса выполняют некоторые специальные газовые атмосферы и вакуум, которые также могут способствовать восстановлению окислов и улучшению условий смачивания. Флюсующее действие оказывают в некоторых случаях отдельные составляющие, входящие в состав припоев. Например, фосфористые припои не требуют флюсов при пайке медных сплавов.

 

Флюсы сварочные

Флюсами называют специально приготовленные неметаллические гранулированные порошки с определенным размером зерен.

Назначение флюсов – расплавляясь, они создают шлаковый купол над зоной дуги, а после химико-металлургического воздействия образуют шлаковую корку на поверхности, в ней остаются окислы, вредные примеси и газы.

Флюсы делят на неплавящиеся, керамические и плавильные.

Керамические флюсы.

Изготавливают так же, как и электродное покрытие.

Сухие компоненты шихты замешиваются в жидком стекле. Полученную массу измельчают путем продавливания. Потом прокаливают, просеивают для получения частиц определенного размера.
Частицы сухой смеси могут быть скреплены за счет спекания. Происходит это при повышенных температурах без расплавления. Затем гранулируют до необходимого размера.

Не плавильные флюсы приготавливаются в виде механической смеси. Наиболее распространенны керамические флюсы. По составу близки к составу основного покрытия.
Легирование металла флюсом достигается путем введения в их состав ферросплавов.
Сочетание легирующих элементов может быть различно, а это позволяет получать практически любой состав металла шва.

Это наиболее характерная особенность керамических флюсов.

Химический состав шва также зависит от параметров сварки.

Чтобы определить, как изменились свойства шва, надо замерить твердость в различных местах.

Наиболее критичная зона – зона сплавления и околошовная зона. Керамические флюсы имеют и свои недостатки: малая прочность, вследствие чего в процессе транспортировки или эксплуатации меняют свою грануляцию.

Часто применяют для сварки высоколегированных и специальных сталей, а также для наплавочных работ.

Плавильные флюсы.

Сплавы оксидов и солей металлов. Процесс их изготовления включает следующие стадии:

1. Расчет и подготовка шихты.
2. Выплавка флюса.
3. Грануляция.
4. Сушка, если использовалась мокрая грануляция.
5. Просеивание.

Предварительно измельченные части флюса загружают в дуговые или плавильные печи. После расплавления и выдержки до окончания реакции при температуре 1400 C флюс выпускают из печи.

При сухой грануляции флюс выливается в металлические формы. После остывания отливка дробится, при этом используются валки. Размер частиц 0,1-3 мм. Затем флюсы просеивают.

Сухая грануляция применяется для гигроскопических флюсов, содержащих большое количество фтористых и хромистых солей.

Преимущество этих флюсов в том, что они могут быть использованы несколько раз.

Используют для сварки алюминиевых и титановых сплавов.

Мокрый способ грануляции: расплавленный флюс выпускается из печи достаточно тонкой струей и попадает в емкость с проточной водой. В ряде случаев используют дополнительную струю воды.
Далее идет просеивание.

Получают различную грануляцию. Флюс сушат при температуре 250-300 C, а после дробят, если возникает необходимость. После этого просеивают.

Флюс представляет из себя неровные зерна светло-серого, красно-бурого и коричневого цвета.

Транспортируют в герметичной таре, полиэтиленовых мешках, бочках.

Плавильный флюс не может содержать легирующих элементов в чистом виде, так как они окисляются в процессе изготовления. Поэтому легирование происходит путем восстановления окислов флюсов.


В основу классификации флюсов по химическому составу положено содержание в нем оксидов и солей.

Различают окислительные флюсы, имеющие оксид марганца и кремния в составе.

Для получения определенных свойств флюса, в его состав вводят другие компоненты – плавиковый шпат, более прочные оксиды.

Чем больше во флюсе оксида марганца и кремния, тем сильнее он может легировать металл данными элементами, но тем больше он будет окислять этот металл.

Плавильные флюсы применяются для сварки углеродистых и низколегированных сталей.

Безокислительные флюсы практически не содержат оксидов марганца и кремния, в их состав входят фториды, используются для сварки высоколегированных сталей.
Также безокислительные флюсы могут состоять из фтористых и хлоридных солей и элементов, не содержащих кислород.
Используют для сварки высокоактивных металлов – алюминия и титана.

В связи с широким применением флюсов, есть ГОСТ на основные марки: ГОСТ 9087-81 «Флюсы сварочные плавильные».
Регламентирует химический состав.

Различают стекловидный и пемзовидный характер зерна.
Строение зерна зависит от состава расплава флюса, степени его перегрева.
В зависимости от этого, флюс может получаться плотным, прозрачным, пористым, рыхлым.
Следует учитывать, что пемзовидный флюс при том же химическом составе, имеет в полтора-два раза меньший вес, чем стекловидный.

Данные флюсы хуже защищают металл от воздействия воздуха, но обеспечивают хорошее формирование шва при больших плотностях тока и скоростях сварки.

Буквы в обозначениях флюсов:

  • М – мелкий
  • С – стекловидный
  • П – пемзовидный
  • СП – смешанный

 

Сварка под флюсом

На первый взгляд может показаться, что одно из основных преимуществ сварки под флюсом — возможность получения большой глубины проплавления свариваемого металла — противоречит условиям сварки тонколистовой стали. Однако при определенных условиях сварка под флюсом допускает регулирование глубины проплавления металла, начиная от долей миллиметра, и поэтому хорошо известные ее достоинства могут быть использованы для сварки тонколистовой стали.

Успешное внедрение в производство сварки под флюсом изделий из тонколистовой стали стало возможным, главным образом, благодаря применению тонкой сварочной проволоки. Известны примеры сварки тонколистовой стали и обычной электродной проволокой диаметром, например, 4 мм. Однако в этом случае удавалось сваривать сталь толщиной не менее 3—4 мм при условии весьма тщательной сборки изделия.

Для сварки тонколистовой стали большое значение имеет применение приспособлений, облегчающих точную сборку изделия и обеспечивающих надежное поджатие к свариваемому стыку медной или флюсомедной подкладки, флюсовой подушки и т. п. Опыт показывает, что производительность автоматической сварки изделий из тонколистовой стали со сравнительно короткими швами зависит не столько от машинной скорости сварки, сколько от затрат времени на подготовительные и вспомогательные операции. Поэтому важной задачей является разработка эффективно действующих сборочных и сборочно-сварочных приспособлений.

Чем меньше величина тепловой энергии, передающейся от дуги основному металлу в процессе сварки, тем меньше глубина его проплавления и, следовательно, тем более тонкий металл можно сваривать без прожогов. Тепловая энергия, передаваемая основному металлу, может быть уменьшена за счет уменьшения мощности дуги или увеличения скорости ее перемещения по свариваемому соединению.

Для сварки тонколистовой стали в основном применяют уменьшение мощности дуги, а не увеличение скорости сварки. Это в значительной мере объясняется тем, что применение больших скоростей сварки (более 150—200 м/час) связано с жесткими требованиями к точности поддержания режима сварки, необходимостью тщательной очистки свариваемых кромок, с очень точной сборкой стыков, в ряде случаев со специальным наклоном изделия и электрода и т. п. При указанных скоростях сварки металл шва может быть поражен порами, поперечными трещинами и другими дефектами. Если при этом учесть, что производительность сварки тонколистовой стали, как указывалось выше, главным образом, зависит от затрат времени на установочные и подготовительные операции, то станет ясным, почему увеличение скорости не стало основным способом уменьшения погонной тепловой энергии.

Устойчивость процесса сварки

При сварке тонколистовой стали равномерность глубины проплавления имеет особенно важное значение. Если сваривая сталь толщиной более 4—5 мм, можно допустить колебание глубины проплавления в пределах ± 1 мм, не опасаясь возникновения прожогов, то в случае сварки тонких листов стали такое же колебание совершенно недопустимо.

Равномерность глубины проплавления зависит от устойчивости режима сварки, главным образом, от колебаний сварочного тока. Колебания скорости сварки, а также напряжения дуги сказываются в меньшей степени. Исходя из этого, для сварки тонколистовой стали следует рекомендовать сварочные автоматы с постоянной скоростью подачи электродной проволоки, так как они обеспечивают практически почти постоянные значения тока при колебании напряжения в сети или случайных изменениях длины дуги в процессе сварки. При этом сохраняются почти постоянной глубина проплавления, а также количество наплавляемого металла. Сварочные головки с регулируемой скоростью подачи электродной проволоки в тех же условиях не обеспечивают постоянство тока и поэтому применять их не рекомендуется.

Понижение мощности дуги, требующееся для сварки тонколистовой стали, может быть осуществлено только до определенного предела, зависящего от диаметра электродной проволоки. Дальнейшее снижение мощности резко ухудшает устойчивость процесса сварки и приводит к неудовлетворительному формированию шва. В случае сварки переменным током этот предел достигается при значительно большей мощности дуги, чем в случае сварки постоянным током обратной полярности. Поэтому сварку тонколистовой стали рекомендуется осуществлять постоянным током обратной полярности (положительный полюс присоединен к электроду). В табл. 1 приведены полученные опытным путем значения минимально-допустимых сварочных токов для электродной проволоки различных диаметров при сварке под флюсом АН-348 постоянным током обратной полярности.


Как следует из табл. 1, для обеспечения устойчивого горения дуги при понижении ее мощности необходимо увеличивать плотность тока в электроде, что практически достигается путем уменьшения диаметра электродной проволоки. Эту таблицу можно использовать для выбора диаметра электродной проволоки при сварке на заданном режиме.

При рассмотрении условий устойчивого горения электрической дуги пользуются ее статическими вольтамперными характеристиками. Вольтамперной характеристикой называется зависимость между током и напряжением дуги при постоянной ее длине. На фиг. 1 приведены такие характеристики для дуг различной длины. Каждая вольт- амперная характеристика дуги состоит из нескольких участков: падающего (с ростом тока напряжение падает), почти горизонтального (жесткий участок) и растущего (с ростом тока напряжение увеличивается). В зависимости от условии сварки, дуге соответствует тот или иной участок характеристики. Так, например, при сварке неплавящимся угольным или вольфрамовым электродом, при ручной сварке качественными электродами, при автоматической сварке под флюсом со сравнительно небольшой плотностью тока и в некоторых других случаях характеристика сварочной дуги является падающей с переходом к жесткой. При сварке под флюсом или в защитной газовой среде с повышенной плотностью тока в плавящейся электродной проволоке характеристика дуги становится растущей.

Если дуга имеет падающую вольтамперную характеристику, то устойчивое ее горение возможно только при том условии, что внешняя характеристика сварочного генератора также будет падающей, т. е. напряжение холостого хода генератора значительно превышает напряжение дуги при сварке.

С ростом плотности тока в плавящемся электроде изменяются свойства сварочной дуги. Эти изменения настолько существенны, что позволяют предъявить совершенно другие требования к характеристикам источников питания постоянного тока.

Еще в 1950 г. в Институте электросварки им. Е. О. Па- тона было доказано, что при повышении плотности тока в плавящемся электроде может быть получен устойчивый процесс сварки при использовании в качестве источника питания генератора постоянного тока с жесткой внешней характеристикой (напряжение холостого хода генератора практически равно напряжению дуги при сварке). В отечественной и зарубежной практике в последние годы такие генераторы нашли широкое применение.

Генераторы с жесткими внешними характеристиками значительно более экономичны, чем обычные сварочные генераторы с крутопадающими характеристиками и высоким напряжением холостого хода, так как пропорционально снижению напряжения холостого хода генератора снижаются затраты на активные материалы, уменьшается вес генератора и его стоимость.

Чем больше скорость подачи электродной проволоки п меньше сварочный ток, тем труднее возбудить дугу путем непосредственной подачи электродной проволоки к изделию. Опыт показывает, что при использовании обычных сварочных генераторов с крутопадающей внешней характеристикой в ряде случаев этот способ возбуждения дуги практически оказывается неосуществимым. Совершенно иное наблюдается в случае применения генераторов с жесткими внешними характеристиками. Резкое нарастание тока при закорачивании электрода на изделие обеспечивает безотказное возбуждение дуги. Короткое замыкание не наносит ущерба генератору, так как тонкая электродная проволока выполняет роль плавкой вставки в цепи, ограничивая время протекания и величину тока короткого замыкания.

В тех случаях, когда генераторы с жесткими внешними характеристиками по какой-либо причине не могут быть применены для сварки тонкого металла, следует применять генераторы с весьма пологопадающими характеристиками, т. е. с большой величиной тока короткого замыкания.

Чем резче изменяется ток в цепи при случайных изменениях длины дуги, тем интенсивнее протекают процессы саморегулирования и тем быстрее восстанавливается заданный режим сварки. Генераторы с крутопадающими внешними характеристиками дают значительно меньшие изменения тока при случайных колебаниях длины дуги, чем генераторы с пологопадающими, жесткими или растущими характеристиками, благодаря чему обеспечивают большую устойчивость процесса сварки тонкой электродной проволокой.

Весьма характерно влияние внешних характеристик генераторов на процесс сварки и формирование шва при изменении величины зазора в соединении. Опыт показывает, что в случае питания дуги от генераторов с жесткой или пологопадающей внешней характеристикой можно допустить большие по величине зазоры в стыке, не нарушая нормального формирования шва. Такое же явление наблюдается при увеличении плотности тока в электроде.

В табл. 2 приведены режимы сварки стыковых соединений стали толщиной 3 мм, собранных с постепенно возрастающим зазором от 0 до 5 мм при длине образцов 500 мм. Образцы сваривались электродной проволокой диаметром 3 мм при питании от генератора с крутопадающей внешней характеристикой и генератора с пологопадающей характеристикой. Один из образцов был сварен электродной проволокой диаметром 1,6 мм при питании от генератора с крутопадающей характеристикой. Как следует из табл. 2 и фиг. 2, где изображены образцы сварных соединений, в случае внешней характеристики генератора, приближающейся к жесткой (пологопадающей), а также в случае большей плотности тока в электроде (меньший диаметр электрода), максимальный зазор, при котором еще происходит правильное формирование шва, значительно больше.

Не следует считать, что приведенные в таблице максимальные зазоры могут быть рекомендованы как допустимые при сборке стыков. В данном случае имеет место плавное возрастание зазора, что не равноценно резким изменениям зазоров, которые могут наблюдаться в практике.

Влияние формы внешней характеристики, а также плотности тока на формирование швов при сварке с зазорами в стыке связано, по-видимому, с изменением интенсивности процессов саморегулирования.

При автоматической сварке стыкового соединения одно из активных пятен дуги расположено на расплавленном металле ванны, заполняющей разделку. В отдельные моменты времени скорость перемещения ванны расплавленного металла может отличаться от скорости движения электрода вдоль стыка. Одной из причин этого бывает изменение величины зазора между свариваемыми кромками или изменение зазора между подкладкой и свариваемыми листами.

При увеличении зазора в стыковом соединении или возникновении большего зазора между подкладкой и свариваемыми листами скорость перемещения ванны расплавленного металла уменьшается. Так как скорость движения электрода при этом остается прежней, имеет место рост дугового промежутка. Резкое увеличение дугового промежутка вызывает обрыв дуги и нарушение процесса сварки. При плавном удлинении дуги процесс может не нарушиться, активное пятно успеет занять новое положение, обеспечивая восстановление прежней длины дуги.

Если питание дуги осуществляется от генератора с крутопадающей внешней характеристикой, то при удлинении дуги, как показали исследования, наблюдается рост ее мощности, что ведет к дополнительному оплавлению кромок в месте повышенного зазора, где начала удлиняться дута. При этом электродного металла окажется недостаточно для заполнения зазора между оплавленными кромками, в результате чего образуется не заполненный металлом участок — прожог.

Увеличение интенсивности саморегулирования дуги, имеющее место в случае применения генераторов с жесткими внешними характеристиками или при повышенной плотности тока в электроде, в известных пределах может предотвратить возникновение прожогов. Благодаря интенсивному саморегулированию значительное удлинение или обрывы дуги не будут наблюдаться при отставании ванны жидкого металла в месте увеличившегося зазора. При этом длина дуги будет поддерживаться постоянной и опасный участок с увеличенным зазором может быть пройден без нарушения процесса сварки (без обрывов дуги, прожогов и пр.). Этот участок от остальной части шва будет отличаться только меньшим усилением шва или даже полным отсутствием усиления.

Как известно из практики автоматической сварки под флюсом, с увеличением плотности тока в электроде глубина проплавления заметно возрастает. Например, при сварке на токе 500 а увеличение плотности тока приблизительно в 3 раза, за счет уменьшения диаметра электродной проволоки от 5 до 3 мм, вызывает увеличение глубины проплавления на 25%. Так как переход к сварке тонкой электродной проволокой связан с еще большим увеличением плотности тока в электроде, то возникает опасение, не может ли интенсивный рост глубины про­плавления в этом случае стать препятствием на пути применения тонкой электродной проволоки и повышенной плотности тока для сварки тонколистовой стали. Проведенные опыты показали, что это опасение несостоятельно.

На фиг. 3 приведен график зависимости глубины проплавления от диаметра электродной проволоки. Как видно из графика, рост глубины проплавления с увеличением плотности тока (уменьшением диаметра электрода) наблюдается только при сварке на токах, превосходящих 300—350 а. Что же касается интересующего пас диапазона токов, применяемых для сварки тонкой стали (до 300—350 а), то в нем увеличение плотности тока не вызывает изменения глубины проплавления. Это объясняется некоторыми особенностями, отличающими маломощные электрические дуги от дуг большей мощности.

 

Материал с сайта: http://ruswelding.com

 

Что такое низкотемпературная паяльная паста

Паяльная паста

, уникальная комбинация мельчайших частиц металлического припоя и слизистого флюса, известна исключительно тем, что используется в производстве печатных плат или печатных плат. Эта специальная паста прикрепляет частицы крепления к подушечкам на доске и создает прочную связь между двумя разными рабочими элементами. В этом процессе размеры металлических частиц и плотность флюса играют важную роль и определяют результат паяльной пасты.

Наряду с этими двумя важными факторами является точная температура, поскольку некоторые элементы не выдерживают высоких температур. Следовательно, низкотемпературная паяльная паста, которая может легко плавиться при температуре ниже 180°C, в некоторых случаях стала чрезвычайно полезной.

Чтобы узнать больше о низкотемпературной паяльной пасте, ее применении и других важных свойствах паяльной пасты, дочитайте эту статью до конца.

Что такое низкотемпературная паяльная паста?

Низкотемпературная припойная паста , без сомнения, представляет собой очень необычную смесь мельчайших частиц металла и липкого флюса.Он легко растворяется даже при температуре ниже 180 ° C. Обычно температура типичной паяльной пасты превышает 250–240 ° C, что часто становится разрушительным для некоторых деликатных частиц.

Как упоминалось ранее, паяльная паста должна иметь правильную консистенцию, а также правильную температуру для обеспечения работоспособности печатной платы. Температура выше 240°C слишком велика для некоторых элегантных и чувствительных машин, особенно для термочувствительных.

С другой стороны, портативные и миниатюрные макеты некоторых устройств не могут выдержать сильного нагрева обычной паяльной пасты.Таким образом, низкотемпературная пайка является единственным эффективным способом обеспечения безопасности, а также отличного исполнения этих устройств.

Кроме того, при ступенчатой ​​пайке наблюдается низкотемпературная пайка, так как печатная плата этого конкретного устройства уже содержит припой. При этом на печатную плату можно легко прикрепить дополнительные компоненты, подтверждая полную защиту ранее выполненной пайки.

При какой температуре плавится паяльная паста?

Припои с различными свойствами точно соответствуют форме плавления, при которой твердое вещество становится жидким.Припой может плавиться при температуре от 90°C до 450°C. Таким образом, температура плавления любых припоев меняется в зависимости от выбора амальгамы припоя, термостойкости конкретных устройств и т.д. 

Припои в основном делятся на две отдельные категории:

  • Припой Eutectic
  • Неэвтектический припой

В первом случае сплавы могут плавиться при одном нагреве, что является очень необходимой функцией в различных промышленных процессах.С другой стороны, неэвтектический припой не может плавиться при одной температуре. Некоторые неэвтектические сплавы имеют диапазон плавления от 2°С до 3°С; некоторые из них также имеют 75 ° C.

Кроме того, «жесткий или серебряный припой» отмечается, когда температура плавления паяльной пасты превышает 450°C и выше.

Нанесение низкотемпературной паяльной пасты

Практическое применение низкотемпературной паяльной пасты широко распространено в электронной сборочной промышленности. Давайте посмотрим, как и когда используется низкотемпературная паяльная паста.

Термочувствительные конструкции приборов:

Некоторые устройства не выдерживают слишком сильного нагрева и очень хрупкие. Будучи чувствительными к теплу, эти устройства могут легко повредиться при перегреве. Таким образом, при использовании низкотемпературной паяльной пасты важные компоненты печатной платы крепятся при температуре до 180°C. 

Ступенчатая пайка:

Еще одно важное применение низкотемпературной паяльной пасты наблюдается в области ступенчатой ​​пайки.Ступенчатая пайка — это не что иное, как обычная пайка, при которой печатная плата уже содержит два или более постоянных пайки, поэтому мощность теплового сопротивления печатной платы уменьшается. Если вместо Низкотемпературная паяльная паста используется более высокая температура, части устройства могут быть повреждены или даже навсегда повреждены.

Другие области применения низкотемпературной паяльной пасты
  • Кроме того, низкотемпературная паяльная паста используется для удаления деформаций более тонких чешуек, которые могут быть вызваны оплавлением при более высокой температуре.
    • Во избежание удара головой в подушку или HIP, СЕЙЧАС отказы на значительной площади отображают электронные устройства.
  • Гибкие схемы с низкой Tg в мобильных телефонах, сотовых устройствах, подключениях к Интернету и т. д.
  • Для заполнения деформаций в местах сопряжения и создания герметичного уплотнения.
  • В переключателях, барометрах, системах теплопередачи и других тепловых конструкциях

Вкратце, это были некоторые области применения низкотемпературной паяльной пасты.

Как использовать низкотемпературную паяльную пасту?

Чтобы использовать низкотемпературный припой , , все, что вам нужно, это правильное количество флюса, правильная температура и, что не менее важно, мастерство и умение прикреплять определенные детали.

Олово/висмут, олово/индий или олово/висмут/серебро являются наиболее распространенными из-за их низкой скорости плавления 150-170°C. Но вы должны быть очень осторожны при смешивании этих компонентов и соблюдать некоторые меры предосторожности. Этот сплав SnBiAg имеет впечатляющую температуру плавления 138°C, что обеспечивает максимальный поток тепла от 170°C до 180°C.

Хотя смесь олова, висмута и свинца имеет самую низкую температуру плавления 95°C, тем не менее, она может вызвать нарушения в суставах, так как имеет тенденцию легко плавиться при естественном тепле. Таким образом, вы должны выбирать компоненты с особой тщательностью и умением; в противном случае вы можете столкнуться с серьезным отказом или повреждением.

Когда ваш низкотемпературный флюс или паста для пайки будет готов, вы можете использовать его с помощью специального шприца или какого-либо инструмента для самостоятельного тестирования и эффективного соединения ваших компонентов на печатной плате, не повреждая другие элементы.

Насколько команда PCB может вам помочь?

Я надеюсь, что вы собрали достаточно информации о низкотемпературной паяльной пасте, ее применении, правильной температуре паяльной пасты и способах ее точного применения. Если вы ищете идеальный и тонкий дизайн печатной платы, вы вряд ли найдете лучший вариант, чем низкотемпературная паяльная паста.

Чтобы добиться наилучшего обслуживания, вам необходимо профессиональное вмешательство команды Absolute PCB. Поэтому не стесняйтесь обращаться к профессионалам, если вам нужно больше узнать о низкотемпературной паяльной пасте.

Подробнее:-

Рентгеновский контроль низкотемпературных паяных соединений

Использование низкотемпературных припоев (LTS) становится все более популярным. LTS в основном состоят из олова и висмута с небольшим количеством «специальной смеси» других элементов в соответствии с техническими характеристиками данного производителя. Возможность, как следует из названия, заключается в создании паяных соединений при гораздо более низких температурах, чем те, которые требуются для сплавов олово/серебро/медь (SAC), и которые даже ниже, чем те, которые необходимы для (исторического?) эвтектического припоя олово/свинец. .Эти LTS имеют температуру плавления ~138°C. Преимущества использования LTS заключаются в том, что в соединении отсутствует Pb, и можно использовать более низкие температуры обработки. Использование более низких температур означает снижение энергопотребления во время производства, снижение производственных затрат и сокращение выбросов парниковых газов. Кроме того, он дает возможность использовать другие, более тонкие и, возможно, более дешевые подложки и компоненты для печатных плат по сравнению с теми, которые используются сегодня. Это устраняет «сложную инженерию», требуемую от современных плат и компонентов для уменьшения деформации, которые из-за LTS работают при температуре, близкой к температуре стеклования материала платы.Это также дает возможность дорабатывать стыки пакетных площадок SAC низкотемпературными сплавами.

К сожалению, как всегда, физика не дает бесплатного обеда. Хотя LTS может подходить для некоторых продуктов, и новые конфигурации LTS постоянно появляются на рынке, следует отметить, что LTS менее пластичны, чем сплавы SAC. Это означает, что полученные соединения более хрупкие и, следовательно, потенциально более склонны к разрыву или растрескиванию в результате теплового или физического удара. Поэтому, как и в случае со всеми паяными соединениями, необходимость проверки соединений LTS с использованием как рентгеновских, так и оптических методов остается важной для обеспечения качества изготовления.

Для тех, кто рассматривает LTS, с точки зрения рентгеновского контроля, первый вопрос, который следует задать, заключается в том, можем ли мы увидеть эти паяные соединения в рентгеновском оборудовании? Простой ответ, как показывает QFN, припаянный низкотемпературным припоем на РИС. 1, — да. Это связано с тем, что висмут находится рядом со свинцом в периодической таблице и, следовательно, будучи таким же плотным, поглощает проходящие рентгеновские лучи, создавая хорошо контрастное изображение для анализа. На рентгеновском снимке это изображение ничем не отличается от версий из сплава SAC, которые читатели видели в некоторых из моих предыдущих колонок.

Соединение под пайку, Низкотемпературная паяльная паста серии Senju EcoSolder L29-145HF, Соединение под пайку

Низкотемпературная бессвинцовая паяльная паста Senju EcoSolder L29-145HF была разработана как высоконадежный припой, прямая замена с минимальной пиковой температурой всего 185°C против 245°C по сравнению с традиционным сплавом SAC. Таким образом, вы можете снизить потребление энергии до 50 % в рамках процесса поверхностного монтажа.

С помощью этой новой пасты были достигнуты значительные улучшения смачиваемости и стабильности, которые исторически были труднодостижимы с помощью обычных низкотемпературных паяльных паст.Паяльная паста L29-145HF от Senju имеет те же свойства удобства использования, что и более традиционные продукты Sn-Ag-Cu.

В сочетании с улучшенной общей механической надежностью и устойчивостью к ударам при падении в условиях смешанного сплава демонстрируется повышенный уровень прочности.

Как и все паяльные пасты Senju, эти порошки производятся на собственном производстве в соответствии со строгими производственными параметрами. Отдельные частицы имеют идеальную сферическую форму и практически не содержат окисления, что дает очень стабильную и однородную паяльную пасту.

Основные характеристики и преимущества продукта:

  • Длительный срок службы трафарета: до 8 часов непрерывной печати.
  • Хорошее образование пустот в различных корпусах: BGA, MLF, DPAK, LGA.
  • Низкотемпературное оплавление уменьшает количество дефектов типа «голова в подушке» (HIP) и «не влажное открытие» (NOW).
  • Снижает энергопотребление
  • Исключает процесс проточной пайки
  • Без мокрой пайки с открытым спадом
  • Класс флюса: ROL0
  • Температура плавления: 140-145°C Ni)
  • Доступен в типе 4 Размер частиц

Рекомендуемое применение:

  • Совместимость с печами оплавления воздухом или азотом.
  • Подходит для всех компонентов SAC305!

 

Номер продукта: L29-145HF
.

Добавить комментарий

Ваш адрес email не будет опубликован.