Menu

Двигатель дизель 2 с: Что надо знать про двигатель 2С при покупке Тойоты|Слабый мотор

Содержание

Что надо знать про двигатель 2С при покупке Тойоты|Слабый мотор

В предыдущей статье мною была приведена информация про слабые места и недостатки дизеля 1С. Следующее поколение двигателей от Тойота Мотор Корпорейшен, казалось бы наоборот, должно быть качественней, ведь опыт корпорации и научно — технический прогресс постоянно развивается. Но к сожалению, про дизельные двигатели линейки 2С в сравнении с 1С ничего хорошего сказать нельзя, а недостатков стало больше. Модели автомобилей Тойота в которых установлены эти двигатели с объемом 2л перечислены ниже:

  • Калдина CT190/196/198 с 1992 по 1998 гг., 2С-I4, 2C-TI4;
  • Карина CT150 с 1984 по 1988 гг., 2С-T4;
  • Карина CT170/176 с 1988 по 1992 гг., 2С-I4;
  • Карина CT190/195 с 1992 по 1996 гг., 2С-I4;
  • Карина 2 CT150 с 1983 по 1987 гг., 2С-I4;
  • Карина 2 CT170 с 1987 по 1992 гг., 2С-I4;
  • Карина Е CT190 с 1992 по 1996 гг., 2С-L-I4, 2С-II-I4;
  • Корона CT150 с 1983 по 1987 гг. , 2C-II-I4, 2C-L-I4, 2C-I4, 2C-T-I4;
  • Корона CT170/176/177 с 1987 по 1992 гг., 2С-L-I4, 2С-I4, 2С-T-I4;
  • Корона CT190/195 с 1992 по 1996 гг., 2C-II-I4, 2C-L-I4,2C-T-I4;
  • Литайс/Таун Айс CM26 с 1985 по 1986 гг., 2С-I4, 2С-T-I4-T;
  • Литайс CM0/31/36/41 с 1985 по 1992 гг., 2C-I4, 2C-T-I4-T;
  • Литайс/Таун Айс CM51/52/55/60/61/65 с 1989 по 1999 гг., 2С-I4, 2С-T-I4-T;
  • Литайс/Таун Айс CP21/27/28/36 с 1984 по 1996 гг., 2C-I4, 2C-T-I4-T;
  • Литайс/Таун Айс CP41/51 с 1996 по 1989 гг., 2С-I4, 2С-T-I4-T;
  • Спринтер CE95 с 1989 по 1991 гг., 2С;
  • Спринтер CE100/104/106/108/109 с 1991 по 1998 гг., 2C;
  • Спринтер CE110/114 с 1995 по 1998 гг., 2С;
  • Авенсис CT220 с 1997 по 2000 гг., 2С-TE;
  • Каролла CE110 с 1995 по 2001 гг., 2С-E.

 

Все слабые места и недостатки двигателя 1С по наследству достались 2С и дополнительно (см.ниже).

Недостатки двигателя 2С

  • Потеря компрессии в двух цилиндрах, в большинстве случаев в 3 и 4 цилиндре;
  • Быстрый износ двигателей 2С и 2С-T установленных на микроавтобусах;
  • Отсутствие сервисов для регулировки и проблема с деталями к ТНВД с электроникой в случае его ремонта у двигателей 2С-E, 2С-TE.

Более детально о недостатках двигателя 2С…

Потеря компрессии в двух цилиндрах, в большинстве случаев в 3 и 4 цилиндре

Потеря компрессии, как правило в проблемных 3 и 4 цилиндрах двигателей происходит по причине негерметичности воздушных трубок связующих воздушный фильтр с турбиной и с воздушным коллектором. Пыль проникая в через негерметичные места и смешиваясь с маслом и поступая с маслом к поверхности трущихся деталей стачивает их и быстро приводит в негодное состояние. По этой причине быстро выходит из строя цилиндро-поршневая группа, и тарелки впускных клапанов. Соответственно, износ тарелок клапанов увеличивает тепловые зазоры, а компрессия пропадает.

 

Быстрый износ двигателей 2С и 2С-T установленных на микроавтобусах

Если сказать по простому, то данные моторы не рассчитаны для микроавтобусов, ведь они гораздо тяжелее и больше по габаритам, что увеличивает нагрузки на двигатели. На движках, где ТНВД с электронным управлением эта проблема отсутствует.

Отсутствие сервисов для регулировки и проблема с деталями к ТНВД с электроникой в случае его ремонта у двигателей 2С-E, 2С-TE

Конечно ТНВД с электронным управлением принес пользу двигателям:

  • снижение расхода топлива;
  • уменьшение токсичных выбросов;
  • повысилась равномерность работы двигателя;
  • двигатели работают тихо.

Но минус в том, что очень редко попадаются сервисы способные проводить диагностику, регулировку подобных ТНВД в соответствии с заданными конструкторами режимами и параметрами. Трудность в том, что нет специалистов такого уровня подготовленности, а также запчастей и технологического оборудования для требуемых работ.

В заключении можно отметить, что у мотора 2С есть недостатки о которых перед покупкой автомобиля сначала надо хорошо подумать, ведь покупать вы будете не новое авто, а побывавшее в пользовании. С другой стороны, если автомобиль правильно эксплуатировали, своевременно осматривали и обслуживали, то вышеописанных проблем не будет.

P.S. Уважаемые владельцы «Тойот» с двигателями 2С! Вы можете прокомментировать о слабых местах и недостатках выявленных вами в личной практике при эксплуатации автомобилей.

Похожие записи:

Двигатель Toyota 2C, Технические Характеристики, Какое Масло Лить, Ремонт Двигателя 2C, Доработки и Тюнинг, Схема Устройства, Рекомендации по Обслуживанию

string(10) "error stat"
string(10) "error stat"

Описание 2C

В 1985 году появился один из худших и проблемных дизельных двигателей компании Toyota — 2C. Он устанавливался абсолютно на все что можно, начиная от микроавтобусов и заканчивая седанами Toyota.

Силовая установка не завоевала положительных рекомендаций, все потому что двигатель имел множество конструктивных недоработок. Казалось бы серия двигателей 1C должна была научить инженеров и дать понять о всех недостатках их дизелей. Но на деле все наоборот двигатели 2С имеют еще больше недостатков.

Двигатели серии 2С — классические рядные 4х цилиндровые дизельные двигатели

На микроавтобусах эти моторы подвержены быстрому износу. Они просто не рассчитаны на вес микроавтобуса, поэтому  двигатели испытывают серьезные нагрузки, естественно в таких условиях ни один двигатель долго не проживет. Силовые установки серии 2С развивают всего 70 лошадиных сил и 130 Hm крутящего момента, этого очень мало для передвижения минивэна общим весом в 2 тонны.

Двигатель 2С-T оснащен турбонаддувом

Двигатели 2С были оснащены турбонаддувом, имели чугунный блок и алюминиевую ГБЦ, которая в процессе эксплуатации страдала больше всего, от термонагруженности и плохого охлаждения она покрывается микротрещинами и больше не может выполнять своей функции. Головка в свою очередь имеет 8 клапанов — по 2 на цилиндр, систему Sohc — распредвал всего один, привод газораспределительного механизма осуществлен ремнем, за которым также нужно пристально следить, ведь двигатели серии 2С гнут клапана.

Чугунный блок двигателя свою роль выполняет достойно и легко поддается капитальному ремонту. В целом компания Toyota произведя эту серию двигателей не учла своих ошибок, а только усугубила свое положение на рынке дизельных установок — у них получился маломощный и не надежный двигатель, имеющий кучу конструкционных недостатков.

Регламент обслуживания 2С

Чтобы продлить жизнь силовой установке требуется проводить планомерные технические работы с двигателем — менять расходники, а также следить за качеством работы двигателя и при необходимости производить ремонт неисправных систем и агрегатов.

Одним из важнейших расходников является масло, для данной серии двигателей качество масла не так важно как его количество — важно следить за уровнем масла и при необходимости доливать его, если уровень масла стать падать слишком быстро, то стоит задуматься о капремонте, если этого не сделать, то двигатель может уйти в разнос. Для двигателей 2C прекрасно подойдет масло средней ценовой категории — синтетика или полусинтетика вязкости 5w-30, 5w-40.

Регламент технического обслуживания представлен ниже:

  • регулировку клапанов требуется производить каждые 30 тысяч километров пробега, иначе клапана прогорят и двигатель откажется запускаться, так как компрессии просто не будет, может быть все иначе, если зазор будет слишком большим, то появятся неприятные стуки доносящиеся из ГБЦ;
  • замена всех фильтрующих элементов также важна, ее следует производить каждые 20 тысяч километров, воздушный и топливный фильтры можно использовать как оригинальные, так и аналоговые;
  • регулировка форсунок должна быть произведена в соответствии с мануалом раз в 100 тысяч километров;
  • ремень ГРМ рекомендуется проверять раз в 20 тысяч километров, его ресурс равен 100 тыс.км., но лучше произвести его замену после 70000 км. пробега, приводные ремни также требуют внимания, следует контролировать их состояние и при необходимости менять.
  • замену масла требуется производить каждые 10 тысяч км. пробега.
Агрегат требует ухода и соблюдения периодичности технического обслуживания

Обзор неисправностей 2C, способы ремонта


Одним из проблемных узлов силовой установки является головка блока цилиндров, в условиях дикой термонагруженности и плохого охлаждения она нередко обрастает микротрещинами и начинает пропускать газы в систему охлаждения, либо охлаждающая жидкость попадает в масло и образует эмульсию, что приводит к моментальной смерти дизельного агрегата. Ремонту ГБЦ не поддается, единственный вариант найти контрактную, произвести опрессовку и если она в хорошем состоянии, то установить на двигатель.

Цилиндропоршневая группа двигателей 2С не отличалась надежностью, очень часто в 3м и 4м цилиндре пропадала компрессия из за образовавшихся задиров

Потеря компрессии в 3 и 4ом цилиндрах возникает из за попадания пыли в масло. Смешиваясь с маслом пыль попадает на стенки цилиндров и просто стачивает их. В результате чего образуется эллипсность и поршень больше не способен держать давление — оно прорывается в местах стачивания гильзы. Поршневые и маслосъемные кольца тоже моментально страдают, появляется масложор и если он превысит критическую отметку, то масло попадая в цилиндры может пустить двигатель в разнос. Именно поэтому заметив сизый дым из выхлопной трубы следует немедленно произвести капремонт двигателя, если этого не сделать, а продолжить ездить, то вскоре ремонтировать будет уже нечего.

Двигатели установленные на микроавтобусы изнашивались очень быстро, так как работали в максимально тяжелых условиях — их мощности критически не хватало для того чтобы перемещать двухтонные машины. Но стоит отметить, что двигатели с электронным управлением ТНВД жили намного дольше, чем их собратья с механикой.

На двигатели 2С оснащенные турбонаддувом, устанавливался нагнетатель CT09

Двигатель 2С использует турбину, охлаждение которой реализовано с помощью антифриза, но из за конструктивных недоработок системы охлаждения в ней практически всегда присутствует воздух, в результате воздушных пробок турбина перегревается и испытывает масляное голодание. В результате чего она моментально выходит из строя и хорошо если она просто перестает нагнетать воздух, но иногда случается заброс масла из турбины во впуск в результате попадания масла в цилиндры двигатель может уйти в разнос, что нередко происходит, так как масло является отличным топливом для дизельных установок.

В целом двигатели серии 2C живут досточно долго в легких автомобилях, таких как Toyota Carina. Силовые агрегаты установленные в данных автомобилях нередко проходят 300 тысяч километров без капремонта, естественно при условии того, что все технические работы производятся по регламенту и двигатель работает в умеренных нагрузочных режимах.

Варианты тюнинга 2С

Данная серия двигателей практически не поддается тюнингу. Лучше не мешать двигателю с такой репутацией просто работать. Энтузиасты поднимают давление турбины и получают прибавку в 15-20 лошадиных сил, но при этом колоссально страдает ресурс. Вообще тюнингом данной силовой установки никто не занимается, ее предназначение исправно работать в седанах и минивэнах. Никаких намеков на спортивный характер у данной силовой установки нет.

Список моделей авто, в которые устанавливался

Двигатели серии 2С предназначались для бюджетных седанов и минивэнов компании Toyota, к сожалению маломощные двигатели плохо справляются со своими обязанностями в тяжелых автомобилях, зато в каринах и калдинах мотор прекрасно выполняет свои функции.

Список авто в которые устанавливались двигатели 2С представлен ниже:

Toyota Avensis

Toyota Avensis
(10.1997 — 12.2000)
хэтчбек, 1 поколение, T220

Toyota Avensis
(10.1997 — 12.2000)
универсал, 1 поколение, T220

Toyota Avensis
(10.1997 — 12.2000)
седан, 1 поколение, T220

Toyota Caldina

Toyota Caldina
(11.1992 — 07.2002)
универсал, 1 поколение, T190

Toyota Caldina
(11.1992 — 12.1995)
универсал, 1 поколение, T190

Toyota Caldina
(01.1996 — 08.1997)
рестайлинг, универсал, 1 поколение, T190

Toyota Carina

Toyota Carina
(08.1996 — 07.1998)
седан, 7 поколение, T210

Toyota Carina
(08.1994 — 07.1996)
рестайлинг, седан, 6 поколение, T190

Toyota Carina
(08.1992 — 07.1994)
седан, 6 поколение, T190

Toyota Carina
(05.1990 — 07.1992)
рестайлинг, седан, 5 поколение, T170

Toyota Carina
(05.1990 — 07.1992)
рестайлинг, универсал, 5 поколение, T170

Toyota Carina
(05.1988 — 07.1990)
седан, 5 поколение, T170

Toyota Carina E

Toyota Carina E
(12.1992 — 01.1996)
универсал, 6 поколение, T190

Toyota Carina E
(04.1992 — 03.1996)
хэтчбек, 6 поколение, T190

Toyota Carina E
(04.1992 — 03.1996)

седан, 6 поколение, T190

Toyota Carina E
(04.1996 — 11.1997)
рестайлинг, хэтчбек, 6 поколение, T190

Toyota Carina E
(04.1996 — 11.1997)
рестайлинг, универсал, 6 поколение, T190

Toyota Carina E
(04.1996 — 01.1998)
рестайлинг, седан, 6 поколение, T190

Toyota Camry

Toyota Camry
(06.1992 — 06.1994)
рестайлинг, седан, 3 поколение, V30

Toyota Camry
(07.1990 — 05.1992)
седан, 3 поколение, V30

Toyota Camry
(08.1986 — 06.1990)
седан, 2 поколение, V20

Toyota Corolla

Европа

Toyota Corolla
(06.1992 — 04.1997)
универсал, 7 поколение, E100

Япония

Toyota Corolla
(09.1991 — 06.2002)
универсал, 7 поколение, E100

Toyota Corolla
(09.1991 — 04.1993)
универсал, 7 поколение, E100

Toyota Corona

Toyota Corona
(02.1994 — 01.1996)
рестайлинг, седан, 10 поколение, T190

Toyota Corona
(11.1989 — 01.1992)

рестайлинг, седан, 9 поколение, T170

Toyota Corona
(12.1987 — 05.1992)
универсал, 9 поколение, T170

Toyota Corona
(12.1987 — 10.1989)
седан, 9 поколение, T170

Toyota Lite Ace

Toyota Lite Ace
(10.1996 — 08.2007)
минивэн, 5 поколение, R40, R50

Toyota Lite Ace
(01.1992 — 07.1995)
минивэн, 4 поколение, R20, R30

Toyota Lite Ace
(08.1988 — 12.1991)
рестайлинг, минивэн, 3 поколение, M30, M40

Toyota Lite Ace
(09.1985 — 07.1988)
минивэн, 3 поколение, M30, M40

Toyota Lite Ace
(09.1985 — 12.1991)
минивэн, 3 поколение, M30, M40

Toyota Sprinter

Toyota Sprinter
(05.1993 — 04.1995)
рестайлинг, седан, 7 поколение, E100

Toyota Sprinter
(09.1991 — 04.1995)
универсал, 7 поколение, E100

Toyota Sprinter
(06.1991 — 04.1993)
седан, 7 поколение, E100

Toyota Town Ace

Toyota Town Ace
(10.1996 — 01.2008)

минивэн, 3 поколение, R40, R50

Toyota Town Ace
(01.1992 — 09.1996)
3-й рестайлинг, минивэн, 2 поколение, R20, R30

Toyota Master Ace Surf

Toyota Master Ace Surf
(08.1988 — 12.1991)
2-й рестайлинг, минивэн, 2 поколение, R20, R30

Toyota Vista

Toyota Vista
(06.1992 — 06.1994)
рестайлинг, седан, 3 поколение, V30

Toyota Vista
(06.1992 — 06.1994)
рестайлинг, седан, 3 поколение, V30

Toyota Vista
(07.1990 — 05.1992)
седан, 3 поколение, V30

Toyota Vista
(07.1990 — 05.1992)
седан, 3 поколение, V30

Toyota Vista
(08.1988 — 07.1990)
рестайлинг, седан, 2 поколение, V20

Toyota Vista
(08.1988 — 07.1990)
рестайлинг, седан, 2 поколение, V20

Toyota Vista
(08.1986 — 07.1988)
седан, 2 поколение, V20

Перечень модификаций 2C

Модификаций силовой установки было огромное количество:

  • 2С-E — самая массовая версия двигателя, обладала мощностью в 74 лошадиные силы, имела механическое управление ТНВД;
  • 2C-T — Мотор обладал мощностью а 82-90 л.с., в зависимости от авто на котором был установлен, как и все представители серии 2C был оснащен турбонаддувом;
  • 2C-TE — двигатель мощностью 90 лошадиных сил, устанавливался только на Toyota Avensis;
  • 2C-TC — силовая установка развивающая мощность в 90 лошадиных сил, обладала разделенной камерой сгорания.
Дизельный агрегат с механическим управлением ТНВД установленный на Corolla

Технические характеристики

Объем двигателя, куб.см 1974
Максимальная мощность, л.с. 70 — 74
Максимальный крутящий момент, Н*м (кг*м) при об./мин. 127 (13) / 2600
129 (13) / 2800
129 (13) / 3000
132 (13) / 2500
132 (13) / 2800132 (13) / 3000
160 (16) / 2400
167 (17) / 2400
173 (18) / 2600
174 (18) / 2000
177 (18) / 2200177 (18) / 2600
190 (19) / 2600
Используемое топливо Дизельное топливо
Расход топлива, л/100 км 3.8 — 7.2
Тип двигателя 4-цилиндровый, SOHC
Доп. информация о двигателе SOHC
Выброс CO2, г/км 170
Диаметр цилиндра, мм 86
Количество клапанов на цилиндр 2-4
Максимальная мощность, л.с. (кВт) при об./мин. 70 (51) / 4700
72 (53) / 4700
73 (54) / 4300
73 (54) / 4600
73 (54) / 470074 (54) / 4700
82 (60) / 4500
83 (61) / 4000
85 (63) / 4500
88 (65) / 4000
88 (65) / 450091 (67) / 4400
Механизм изменения объёма цилиндров нет
Нагнетатель В зависимости от модифи-
кации силовой установки
Система старт-стоп нет
Степень сжатия 23
Ход поршня, мм 85-94

Если у вас возникли вопросы — оставляйте их в комментариях под статьей. Мы или наши посетители с радостью ответим на них

Toyota 2C: Характеристики двигателя — AVTO-NINJA

Toyota 2C — это 2,0 л (1974 куб.см.) четырехцилиндровый, четырехтактный двигатель с водяным охлаждением, от Toyota C-семейства, изготовляемого Toyota Motor Corporation с 1983.

Дизельный двигатель 2C имеет чугунный блок цилиндров с отверстиями цилиндров 86,0 и ход поршня 85,0 мм. Степень сжатия составляет 23: 1. Двигатель Toyota 2C имеет головку с одним верхним распределительным валом (SOHC) и 2 клапана на цилиндр (всего 8).

 

Этот двигатель был доступен в следующих модификациях:

  • 2C — продольная версия. Этот двигатель производит 73 л.с. (54 кВт; 72 л.с.) при 4700 об/мин лошадиных сил и 132 Н · м (13,5 кг · м) при 3000 об/мин крутящего момента.
  • 2C-L — это поперечно установленная версия 2C.
  • 2C-E — это версия EFI для двигателя 2C.
  • 2C-T, 2C-TL, 2C-TLC — версия с турбонаддувом. Он вырабатывает 86 л.с. (63 кВт; 85 л.с.) при 4500 об/мин выходной мощности и 173 Н · м (17,6 кг · м) при 2600 об/мин крутящего момента.
  • 2C-TE — турбокомпрессорная версия с EFI.

Разбивка кода двигателя 2C выглядит следующим образом:

  • 2 — 2-й двигатель поколения
  • C — семейство двигателей
Характеристики двигателя 2С
Код двигателя
ВидПрямо-4, вертикальный
Тип топливадизель
Годы производства1983-
Объём2,0 л, 1 974 куб. См
Топливная системамеханический
Турбина
Лошадиные силы2C: 73 PS (54 кВт; 72 л.с.) при 4700 об/мин.
2C-TL : 86 л.с. (63 кВт; 85 л.с.) при 4500 об/мин
Крутящий момент2C: 132 Н · м (13,5 кг · м) при 3000 об/мин.
2C-TL : 173 Н · м (17,6 кг · м) при 2600 об/мин.
Порядок работы цилиндров1-3-4-2
Размеры (Д × В × Ш)
Вес

Блок цилиндров 2C

Блок цилиндров изготовлен из чугуна. Коленчатый вал поддерживается 5 подшипниками. Благодаря внутреннему диаметру цилиндра 86,0 и ходу поршня 85,0 мм двигатель 2C имеет рабочий объем 1974 куб.см. Степень сжатия составляет 23: 1.

Блок цилиндров
СплавЧугун
Коэффициент сжатия23:1
Диаметр цилиндра86,0
Ход поршня85,0
Поршневые кольца: компрессия/масло2/1
Коренные подшипники5
Внутренний диаметр цилиндра86.000-86.030
Диаметр юбки поршня85,950-85,980
Кольцевой зазор поршневого кольцаверхний 0,270-0,540
второй 0,250-0,520
масло 0,200-0,820
Диаметр шейки коленвала27.000-27.012
Диаметр шатуна50,488-50,500

Процедура затяжки крышки коренных подшипников и характеристики крутящего момента:

● 103 Нм; 10,5 кг · м

После закрепления болтов крышек подшипников убедитесь, что коленчатый вал плавно вращается рукой.

Гайка шатуна

● 64 Нм; 6,5 кг · м

Болт шкива коленчатого вала

● 98 Нм; 10,0 кг · м

Болты крепления пластины привода (A / T)

● 74 Нм; 7,5 кг · м

Крепежные болты маховика (M / T)

● 88 Нм; 9,0 кг · м

ГБЦ 2C

ГБЦ
Тип ГРМSOHC
Клапаны8 (2 клапана на цилиндр)
Скорость впуска/выпуска
Длина клапанаВпускных 105,70
Выпускных 105,35
Диаметр штока впускного клапана:7,975-7,990
Диаметр штока выпускных клапанов:7,960-7,975
Длина пружины клапана свободная:47,5
Диаметр шейки распредвала:27,979-27,995
Высота кулачка распредвала (впуск):2C: 46,725-46,875
2C-T: 46,325-46,475
Высота кулачка распредвала (выпуск):47,335–47,485

Процедура затяжки головки и характеристики крутящего момента:

  • Шаг 1 : 44 Нм; 4,5 кг · м
  • Шаг 2. Поверните все болты на 90 °
  • Шаг 3. Поверните все болты еще на 90 °.
Зазоры клапанов
Впускной клапан0,20-0,30
Выпускной клапан0,25–0,35
Степень сжатия
Стандарт30,0 кг / м 2
Масло в двигатель 2С
Масло в двигатель10W-30 или 5W-30 («CC», «CD»)
API типа масла
Сколько масла в двигателе, лС заменой масляного фильтра: 4,3-4,5 л
Без замены масляного фильтра: 3,8 л
Замена масла проводится, км
Двигатель 2С устанавливается в:
МодельГоды выпуска
Toyota Caldina (CT190/196/198)1992-1998
Toyota Carina (CT150/170/176/CT190/195)1984-1996
Toyota Carina II (CT150/170)1983-1982
Toyota Carina E (CT190)1992-1996
Toyota Corolla (CE95/100/104/106/108/109/110/114)1989-2001
Toyota Corolla (Altis) (CE120)2001-2004
Toyota Corona (CT141/CT150/CT170/176/177/CT190/195)1983-1996
Toyota Deliboy (CXC10 )1991-1994
Toyota LiteAce / TownAce1985-1999
Toyota Sprinter (CE95/100/104/106/108/109/110/114)1989-1998
2C-E
Toyota Corolla (CE110)1995-2001
2C-T, 2C-TL, 2C-TLC
Toyota Caldina (CT190 )1994-1997
Toyota Carina (CT210/215)1996-1998
Toyota Carina E (CT190)1996-1997
Toyota Avensis (CT220)1997-2000
Toyota Camry (CV11/20/30)1995-1994
Toyota Corona (CT190/CT210/215)1996-1997
Toyota Vista (CV11/20/30)1995-1994
Toyota LiteAce / TownAce (CM30/40, CR21/28/30/37)1984-1992
2C-TE
Toyota Avensis (CT220)1997-2000

Денис — специалист в сфере автомобилей. Он имеет 5-летний опыт работы на СТО и пишет про новости в мире автомобилей. Теперь он делится своими знаниями с людьми, рассказывает про устройство и ремонт современных авто.

2C 2CE 2CT 2CTE 2.0L

Технические характеристики 2C:
Производитель: TOYOTA Точный объем: 1974
Система питания: Форкамерный Гидрокомпенсаторы: Нет
Мощность ДВС: 70 — 75 л.с. Привод ГРМ: Ремень ГРМ
Крутящий момент: 125 — 135 Нм Фазорегулятор: Нет
Блок цилиндров: Чугунный R4 Турбонаддув: Нет
Головка блока: Алюминиевая Какое масло лить: 4.1 литра 5W-40
Количество цилиндров: 4 Количество клапанов на цилиндр: 2
Диаметр цилиндра: 86мм. Ход поршня: 85мм.
Экологический класс: ЕВРО 0 Степень сжатия: 23:1

  2.0-литровый дизельный двигатель Toyota 2С собирался на заводе в Японии с 1983 по 2001 год и ставился на многие среднеразмерные модели своего времени, типа Corona, Carina, Corolla. При поперечном расположении этого силового агрегата под капотом его часто называли 2C-L.

  

 

 

На какие автомобили ставился двигатель 2C 
Caldina T190: 1992 — 1998 Carina T150: 1984 — 1988
Carina T170: 1988 — 1992 Carina T190: 1992 — 1996
Corolla E90: 1989 — 1991 Corolla E100: 1991 — 1998
Corolla E110: 1995 — 2001 Corona T150: 1983 — 1987
Corona T170: 1987 — 1992 Corona T190: 1992 — 1996
LiteAce M30: 1985 — 1992 TownAce R20: 1983 — 1996
TownAce R40: 1996 — 1999 Sprinter E90: 1989 — 1991
Sprinter E100: 1991 — 1998 Sprinter E110: 1995 — 1998

 

 


Технические характеристики 2CE:
Производитель: TOYOTA Точный объем: 1974
Система питания: Форкамерный Гидрокомпенсаторы: Нет
Мощность ДВС: 72 л.с. Привод ГРМ: Ремень ГРМ
Крутящий момент: 131 Нм Фазорегулятор: Нет
Блок цилиндров: Чугунный R4 Турбинаддув: Нет
Головка блока: Алюминиевая Какое масло лить: 4.1 литра 5W-40
Количество цилиндров: 4 Количество клапанов на цилиндр: 2
Диаметр цилиндра: 86мм. Ход поршня: 85мм.
Экологический класс: ЕВРО 2 Степень сжатия: 23:1

 

  2.0-литровый дизельный двигатель Toyota 2C-E Японский концерн выпускал с 1997 по 2001 год и ставил лишь на модель Corolla для рынков с повышенными экологическими требованиями. Этот агрегат от других моторов 2С отличался наличием электронно-управляемого ТНВД Денсо.

 

  

 

На какие автомобили ставился двигатель 2CE 
Corolla E110: 1997 — 2001

 


Технические характеристики 2CT:
Производитель: TOYOTA Точный объем: 1974
Система питания: Форкамерный Гидрокомпенсаторы: Нет
Мощность ДВС: 80 — 90 л.с. Привод ГРМ: Ремень ГРМ
Крутящий момент: 165 — 175 Нм Фазорегулятор: Нет
Блок цилиндров: Чугунный R4 Турбонаддув: Обычный
Головка блока: Алюминиевая Какое масло лить: 4.9 литра 5W-40
Количество цилиндров: 4 Количество клапанов на цилиндр: 2
Диаметр цилиндра: 86мм. Ход поршня: 85мм.
Экологический класс: ЕВРО 1 Степень сжатия: 23:1

 

2.0-литровый турбо дизельный двигатель Toyota 2СТ выпускался в Японии с 1984 по 2001 год и ставился как на микроавтобусы Lite Ace, Town Ace, так и на легковые модели Carina и Camry. Такие моторы при поперечном расположении называли 2C-TL, версии с катализатором 2C-TLC.

  

 

На какие автомобили ставился двигатель 2CT 
Avensis T220: 1997 — 2000 Caldina T190: 1994 — 1997
Carina E T190: 1996 — 1997 Carina T210: 1996 — 2001
Corona T190: 1996 — 1997 Corona T210: 1996 — 1998
LiteAce M30: 1985 — 1992 TownAce R20: 1984 — 1992
Camry V10: 1985 — 1986 Camry V20: 1986 — 1991
Camry V30: 1990 — 1994 Vista V10: 1985 — 1986
Vista V20: 1986 — 1991 Vista V30: 1990 — 1994

 


Технические характеристики 2CTE:
Производитель: TOYOTA Точный объем: 1974
Система питания: Форкамерный Гидрокомпенсаторы: Нет
Мощность ДВС: 90 л.с. Привод ГРМ: Ремень ГРМ
Крутящий момент: 203 Нм Фазорегулятор: Нет
Блок цилиндров: Чугунный R4 Турбонаддув: Обычный
Головка блока: Алюминиевая Какое масло лить: 5.0 литра 5W-40
Количество цилиндров: 4 Количество клапанов на цилиндр: 2
Диаметр цилиндра: 86мм. Ход поршня: 85мм.
Экологический класс: ЕВРО 2 Степень сжатия: 23:1

 

  2.0-литровый турбо дизельный двигатель Toyota 2C-TE компания собирала с 1997 по 2000 годы и устанавливала только на дорестайлинговую версию модели Avensis для европейского рынка. Этот мотор отличался от других агрегатов 2С наличием электронно-управляемого ТНВД Денсо.

  

На какие автомобили ставился двигатель 2CTE 
Avensis T220: 1997 — 2000

Стоимость и технические данные двигателя 2C для Toyota

Toyota CALDINA (ST19_, ET19_, CT19_, AT19_)06.199409.1997
Toyota CARINA E Sportswagon (_T19_)01.199301.1996
Toyota CARINA E Наклонная задняя часть (_T19_)04.199201.1996
Toyota CARINA E седан (_T19_)08.199201.1996
Toyota CARINA II седан (_T17_)03.198806.1992
Toyota COROLLA Liftback (_E10_)07.199204.1997
Toyota COROLLA SECCA Наклонная задняя часть (_E10_, AE102)07.199204.1997
Toyota COROLLA Wagon (_E10_)07.199204.1997
Toyota COROLLA седан (_E10_)07.199204.1997
Toyota CORONA Наклонная задняя часть12.198701.1992
Toyota CORONA седан10.199709.2003
Toyota CORONA седан12.198701.1992
Toyota CORONA седан01.198408.1988
Toyota DELIBOY автобус (KXC1_, CXC1_)10.198910.1995
Toyota LITEACE автобус (CM30_G, KM30_G)08.198801.1992
Toyota LITEACE автобус (_R2_LG)01.199205.1994
Toyota LITEACE фургон (CM3_V, KM3_V)08.198801.1992
Toyota LITEACE фургон (_R2__V)01.199205.1994
Toyota MASTER ACE SURF автобус02.198510.1993
Toyota MODELL F автобус (_R2_, 31)04.198508.1988
Toyota SPRINTER Наклонная задняя часть04.199511.2000
Toyota SPRINTER седан04.199511.2000
Toyota TOWN ACE автобус01.199204.1995
Toyota TOWN ACE фургон01.199204.1995

Русский Дизель. Производство дизельных двигателей размерности 23/2х30, ДР 30/50 и запасных частей

«Русский дизель». Двигатели размерности 23/2х30, 40/46 и 30/50

ООО «Кингисеппский машиностроительный завод» производит дизельные двигатели и дизель-генераторные установки единичной мощности от 3,45 до 8 мВт. Основной специализацией предприятия является изготовление дизель-генераторов и силовых судовых и корабельных установок мощностью до 10000 л.с. на базе дизельных двигателей размерности 23/2х30 «Русский дизель».

Модельный ряд двигателей размерности 23/2Х30 «Русский дизель»

Модельный ряд дизельных двигателей  размерности 23/2х30 производства Кингисеппского машиностроительного завода:

Модельный ряд двигателей размерности 23/2Х30

«58» 16ДПН23/2х30 мощность 4500 л.с.: 58Д-4А  58Д 58А 58Е-7А

«61» 16ДПН23/2х30 мощность 6000 л.с: 61Б, 61В

«67» 12ДРПН23/2х30 мощность 7000 л.с.: 67Е 67Б 67И 

«68» 18ДПН23/2х30 мощность 8000 л.с.: 68Е  68Г 68Б 68В

«70» 18ДРПН23/2х30 мощность 6000 л.с.: 70Б

«78» 18ДРПН23/2х30 мощность 7990 л.с.: 78Г 78И

«82» 18ДПН23/2X30 мощность 6790 л.с.: 82А

«85» 18ДПН23/2X30 мощность 8300 л.с.: 85Д

«86» 18ДРПН23/2х30 мощность 8000 л.с.: 86Б

«88» 18ДПН23/2х30 мощность 8850 л.с.: 88Г


Судовой дизельный двигатель размерности 23/2х30 «Русский дизель»

Судовые автоматизированные дизель-генераторы на базе двигателей 23/2х30 «Русский дизель»

Судовые автоматизированные дизель-генераторы СДГ-5000 состоят из дизеля 68Г и синхронного генератора. Дизели 68Г является двухтактными, нереверсивным, простого действия с противоположно движущимися поршнями, с двумя рядами вертикально расположенных цилиндров, с четырьмя коленчатым валами, которые объединяются со встроенным мультипликатором (главной передачей), с прямоточно-щелевой продувкой, с газотурбинным наддувом и промежуточным охлаждением воздуха.

Управление дизель-генератором осуществляется посредством системы дистанционного автоматизированного управления, состоящей из системы автоматического и дистанционного управления двигателями судовых дизель-генераторов ДАУ СДГ-Т, блока реле-приставки и элементов дизельной автоматики.

Основными конструктивным отличием дизеля 705 от дизеля 68Б является главная передача, передаточное отношение которой обеспечивает другие выходные оборот дизеля. Дизели 70Б и 70Б-6 реверсивные, при этом дизель 70Б реверсируются как с местного поста, так и с пульта ДАУ.


Габаритный чертеж дизель-генератора на базе двигателя 16ДПН23/2х30

Система автоматизированного управления

Управление дизель-генератором осуществляется посредством системы дистанционного автоматизированного управления, состоящей из системы автоматического и дистанционного управления двигателями судовых дизель-генераторов ДАУ СДГ-Т, блока реле-приставки и элементов дизельной автоматики. Работы по усовершенствованию дизелей 64Г, входящих в состав ДГ-4000 продолжаются. В частности, создан форсированный вариант 64ГФ с повышением мощности установки с 3,5 МВт до 4 МВт. Были выпущены модификации, работающие на природном газе – 61ГА и 64ГА, готовится дизель 96ГА, работающий на дизельном топливе и природном газе. Модификации ДГ совершенствуются по мере изменений потребностей народного хозяйства.

Модификация АСД-6300 мощность 7 МВт и АСД-5600 мощность 5,6 МВт предназначены для установок резервного электроснабжения с ограниченным временем пуска. Дизель комплектуется приводным газотурбонагнетателем, что позволяет без дополнительных энергозатрат обеспечить готовность дизеля к приему нагрузки в течение 15 секунд после получения команды на пуск, а также обеспечивает устойчивую работу при внезапных набросах нагрузки, минимизируя провалы по частоте и напряжению.

  

Автоматизированные дизель-генераторы (дизельные электростанции) переменного тока с дизелями 18ДПН23/2Х30 предназначены для использования в качестве постоянных или аварийных (резервных) источников электроэнергии и благодаря малому времени пуска применяются на атомных электростанциях и у других потребителей, где прекращение подачи электроэнергии недопустимо.

Дизель-генераторы ДГ-4000 мощностью 3,5 МВт и АДГ-5000 мощностью 5 МВт используется как постоянные источники электроэнергии.

В состав дизель-генераторов (электростанций) входят и комплектно поставляются только отечественные комплектующие:

•  стационарный дизель 18ДПН23/2Х30;

•  синхронный генератор типа СБГД/ СГДМ с бесщеточной системой возбуждения и устройством управления;

•  система автоматического управления;

•  сигнализации и защиты;

• вспомогательное оборудование, обеспечивающее работу дизеля (насосы, фильтры, терморегуляторы и т. п.), поставляемое в виде комплектных блоков;

•  глушитель и трубопроводы всасывания и выхлопа;

•  бак расширительный и система подогрева воды и масла;

•  баллоны пускового и управляющего воздуха;

•  блоки осушки воздуха;

•  компрессор высокого давления собственного производства завода.

Система автоматического управления, сигнализации и защиты выполнены в виде отдельных шкафов управления дизелем, генератором и агрегатом в целом и обеспечивают автоматический пуск при исчезновении напряжения во внешней сети или по сигналу диспетчера.

На панелях шкафов управления размещены измерительные приборы и световая сигнализация, а также устройство ручного управления агрегатом при необходимости.

 

Двигатель размерности 23/2х30 «Русский дизель» готов к отгрузке

Система автоматизированного управления, сигнализации и защиты оповещает о состоянии дизель-генератора и соответствии фактических значений контролируемых параметров заданиям, обеспечивает автоматическое и автоматизированное управление пуском и остановом дизель-генератора, автоматическое пополнение расходных ёмкостей топлива, масла и охлаждающей жидкости; автоматизированный и экстренный останов; ручной запуск и останов; защиту дизель-генератора по предельно допустимым параметрам дизеля и генератора.

Генератор предназначен для работы на АЭС в качестве резервного или аварийного источника электропитания систем безопасности во время аварийного расхолаживания, отвечает ОПБ 88/97 и относится к классу безопасности 2О и ответствует категории сейсмостойкости I по ПНАЭГ-5-006-87, поставляется в страны с умеренным и тропическим климатом.

Все дизель-генераторы могут работать параллельно между собой, а также с энергосистемами различной мощности  и в параллель с сетью.

 

Процесс монтажа двигателей размерности 23/2х30 «Русский дизель»

Характеристики дизель-генераторной станции на базе двигателя размерности 23/2X30 позволяют обеспечивать работу на номинальной мощности на выходных клеммах генератора без ограничения по времени, и работу с 10% превышением номинальной мощности в течение двух часов с периодом повторного нагружения через 24 часа.

Изготовление запасных частей к двигателям размерности 23/2х30

ООО «Кингисеппский машиностроительный завод» успешно изготавливает запасные части, необходимые при техническом обслуживании и ремонте дизелей типа ДПН и ДРПН размерности 23/2×30 следующих заводских марок: 64Г, 67Е, 67И, 58Д-А, 58Д-Р, 58В, 61В-А, 64Г, 68Б, 68Г,  70Б, 78Г, 86, 82, 85, 88Г.

Процесс изготовления секции выхлопного коллектора 80-002-051 на двигатель «Русский дизель»

  

Стержни для литья секции газовыхлопа 80-002-051         Элемент газовыхлопа 23/2х30 после отливки

     

Новые секции газовыхлопа 80-002-051 на двигатель «Русский дизель» до мех. обработки   

  

Новые секции газовыхлопа 80-002-051 на двигатель «Русский дизель» в сборе, процесс токарной обработки секции газовыхлопа

 

Новые секции газовыхлопа 80-002-051 на двигатель «Русский дизель» после отливки

 

 

Новые секции выхлопного коллектора 80-002-051 на двигатель «Русский дизель» на складе, упакованы и готовы к отгрузке

Процесс производства 68-014-002 Фланца втулки рабочего цилиндра «Русский дизель»

  

68-014-002 Фланец втулки рабочего цилиндра

 

Обработка заготовки воротника на станке с ЧПУ                                Заготовки воротников для втулки рабочего цилиндра

Процесс производства топливных насосов высокого давления на двигатель «Русский дизель»

 

Корпусы топливных насосов после после обработки на станках с ЧПУ


Топливные насосы высокого давления собраны и  готовы к монтажу на двигатель

Процесс производства втулки рабочего цилиндра 68-014-134 «Русский дизель»

  

 

Заготовка втулки рабочего цилиндра 68-014-134 на двигатель 23/2х30 «Русский дизель»

Заготовка – центробежная отливка

  

 

  

Токарная и фрезерная обработки втулки рабочего цилиндра на двигатель 23/2х30 «Русский дизель»



Втулки рабочего цилиндра 68-014-134 после токарной, фрезерной, сверлильной и слесарной обработки
Новые втулки рабочего цилиндра 68-014-014 в сборе

    

Процесс производства 68-014-002 рубашки втулки рабочего цилиндра «Русский дизель»

 

Заготовки 68-014-002 рубашки втулки рабочего цилиндра «Русский дизель»

 

Обработка 68-014-002 Рубашки втулки рабочего цилиндра «Русский дизель» на станке

 

68-014-002 Рубашки втулки рабочего цилиндра «Русский дизель» готовы к сборке на ВРЦ 68-014-014

Теплообменное оборудование на двигатель размерности ДР 30/50 ДПРН 23х2/30 ЧН 40/46 «Русский дизель»

 

Новые воздухоохладители на дизель 68Б, 68Г, 70Б «Русский дизель»

Обработка втулки рабочего цилиндра 68-014-001 Русский Дизель from Kingiseppsk Machinery Plant on Vimeo. 

Производство втулки рабочего цилиндра на двигатель Русский Дизель from Kingiseppsk Machinery Plant on Vimeo.

 

Втулки рабочего цилиндра 68-014-014 и кольца для двигателя Русский Дизель размерности ДР 30/50, ДПРН 23х2/30, ЧН 40/46

 

 

Изготовление поршня на двигатель размерности 6 ДР 30/50, ДПРН 23х2/30, ЧН 40/46

  

Остов дизеля 78-012-001 Русский Дизель                    Процесс сборки двигателя размерности 23/2х30

Модернизационные доработки дизельного двигателя размерности 23/2Х30

Модернизация затронула процессы смесеобразования и сгорания топлива. Это позволило повысить цилиндровую мощность дизеля, систему наддува воздуха. Изменена конструкция форсунок, оптимизирован график впрыска топлива для различных режимов работы. Изменена конструкция камеры сгорания. Всё это позволило повысить КПД дизеля и снизить удельный расход топлива. На дизеле могут применяться два вида топливных систем.

На дизелях применяется топливная система разделённого типа с механическим приводом топливовпрыскивающего плунжера (в ТНВД) и гидравлически управляемой иглой распылителя в форсунке (по два ТНВД и две форсунки на цилиндр) Система CommonRail или разделённая система с индивидуальными ТНВД, с управлением цикловой подачей и опережением впрыска, быстродействующими электроклапанами слива из плунжерной полости. В последней системе используется обычная современная форсунка, ТНВД упрощенной конструкции, и как следствие имеющий большую надежность, а также быстродействующий клапан с электрическим приводом.

Управление дизелем производится с электронного (пневматического) пульта дистанционного автоматизированного управления, расположенного вне дизеля. На дизеле предусмотрен резервный пост управления и переключатель для перевода управления с дистанционного пульта на резервный пост и наоборот.

На водяной и масляной системах установлено оборудование автоматического регулирования температуры.

Система автоматического управления, защиты и сигнализации обеспечивает контроль:

•за параметрами работы двигателя;

•за сигнализацией достижения контролируемыми параметрами предельных величин;

•за аварийной остановкой при достижении аварийных параметров;

•за автоматическим пуском и остановкой дизеля по команде дежурного;

•за управлением оборотами и нагрузкой при работе на ВРШ или при работе в генераторном режиме.

На двигатель устанавливается гидромеханический регулятор скорости (на судовых машинах) или электронно-гидравлический (на генераторных машинах).

Предприятием успешно проведены конструкторские работы и расчёты по созданию машин размерности 23/2х30 нового мощностного ряда. Данные исследований мы готовы предоставить по запросу заказчика.

Применение в автоматизированной системе управления современного программного обеспечения даёт неоспоримые преимущества:

• интуитивность и простота в эксплуатации;

• масштабируемость и гибкость;

• диагностика и предотвращение аварий;

• обработка данных и архивирование;

• контроль безопасности и доступа;

• надёжность.

Для работы с автоматизированной системой необходимо первоначальное обучение.

 

Предприятие ООО «Кингисеппский машиностроительный завод» завершает активную работу по подготовке к выпуску новой номенклатуры модернизированных дизельных двигателей повышенной мощности.  Благодаря установленной системе турбонаддува, электронной управляемой топливной системе, цифровой системе управления и другим техническим доработкам, описанным выше, мощность двигателей составит от 10800 л.с. до 14500 л.с.(от 6 до 12 Мвт).

Следует отметить, что по специальному заказу предприятием изготавливаются дизели типа 23/2х30, работающие на тяжёлом топливе и природном газе. 

Двигатель D4EA дизель, 2 литра, турбодизель, запчасти на двигатель d4ea

D4EA – это 4-цилинробовый двигательный агрегат рабочим объемом 1991 куб. см, произведенный автомобильным концерном KIA. Мотор работает на дизельном типе топлива и обеспечивает степень сжатия до 17величин, что говорит о высокой мощности и невероятном крутящем моменте. Двигатель используется на Hyundai: Santa Fe, Trajet, Tucson и Kia: Sportage, Carens.

Двигатель D4EA устанавливается на:

  • Hyundai Santa Fe
  • Hyundai Trajet
  • Hyundai Tucson
  • Kia Sportage
  • Kia Carens

Какие имеет особенности двигатель D4EA?

Двигатель D4EA изготовлен по новой технологии известным концерном, поэтому даже бу способен отработать не одну сотню тыс. км. Они отвечают всем современным европейским требованиям даже после продолжительной работы. Все моторы прошли полный капитальный ремонт, диагностику и проверку на стенде, поэтому вы можете рассчитывать на него, отправляясь в длительное путешествие.

Конструктивные особенности двигателя D4EA 2 0

Одним из главных преимуществ двигателя D4EA 2 0 является наличие турбины, что позволило увеличить экономию топлива и повысить мощностные характеристики. Кроме этого стоит упомянуть материал, из которого изготовлен двигатель. Он не подвержен деформации, отлично выдерживает вибрации и отлично противостоит коррозии. Легированная сталь обеспечивает наилучшие рабочие характеристики в любых режимах. Также в нем исключены такие проблемы, как коррозия поддона и гбц D4EA, потому что они изготовлены из нейтральных сплавов к окислительным средам.

Двигатель D4EA 2.0 crdi устанавливается на автомобили марки Hyundai и RIA Motors. Агрегат хорошо себя зарекомендовал, не раз доказав свои способности, выполняя множество казалось бы непосильных задач. У нас вы сможете приобрести все необходимое для выполнения капитального и частичного ремонта этого агрегата. При этом высокое качество и надежность работы будут гарантированы, потому что мы предлагаем только оригинальные запасные детали и наборы на дизель D4EA.

Дизель D4EA представляет собой рядный двигатель с 4-мя тактами работы. Агрегат способен развивать мощность до 125 л.с. при частоте вращения коленчатого вала до 4 тыс. об/мин. D4EA двигатель дизель оснащен улучшенной жидкостной системой охлаждения, которая предотвратит нежелательный перегрев, эффективно отведя тепло наружу через радиатор.

На моторе имеется турбина D4EA TCI/VGT, которая обеспечивает высокую производительность при невысоком потреблении топлива. В смешанном цикле расход составит не более 8,5 литров, что является весьма приемлемо для людей с ограниченным бюджетом. А достаточная простота конструкции и невысокая стоимость обслуживания сделает его эксплуатацию еще более выгодной.

Мы не предлагаем двигательный агрегат D4EA купить как в состоянии бу, так мы не торгуем двигателями в сборе. Пред отправкой запчастей на двигатель Hyundai D4EA они проходят предварительные испытания на фабрике изготовителя, что исключает вероятность брака или плохого качества.

Если нужна замена ГРМ D4EA , мы можем предложить любые запчасти для выполнения капитального ремонта двигателя и других его компонентов.

Другие запчасти на двигатель D4EA

Кроме блока цилиндров, турбины и комплекта ГРМ у нас имеются и другие запчасти на двигатель D4EA. Они представлены исключительно высокого качества и по невысоким ценам, потому что мы напрямую сотрудничаем с производителем. Приобретая на D4EA запчасти у нас, вы гарантируете себя высокой надежностью и долговечностью.

Понимание цикла — двухтактный дизельный цикл

Если вы читали Как работают двухтактные двигатели, вы узнали, что одно большое различие между двухтактными и четырехтактными двигателями — это количество мощности, которое двигатель может вырабатывать. Свеча зажигания срабатывает в два раза чаще в двухтактном двигателе — один раз на каждый оборот коленчатого вала, по сравнению с одним разом на каждые два оборота в четырехтактном двигателе. Это означает, что двухтактный двигатель имеет потенциал для выработки в два раза большей мощности , чем четырехтактный двигатель того же размера.

В статье о двухтактном двигателе также объясняется, что цикл бензинового двигателя, в котором газ и воздух смешиваются и сжимаются вместе, не совсем подходит для двухтактного подхода. Проблема в том, что часть несгоревшего топлива вытекает каждый раз, когда цилиндр заправляется топливовоздушной смесью. (Подробности см. В разделе «Как работают двухтактные двигатели».)

Оказывается, дизельный подход, при котором сжимается только воздух, а затем впрыскивается топливо непосредственно в сжатый воздух, намного лучше подходит для двухтактного цикла.Поэтому многие производители больших дизельных двигателей используют этот подход для создания двигателей большой мощности.

На рисунке показана схема типичного двухтактного дизельного двигателя:

В верхней части цилиндра обычно находятся два или четыре выпускных клапана, которые открываются одновременно. Также имеется форсунка дизельного топлива (показана желтым наверху). Поршень удлиненный, как в бензиновом двухтактном двигателе, поэтому он может действовать как впускной клапан. В нижней части хода поршня поршень открывает отверстия для забора воздуха.Всасываемый воздух нагнетается турбонагнетателем или нагнетателем (голубой). Картер герметичен и содержит масло, как в четырехтактном двигателе.

Двухтактный дизельный цикл выглядит следующим образом:

  1. Когда поршень находится в верхней части своего хода, цилиндр содержит заряд сильно сжатого воздуха. Дизельное топливо впрыскивается в цилиндр форсункой и немедленно воспламеняется из-за тепла и давления внутри цилиндра. Это тот же процесс, который описан в «Как работают дизельные двигатели».
  2. Давление, создаваемое сгоранием топлива, толкает поршень вниз. Это с рабочим ходом .
  3. Когда поршень приближается к нижней точке своего хода, все выпускные клапаны открываются. Выхлопные газы устремляются из цилиндра, сбрасывая давление.
  4. По мере того, как поршень выдвигается вниз, он открывает отверстия для впуска воздуха. Сжатый воздух заполняет цилиндр, вытесняя остатки выхлопных газов.
  5. Выпускные клапаны закрываются, и поршень начинает двигаться обратно вверх, снова закрывая впускные отверстия и сжимая свежий заряд воздуха.Это такт сжатия .
  6. Когда поршень приближается к верху цилиндра, цикл повторяется с шагом 1.

Из этого описания вы можете увидеть большую разницу между дизельным двухтактным двигателем и бензиновым двухтактным двигателем: в дизельном В версии цилиндр заполняется только воздухом, а не смесью газа и воздуха. Это означает, что двухтактный дизельный двигатель не страдает от тех экологических проблем, которые присущи бензиновому двухтактному двигателю.С другой стороны, двухтактный дизельный двигатель должен иметь турбонагнетатель или нагнетатель, а это значит, что на бензопиле вы никогда не встретите двухтактный дизель — это было бы слишком дорого.

Новый двухтактный дизельный двигатель 10,6 л с 3 цилиндрами и 6 поршнями

Walmart тестирует дизельный двигатель с оппозитным поршнем с намерением заменить его более традиционные 13- и 15-литровые четырехтактные двигатели

Мы любим необычный двигатель здесь, в CT, независимо от предполагаемого применения.Вот почему несколько недель назад мы взглянули на первый в мире подвесной двигатель V12, а сегодня мы хотим поговорить о чем-то, разработанном для приведения в движение грузовика.

Однако это необычная силовая установка — этот агрегат от Achates Power звучит все более непонятно, чем больше вы читаете описание. Это 10,6-литровый двухтактный трехцилиндровый шестипоршневой дизельный двигатель. Вы правильно прочитали — шесть поршней в трех цилиндрах, поскольку это двигатель с оппозитными поршнями.

В отличие от «оппозитного» двигателя с горизонтальной оппозицией , в котором поршни направлены наружу под углом 180 градусов в отдельных цилиндрах, в оппозитном двигателе используется пара поршней, обращенных друг к другу и имеющих общий цилиндр.Каждый поршень почти встречается посередине в верхней мертвой точке, и в этот момент зажигание отправляет оба обратно в нижнюю мертвую точку. Два коленчатых вала на обоих концах связаны через набор шестерен, обеспечивая трансмиссию энергией.

В теории это здорово.Обычно энергия теряется через головку блока цилиндров, но в двигателе с оппозитными поршнями она распределяется между поршнями с более минимальными потерями. Вместо головки блока цилиндров на одной стороне двигателя имеются зазоры для потока выхлопных газов, а на противоположном конце — для всасываемого воздуха. Отказ от головки также означает меньшее количество движущихся частей, что потенциально увеличивает надежность и снижает производственные затраты.

Это не новая концепция — двухтактные двигатели с оппозитными поршнями появились несколько лет назад, но только сейчас было предложено вернуться.Двигатель «OP» Ахатеса — тоже не просто идея. Прототип 2,7-литрового пикапа Ford F-150 заложил основу, и с июля в Калифорнии Walmart будет тестировать 10,6-литровую версию на Peterbilt 579. Джон Т. Уолтон, покойный наследник Walmart, стал соавтором. основал Ахатес вместе с физиком Джеймсом Лемке в 2004 году.

Один из неизбежных недостатков штабелирования поршней друг над другом — это то, насколько высока конечная упаковка, но, по словам Ахатеса, это не будет большой проблемой для больших грузовиков 8-го класса.Если все в порядке, OP станет рентабельной альтернативой модернизации существующих 13- и 15-литровых четырехтактных двигателей в соответствии со строгими правилами Агентства по охране окружающей среды (EPA), которые вступят в силу в 2027 году.

В конце прошлого года было объявлено, что ОП будет соответствовать новым правилам. В настоящее время Achates заявляет, что его испытания показали снижение выбросов CO2 на семь процентов и колоссальное сокращение выбросов NOx на 96 процентов по сравнению с двигателем обычного грузовика. Несмотря на это, 10.6-литровый двигатель, используемый в демонстрационном автомобиле Walmart, развивает мощность около 400 л.с. и крутящий момент 1674 фунт-фут.

Полностью электрические грузовики, конечно, были бы еще экологичнее, но с учетом имеющихся препятствий с точки зрения запаса хода / аккумуляторной технологии, что-то вроде OP могло бы стать идеальным промежуточным решением. Будет интересно увидеть, как это получится.

Источник: Власть Ахатеса через Driveintake

Скромный двухтактный двигатель может быть двигателем будущего

Renault не продает автомобили в США.С. — если вы не рассматриваете некоторые Nissans, которые используют глобальную платформу, — но есть причина, по которой этот крошечный дизель из Франции интересен: он дает нам представление о том, как двигатели внутреннего сгорания будут развиваться под давлением, чтобы одновременно увеличить относительную мощность и эффективность. . Скромный двухтактный двигатель может стать двигателем будущего. Что старое, опять новое, верно?

Renault — крупный производитель дизельных двигателей малой мощности, и вполне вероятно, что с концепцией «МОЩНЫЙ» (POWERtrain for FUture Light-duty cars), которую компания называет «POWERtrain» (POWERtrain for FUture Light-duty cars), она могла бы первым выйти из ворот с небольшим двухтактным дизельным двигателем для легковые автомобили.

ПОДРОБНЕЕ: Настройте настроение с помощью ароматической свечи с двумя лампочками

По своей конструкции двухтактный дизель отличается высокой мощностью, рабочим ходом на каждом обороте и по своей природе более чистым, чем двухтактный бензиновый. Главный недостаток — узкий диапазон мощности. А «чистый» относительный; Стандарты выбросов и экономии в Европе и Северной Америке чрезвычайно требовательны к дизелям. Несколько компаний пытаются решить эти проблемы и произвести двухтактный двигатель, подходящий для легкого автомобиля, но пока ни один из них не вышел на рынок.

POWERFUL вдвое меньше базового 1,5-литрового турбодизельного двигателя dCi для легковых автомобилей; он весит на целых 88 фунтов меньше, а в нынешнем виде способен выдавать 48–68 лошадиных сил всего из 0,73 литра. POWERFUL использует как нагнетатель, так и турбонагнетатель, как и другие двигатели с двойным наддувом. Для сравнения: 1,5-литровый dCi в зависимости от комплектации выдает 64–110 л.с. И это не просто сокращение вдвое на 1,5 dCi, потому что это четырехтактный дизельный двигатель.

ПОДРОБНЕЕ: Двигатель Toyota без коленчатого вала со свободным поршнем просто великолепен

При этом Renault еще не доволен производительностью POWERFUL.Прежде чем он будет готов к выходу в прайм-тайм, требуется доработка. Пока мы говорим, Франция пересматривает свою любовь к дизельному топливу, но, возможно, крошечные двухтактные двигатели укажут путь вперед.

через Autoblog

Этот контент создается и поддерживается третьей стороной и импортируется на эту страницу, чтобы помочь пользователям указать свои адреса электронной почты. Вы можете найти дополнительную информацию об этом и подобном контенте на сайте piano.io.

2-тактный Vs.4-тактные двигатели: в чем разница?

Автомобильные двигатели трансформировались с годами, но остались две основные конструкции двигателей внутреннего сгорания с бензиновым двигателем: 2-тактный и 4-тактный. Хотя мы уверены, что вы хотя бы слышали эти термины раньше, знаете ли вы разницу между ними? Как они работают и что лучше? Читайте дальше, чтобы узнать ответы!

Как работают двигатели внутреннего сгорания и что вообще такое «инсульт»?

Чтобы понять, чем отличаются эти два двигателя, сначала необходимо ознакомиться с основами.

Во время цикла сгорания двигателя поршень перемещается вверх и вниз внутри цилиндра. Термины «верхняя мертвая точка» (ВМТ) и «нижняя мертвая точка» (НМТ) относятся к положению поршня в цилиндре. ВМТ — это его позиция, ближайшая к клапанам, а НМТ — это ее позиция, наиболее удаленная от них. Ход — это когда поршень перемещается из ВМТ в НМТ или наоборот. A c сгорание r Evolution или c сгорание c ycle — это полный процесс всасывания газа и воздуха в поршень, его воспламенения и вытеснения выхлопных газов:

  1. Впуск: Поршень движется вниз по цилиндру, позволяя смеси закипания и воздуха попасть в камеру сгорания
  2. Компрессия: Поршень движется обратно вверх по цилиндру; впускной клапан закрыт для сжатия газов в пределах
  3. Горение: Искра от свечи зажигания воспламеняет газ
  4. Выхлоп: Поршень поднимается вверх по цилиндру, и выпускной клапан открывается

Разница между 2-тактным и 4-тактным ходом

Разница между 2-тактным и 4-тактным двигателями заключается в том, насколько быстро происходит этот процесс цикла сгорания, в зависимости от того, сколько раз поршень перемещается вверх и вниз в течение каждого цикла.

, 4-тактный:

В 4-тактном двигателе поршень совершает 2-тактный ход за каждый оборот: один такт сжатия и один такт выпуска, за каждым из которых следует обратный ход. Свечи зажигания срабатывают только один раз за каждый второй оборот, а мощность вырабатывается через каждые 4 такта поршня. Эти двигатели также не требуют предварительного смешивания топлива и масла, так как имеют отдельный отсек для масла.

Посмотрите это короткое видео, чтобы подробнее узнать, как работает 4-тактный двигатель:

2-тактный:

В двухтактном двигателе весь цикл сгорания завершается всего одним ходом поршня: тактом сжатия, за которым следует взрыв сжатого топлива.Во время обратного хода выхлоп выпускается, и в цилиндр поступает свежая топливная смесь. Свечи зажигания срабатывают один раз за каждый оборот, а мощность вырабатывается за каждые 2 такта поршня. Двухтактные двигатели также требуют предварительного смешивания масла с топливом.

Посмотрите это короткое видео, чтобы подробнее узнать, как работает двухтактный двигатель:

За и против:

Итак, что «лучше»? Вот несколько плюсов и минусов обеих конструкций двигателей:

  • Что касается эффективности, 4-тактный двигатель, безусловно, выигрывает.Это связано с тем, что топливо расходуется раз в 4 такта.
  • Четырехтактные двигатели тяжелее; они весят на 50% больше, чем сопоставимый двухтактный двигатель.
  • Обычно 2-тактный двигатель создает больший крутящий момент при более высоких оборотах, в то время как 4-тактный двигатель создает более высокий крутящий момент при более низких оборотах.
  • 4-тактный двигатель также намного тише, 2-тактный двигатель значительно громче и издает характерный пронзительный «жужжащий» звук.
  • Поскольку двухтактные двигатели предназначены для работы с более высокими оборотами, они также имеют тенденцию к более быстрому износу; 4-тактный двигатель обычно более долговечен.При этом двухтактные двигатели более мощные.
  • Двухтактные двигатели имеют гораздо более простую конструкцию, что упрощает их ремонт. У них нет клапанов, а скорее порты. В четырехтактных двигателях деталей больше, поэтому они дороже и ремонт обходится дороже.
  • Двухтактные двигатели требуют предварительного смешивания масла и топлива, а четырехтактные — нет.
  • Четырехтактные более экологически чистые; в двухтактном двигателе сгоревшее масло также выбрасывается в воздух вместе с выхлопными газами.

Двухтактные двигатели обычно используются в небольших приложениях, таких как автомобили с дистанционным управлением, инструменты для газонов, бензопилы, лодочные моторы и внедорожники. Четырехтактные двигатели используются во всем: от картингов, газонокосилок и мотоциклов, вплоть до типичного двигателя внутреннего сгорания в вашем автомобиле. Вам решать, какой движок вы предпочитаете и для чего.

В Berryman Products мы стремимся предоставлять быстрое индивидуальное обслуживание и производить продукцию, соответствующую высочайшим стандартам качества, надежности и экологической ответственности.Посетите наш веб-сайт и страницу Facebook для получения точной информации и качественных продуктов, необходимых для решения наиболее распространенных проблем с автомобилем.

Почему 2-тактные главные двигатели используются на судах вместо 4-тактных?

Когда судно строится на верфи, наиболее важным механизмом, который следует выбирать, является главный двигатель.

Как двухтактные, так и четырехтактные двигатели широко доступны на рынке, но для больших океанских торговых судов двухтактный двигатель чаще используется в качестве основного двигателя и имеет гораздо лучший рынок.

Даже с широким спектром преимуществ, которые предлагает 4-тактный двигатель, таких как компактный размер установки, гораздо большее число оборотов в минуту или скорость и т. Д., 2-тактный двигатель затмевает немногими, но жизненно важными преимуществами.

Некоторые из важных причин, по которым двухтактные двигатели более популярны, чем четырехтактные, в качестве основных силовых двигателей на судах

  • Выбор топлива : Цены на топливо взлетели до небес, а топливо более высокого качества увеличивает расходы на эксплуатацию судна.Двухтактный двигатель может сжигать низкосортное жидкое топливо и, следовательно, снизить эксплуатационные расходы корабля.
  • КПД : Тепловой КПД и КПД двухтактного двигателя намного лучше, чем у четырехтактного.
  • Мощность : Большинство двухтактных двигателей теперь являются крупноходными, которые производят большую мощность. Следовательно, они имеют высокое отношение мощности к весу по сравнению с 4-тактными двигателями.
  • Больше груза : Судно может нести больший вес и, следовательно, больше груза с 2-тактными двигателями из-за высокого отношения мощности к весу.
  • Надежность : Двухтактные двигатели более надежны в работе по сравнению с 4-тактными двигателями.
  • Меньше обслуживания : Требования к техническому обслуживанию двухтактного двигателя намного меньше, чем у четырехтактного двигателя.
  • Контроль направления : Двухтактный двигатель упрощает прямой запуск и реверсирование.
  • Без редукторов. : Поскольку двухтактные двигатели являются низкооборотными двигателями, не требуется понижающий редуктор или механизм понижения скорости, как это требуется для высокоскоростных четырехтактных двигателей.

Однако маневренность двухтактного двигателя ниже, чем у четырехтактного, и первоначальная стоимость установки двухтактной силовой установки также намного выше, чем стоимость эксплуатации и обслуживания четырехтактного двигателя. двигатель.

В двухтактном двигателе экономия на высококачественном топливе может компенсировать все другие недостатки, а также снизить общие эксплуатационные расходы корабля.

Вы также можете прочитать — Что такое локальное или аварийное маневрирование на судне?

Заявление об ограничении ответственности: Мнения авторов, выраженные в этой статье, не обязательно отражают точку зрения Marine Insight. Данные и диаграммы, если они используются в статье, были получены из доступной информации и не были подтверждены каким-либо установленным законом органом. Автор и компания «Марин Инсайт» не заявляют об их точности и не берут на себя ответственность за них. Взгляды представляют собой только мнения и не представляют собой каких-либо руководящих принципов или рекомендаций относительно какого-либо курса действий, которым должен следовать читатель.

Теги: судовой двигатель Судовые двигатели

Судовой двухтактный дизельный двигатель | Кавасаки Хэви Индастриз

Дизельные двигатели Kawasaki отличаются высоким качеством, подкрепленным богатым опытом производства более века, а также высокими технологиями, зарекомендовавшими себя в качестве производителя различной продукции.Работая на фоне правил Tier III по выбросам NOx IMO (Международной морской организации), вступивших в силу в 2016 году, компания Kawasaki завершила разработку системы Kawasaki-ECO «K-ECOS», которая представляет собой экологически чистую систему в сочетании с системой отсечки T / C (турбонагнетатель). , EGR (рециркуляция выхлопных газов) и / или WEF (водоэмульгированное топливо) для двухтактных дизельных двигателей. Kawasaki продолжает развивать технологические разработки, связанные с морскими судами, с целью сохранения окружающей среды.

Характеристики

  • Самая большая в мире программа для двухтактных дизельных двигателей с гибкой компоновкой для обеспечения разнообразного выбора силовой установки.
  • Низкий удельный расход мазута вместе с оптимальным выбором оборотов двигателя
  • Низкий удельный расход мазута в широком рабочем диапазоне частичной нагрузки
  • Соответствует нормам IMO по выбросам NOx

Продукты

Двухтактный дизельный двигатель Kawasaki-MAN B&W

Двигатель ME-C / ME-B В двигателях ME-C синхронизация впрыска топлива, срабатывание выпускных и пусковых клапанов, а также смазка цилиндров контролируются электроникой.В двигателях ME-B момент впрыска топлива регулируется электроникой. Выпускные клапаны приводятся в действие кулачками и имеют функцию переменного момента закрытия.
Двухтопливный двигатель GI / LGI Двигатели ME-C / ME-B с обозначением GI (впрыск газа) доступны как двухтопливные двигатели для работы на природном газе. Двигатели ME-C / ME-B под обозначением LGI (впрыск сжиженного газа) доступны как двухтопливные двигатели для работы на жидком топливе с низкой температурой вспышки (LFL), таком как метанол, этанол, LPG и DME.

Экологичный продукт

Система Kawasaki-ECO «K-ECOS» K-ECOS — это экологически чистая система в сочетании с системой обрезки T / C, EGR и / или WEF для двухтактных дизельных двигателей. K-ECOS соответствует требованиям стандарта IMO NOx TierⅢ за счет экономии топлива и экономичной эксплуатации. Двухтактный дизельный двигатель с новым K-ECOS был установлен на флагманском судне DRIVE GREEN PROJECT компании KAWASAKI KISEN KAISHA, LTD.
Kawasaki-Green Eco Turbine «K-GET» K-GET — это система с турбонаддувом для двухтактных дизельных двигателей. K-GET может снизить расход мазута с помощью высокоэффективной силовой турбины, разработанной Kawasaki.

Модельный ряд

Приложения

Кавасаки Кисен Кайша, Лтд.
«Шанхайское шоссе»
Чистый носитель носителя
7С60МЕ-С Кавасаки Кисен Кайша, Лтд.
«Хьюстонский мост»
Контейнеровоз 8600 TEU
9К98МЕ Кавасаки Кисен Кайша, Лтд.
«Корона Королева»
Сухогруз
5S60MCC

Брошюры

Ссылка

Пункты обслуживания

Кобе, Япония

Токио, Япония

Амстердам, Нидерланды

Гонконг, Китай

Сингапур

Рио-де-Жанейро, Бразилия

Пекин, Китай

Шанхай, Китай

Тайбэй, Тайвань

Дели, Индия

Москва, Россия

Нью-Йорк, США

Дубай, ОАЭ

Сан-Паулу, Бразилия

Главный офис

Завод Кобе
Отдел продаж судового оборудования

ПРОФИЛЬ И КАРТА
1-1, Хигаси-Кавасаки-тё
3-chome, Chuo-ku, Кобе 650-
8670, Япония
Отдел продаж запчастей
Тел: + 81-78-682-5321 / Факс: + 81-78-682-5549
Эл. Почта: [email protected]
Главный офис в Токио
Отдел продаж судового оборудования

ПРОФИЛЬ И КАРТА
14-5, Кайган 1-чомэ, Минатоку,
Токио 105-8315, Япония
Отдел зарубежных продаж
Тел: + 81-3-3435-2374 / Факс: + 81-3-3435-2022
Отдел продаж запчастей
Тел: + 81-3-3435-2368 / Факс: + 81-3-3435-2022

Региональный ключевой контактный центр

Амстердам,
Нидерланды
Kawasaki Heavy Industries
(Европа) Б.V.
Тел: + 31-20-6446869 / Факс: + 31-20-6425725
Эл. Почта: [email protected]
Гонконг, Китай
Kawasaki Heavy Industries
(H.K.) Ltd.
Тел .: + 852-2522-3560 / Факс: + 852-2845-2905
Электронная почта: [email protected]

Заграничный офис

Сингапур
Kawasaki Heavy Industries
(Сингапур) Pte.ООО
Тел .: + 65-6225-5133 / Факс: + 65-6224-9029
Пекин, Китай
Офис в Пекине
Тел .: + 86-10-6505-1350 / Факс: + 86-10-6505-1351
Шанхай, Китай
Kawasaki Heavy Industries Management (Шанхай) Ко, Лтд.
Тел .: + 86-21-3366-3100 / Факс: + 86-21-3366-3108
Тайбэй, Тайвань
Тайбэй Офис
Тел .: + 886-2-2322-1752 / Факс: + 886-2-2322-5009
Дели, Индия
Офис в Дели
Тел .: + 91-11-4358-3531 / Факс: + 91-11-4358-3532
Москва, Россия
Офис в Москве
Тел .: + 7-495-258-2115 / Факс: + 7-495-258-2116
Дубай, ОАЭ
Kawasaki Heavy Industries Middle East FZE
Тел .: + 971-4-214-6730 / Факс: + 971-4-214-6729
Нью-Йорк, США
Kawasaki Heavy Industries (США), Inc.
Тел .: + 1-917-475-1195 / Факс: + 1-917-475-1392
Рио-де-Жанейро, Бразилия
Kawasaki Machinery do Brasil
Maquinas e Equipamentos Ltda.
(Офис в Рио-де-Жанейро)
Тел .: + 55-21-2226-3938 / Факс: + 55-21-2225-3613
Сан-Паулу, Бразилия
Kawasaki Machinery do Brasil
Maquinas e Equipamentos Ltda.
Тел .: + 55-11-3266-3318 / Факс: + 55-11-3289-2788

Если вам нужна дополнительная информация о нашем бизнесе, тел.
Пожалуйста, не стесняйтесь обращаться к нам.
Тел. + 81-3-3435-2374

КОНТАКТ

Глава 3c — Первый закон — Закрытые системы

Глава 3c — Первый закон — Закрытые системы — Дизельные двигатели (обновлено 19.03.2013)

Глава 3: Первый закон термодинамики для Закрытые системы

c) Дизельный цикл воздушного стандарта (Компрессионное зажигание) Двигатель

The Air Стандартный дизельный цикл — идеальный цикл для Компрессионное зажигание (CI) поршневые двигатели, впервые предложенные Рудольфом Дизель более 100 лет назад.Следующая ссылка на Kruse Технологическое партнерство описывает четырехтактный дизельный цикл работа в т.ч. история Рудольфа Дизеля. Четырехтактный дизельный двигатель обычно используется в автомобильных системах, тогда как более крупные морские системы обычно используйте двухтактный дизельный цикл . Еще раз у нас есть отличная анимация от Matt Кевени , представляя работу четырехтактный дизельный цикл .

Фактический цикл CI чрезвычайно сложен, поэтому в при первоначальном анализе мы используем идеальное «стандартное» допущение, в котором рабочее тело представляет собой фиксированную массу воздуха, испытывающего полный цикл, который рассматривается как идеальный газ.Все процессы идеальны, горение заменяется добавлением тепла к воздух, а выхлоп заменяется процессом отвода тепла, который восстанавливает воздух в исходное состояние.

Идеальный дизельный двигатель стандартного воздушного отдельные процессы, каждый из которых может быть проанализирован отдельно, как показан в P-V диаграммы ниже. Два из четырех процессов цикла адиабатические процессы (адиабатический = отсутствие передачи тепла), таким образом, прежде чем мы можем продолжить, нам нужно разработать уравнения для идеального газа адиабатический процесс следующим образом:

Адиабатический процесс идеального газа (Q = 0)

Результатом анализа являются следующие три основных форм, представляющих адиабатический процесс:


где k — коэффициент теплоемкостей и имеет номинальное значение 1.4 в 300К по воздуху.

Процесс 1-2 — это процесс адиабатического сжатия. Таким образом, температура воздуха увеличивается во время сжатия. процесс, а при большой степени сжатия (обычно> 16: 1) он достигнет температуры воспламенения впрыскиваемого топлива. Таким образом данный условия в состоянии 1 и степень сжатия двигателя, в для определения давления и температуры в состоянии 2 (при конец процесса адиабатического сжатия) имеем:

Работа W 1-2 , необходимая для сжатия газа показан как область под кривой P-V и оценивается как следует.

Альтернативный подход с использованием уравнения энергии использует преимущество адиабатического процесса (Q 1-2 = 0) приводит к гораздо более простому процессу:


(спасибо студентке Николь Блэкмор за то, что она рассказала мне об этой альтернативе подход)

Во время процесса 2-3 топливо впрыскивается и сгорает. и это представлено процессом расширения при постоянном давлении. В состояние 3 («прекращение подачи топлива») процесс расширения продолжается адиабатически с понижением температуры до тех пор, пока расширение не станет равным полный.

Процесс 3-4, таким образом, представляет собой процесс адиабатического расширения. Общий объем работ по расширению составляет W exp . = (Ш 2-3 + Ш 3-4 ) и отображается как область под P-V диаграмму и анализируется следующим образом:

Наконец, процесс 4-1 представляет постоянный объем процесс отвода тепла. В реальном дизельном двигателе газ просто откачивается из цилиндра и вводится свежий заряд воздуха.

Чистая работа W net , выполненная за цикл, составляет определяется по формуле: W net = (W exp + W 1-2 ), где, как и раньше, работа сжатия W 1-2 отрицательна (работа выполнена по системе ).

В дизельном двигателе Air-Standard вход Q в происходит за счет сжигания топлива, которое впрыскивается контролируемым образом, в идеале приводящий к процессу расширения при постоянном давлении 2-3 как показано ниже. При максимальном объеме (нижняя мертвая точка) сгоревшие газы просто истощаются и заменяются свежим зарядом воздуха. Это представлен эквивалентным процессом отвода тепла с постоянным объемом Q из = -Q 4-1 . Оба процесса анализируются следующим образом:

На этом этапе мы можем удобно определить КПД двигателя по тепловому потоку:

__________________________________________________________________________

В этом разделе резюмируются следующие проблемы:

Задача 3.4 А поршневой цилиндр без трения содержит 0,2 кг воздуха при 100 кПа. и 27 ° С. Теперь воздух медленно сжимается в соответствии с соотношением P V k = константа, где k = 1,4, до достижения конечной температура 77 ° С.

  • a) Набросок P-V диаграмма процесса относительно соответствующей константы температурными линиями и обозначьте проделанную работу на этой диаграмме.

  • б) Использование основного определение границ выполненных работ определить границы работ выполнено в процессе [-7.18 кДж].

  • c) Используя уравнение энергии, определите тепла. передано в процессе [0 кДж] и убедитесь, что процесс находится в факт адиабатический.

Производное все уравнения использовались начиная с с основным уравнением энергии для непроточной системы уравнение для изменения внутренней энергии идеального газа (Δu) основное уравнение для выполненной граничной работы и уравнения состояния идеального газа [ P.V = m.R.T ]. Использовать значения удельной теплоемкости определены при 300К для всего процесс.

Проблема 3.5 Учитывать ход расширения только типичный дизельный двигатель Air Standard, имеющий степень сжатия коэффициент 20 и коэффициент отсечки 2. В начале процесса (впрыск топлива) начальная температура 627 ° C, воздух расширяется при постоянном давлении 6,2 МПа до отсечки (объемное соотношение 2: 1). Впоследствии воздух адиабатически расширяется (без теплопередачи). пока не достигнет максимальной громкости.

  • a) Нарисуйте это процесс на P-v диаграмма, четко показывающая все три состояния.Укажите на схеме общая работа, проделанная в течение всего процесса расширения.

  • б) Определить температуры, достигнутые в конце постоянного давления (топливо впрыск) процесс [1800K], а также в конце процесса расширения [830K], и нарисуйте три соответствующие линии постоянной температуры на P-v . диаграмма.

  • c) Определите общая работа, выполненная во время такта расширения [1087 кДж / кг].

  • г) Определите общее количество тепла, подаваемого в воздух. во время такта расширения [1028 кДж / кг].

Вывести все используемые уравнения исходя из уравнения состояния идеального газа и адиабатического процесса соотношения, основное уравнение энергии для замкнутой системы, внутренняя энергия и энтальпия изменяют соотношения для идеального газа, и базовое определение граничной работы, выполняемой системой (при необходимости). Используйте значения удельной теплоемкости, определенные при 1000K для всего процесс расширения, полученный из таблицы Specific Теплоемкость воздуха .

Решенная проблема 3.6 Идеальный дизельный двигатель, работающий в соответствии с воздушными стандартами, имеет степень сжатия 18 и степень отсечки 2. В начале процесса сжатия рабочая жидкость находится при 100 кПа, 27 ° C (300 К). Определите температуру и давление воздуха в конце каждого процесса, чистый объем работы за цикл [кДж / кг] и термический КПД.

Обратите внимание, что номинальные значения удельной теплоемкости для воздуха при 300K используются C P = 1,00 кДж / кг.K, C v = 0.717 кДж / кг · K ,, и k = 1,4. Однако все они являются функциями температура, и с чрезвычайно высоким температурным диапазоном при работе с дизельными двигателями можно получить значительные ошибки. Один подход (который мы примем в этом примере) заключается в использовании типичного средняя температура на протяжении всего цикла.

Подход к решению:

Первый шаг — нарисовать диаграмму, представляющую проблема, включая всю необходимую информацию. Мы замечаем, что не указаны ни объем, ни масса, поэтому диаграмма и решение будут быть в конкретных количествах.Самая полезная диаграмма для тепловой двигатель P-v диаграмма полного цикла:

Следующим шагом является определение рабочей жидкости и определитесь с основными уравнениями или таблицами для использования. В этом случае рабочая жидкость — воздух, и мы решили использовать среднюю температура 900K на протяжении всего цикла для определения удельной теплоемкости значения емкости представлены в таблице Удельные теплоемкости воздуха .

Теперь мы проходим все четыре процесса, чтобы определять температуру и давление в конце каждого процесса.

Обратите внимание, что альтернативный метод оценки давление P 2 — это просто использовать уравнение состояния идеального газа, как показано ниже:

Любой из подходов удовлетворителен — выберите тот, который вам удобнее. Теперь продолжим с топливом процесс постоянного давления впрыска:



Обратите внимание, что даже если проблема требует «net производительность за цикл »мы рассчитали только тепло в и разогреть.В случае с дизельным двигателем намного проще оценить теплотворную способность, и мы можем легко получить чистую работу из энергетический баланс за полный цикл выглядит следующим образом:

Вы можете удивиться нереально высокой температуре полученная эффективность. В этом идеализированном анализе мы проигнорировали многие эффекты потерь, существующие в практических тепловых двигателях. Мы начнем понять некоторые из этих механизмов потерь, когда мы изучаем Второй закон in Глава 5 .

______________________________________________________________________________

В части d) Закона Первый закон — Цикловые двигатели Отто

______________________________________________________________________________________


Инженерная термодинамика, Израиль Уриэли под лицензией Creative Общедоступное авторское право — Некоммерческое использование — Совместное использование 3.0 Соединенные Штаты Лицензия

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *